/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim: set ts=8 sts=2 et sw=2 tw=80: */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this file, * You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "OGLShaderProgram.h" #include // for uint32_t #include // for std::ostringstream #include "GLContext.h" #include "gfxEnv.h" #include "gfxRect.h" // for gfxRect #include "gfxUtils.h" #include "mozilla/DebugOnly.h" // for DebugOnly #include "mozilla/gfx/Logging.h" #include "mozilla/layers/Compositor.h" // for BlendOpIsMixBlendMode #include "nsAString.h" #include "nsString.h" // for nsAutoCString namespace mozilla { namespace layers { using std::endl; #define GAUSSIAN_KERNEL_HALF_WIDTH 11 #define GAUSSIAN_KERNEL_STEP 0.2 static void AddUniforms(ProgramProfileOGL& aProfile) { // This needs to be kept in sync with the KnownUniformName enum static const char* sKnownUniformNames[] = {"uLayerTransform", "uLayerTransformInverse", "uMaskTransform", "uBackdropTransform", "uLayerRects", "uMatrixProj", "uTextureTransform", "uTextureRects", "uRenderTargetOffset", "uLayerOpacity", "uTexture", "uYTexture", "uCbTexture", "uCrTexture", "uRenderColor", "uTexCoordMultiplier", "uCbCrTexCoordMultiplier", "uSSEdges", "uViewportSize", "uVisibleCenter", "uYuvColorMatrix", "uYuvOffsetVector", nullptr}; for (int i = 0; sKnownUniformNames[i] != nullptr; ++i) { aProfile.mUniforms[i].mNameString = sKnownUniformNames[i]; aProfile.mUniforms[i].mName = (KnownUniform::KnownUniformName)i; } } void ShaderConfigOGL::SetRenderColor(bool aEnabled) { SetFeature(ENABLE_RENDER_COLOR, aEnabled); } void ShaderConfigOGL::SetTextureTarget(GLenum aTarget) { SetFeature(ENABLE_TEXTURE_EXTERNAL | ENABLE_TEXTURE_RECT, false); switch (aTarget) { case LOCAL_GL_TEXTURE_EXTERNAL: SetFeature(ENABLE_TEXTURE_EXTERNAL, true); break; case LOCAL_GL_TEXTURE_RECTANGLE_ARB: SetFeature(ENABLE_TEXTURE_RECT, true); break; } } void ShaderConfigOGL::SetMaskTextureTarget(GLenum aTarget) { if (aTarget == LOCAL_GL_TEXTURE_RECTANGLE_ARB) { SetFeature(ENABLE_MASK_TEXTURE_RECT, true); } else { MOZ_ASSERT(aTarget == LOCAL_GL_TEXTURE_2D); SetFeature(ENABLE_MASK_TEXTURE_RECT, false); } } void ShaderConfigOGL::SetRBSwap(bool aEnabled) { SetFeature(ENABLE_TEXTURE_RB_SWAP, aEnabled); } void ShaderConfigOGL::SetNoAlpha(bool aEnabled) { SetFeature(ENABLE_TEXTURE_NO_ALPHA, aEnabled); } void ShaderConfigOGL::SetOpacity(bool aEnabled) { SetFeature(ENABLE_OPACITY, aEnabled); } void ShaderConfigOGL::SetYCbCr(bool aEnabled) { SetFeature(ENABLE_TEXTURE_YCBCR, aEnabled); MOZ_ASSERT(!(mFeatures & ENABLE_TEXTURE_NV12)); } void ShaderConfigOGL::SetColorMultiplier(uint32_t aMultiplier) { MOZ_ASSERT(mFeatures & ENABLE_TEXTURE_YCBCR, "Multiplier only supported with YCbCr!"); mMultiplier = aMultiplier; } void ShaderConfigOGL::SetNV12(bool aEnabled) { SetFeature(ENABLE_TEXTURE_NV12, aEnabled); MOZ_ASSERT(!(mFeatures & ENABLE_TEXTURE_YCBCR)); #ifdef MOZ_WIDGET_GTK SetFeature(ENABLE_TEXTURE_NV12_GA_SWITCH, aEnabled); #endif } void ShaderConfigOGL::SetComponentAlpha(bool aEnabled) { SetFeature(ENABLE_TEXTURE_COMPONENT_ALPHA, aEnabled); } void ShaderConfigOGL::SetColorMatrix(bool aEnabled) { SetFeature(ENABLE_COLOR_MATRIX, aEnabled); } void ShaderConfigOGL::SetBlur(bool aEnabled) { SetFeature(ENABLE_BLUR, aEnabled); } void ShaderConfigOGL::SetMask(bool aEnabled) { SetFeature(ENABLE_MASK, aEnabled); } void ShaderConfigOGL::SetNoPremultipliedAlpha() { SetFeature(ENABLE_NO_PREMUL_ALPHA, true); } void ShaderConfigOGL::SetDEAA(bool aEnabled) { SetFeature(ENABLE_DEAA, aEnabled); } void ShaderConfigOGL::SetCompositionOp(gfx::CompositionOp aOp) { mCompositionOp = aOp; } void ShaderConfigOGL::SetDynamicGeometry(bool aEnabled) { SetFeature(ENABLE_DYNAMIC_GEOMETRY, aEnabled); } /* static */ ProgramProfileOGL ProgramProfileOGL::GetProfileFor(ShaderConfigOGL aConfig) { ProgramProfileOGL result; std::ostringstream fs, vs; AddUniforms(result); gfx::CompositionOp blendOp = aConfig.mCompositionOp; vs << "#ifdef GL_ES" << endl; vs << "#define EDGE_PRECISION mediump" << endl; vs << "#else" << endl; vs << "#define EDGE_PRECISION" << endl; vs << "#endif" << endl; vs << "uniform mat4 uMatrixProj;" << endl; vs << "uniform vec4 uLayerRects[4];" << endl; vs << "uniform mat4 uLayerTransform;" << endl; if (aConfig.mFeatures & ENABLE_DEAA) { vs << "uniform mat4 uLayerTransformInverse;" << endl; vs << "uniform EDGE_PRECISION vec3 uSSEdges[4];" << endl; vs << "uniform vec2 uVisibleCenter;" << endl; vs << "uniform vec2 uViewportSize;" << endl; } vs << "uniform vec2 uRenderTargetOffset;" << endl; if (!(aConfig.mFeatures & ENABLE_DYNAMIC_GEOMETRY)) { vs << "attribute vec4 aCoord;" << endl; } else { vs << "attribute vec2 aCoord;" << endl; } result.mAttributes.AppendElement(std::pair{"aCoord", 0}); if (!(aConfig.mFeatures & ENABLE_RENDER_COLOR)) { vs << "uniform mat4 uTextureTransform;" << endl; vs << "uniform vec4 uTextureRects[4];" << endl; vs << "varying vec2 vTexCoord;" << endl; if (aConfig.mFeatures & ENABLE_DYNAMIC_GEOMETRY) { vs << "attribute vec2 aTexCoord;" << endl; result.mAttributes.AppendElement( std::pair{"aTexCoord", 1}); } } if (BlendOpIsMixBlendMode(blendOp)) { vs << "uniform mat4 uBackdropTransform;" << endl; vs << "varying vec2 vBackdropCoord;" << endl; } if (aConfig.mFeatures & ENABLE_MASK) { vs << "uniform mat4 uMaskTransform;" << endl; vs << "varying vec3 vMaskCoord;" << endl; } vs << "void main() {" << endl; if (aConfig.mFeatures & ENABLE_DYNAMIC_GEOMETRY) { vs << " vec4 finalPosition = vec4(aCoord.xy, 0.0, 1.0);" << endl; } else { vs << " int vertexID = int(aCoord.w);" << endl; vs << " vec4 layerRect = uLayerRects[vertexID];" << endl; vs << " vec4 finalPosition = vec4(aCoord.xy * layerRect.zw + " "layerRect.xy, 0.0, 1.0);" << endl; } vs << " finalPosition = uLayerTransform * finalPosition;" << endl; if (aConfig.mFeatures & ENABLE_DEAA) { // XXX kip - The DEAA shader could be made simpler if we switch to // using dynamic vertex buffers instead of sending everything // in through uniforms. This would enable passing information // about how to dilate each vertex explicitly and eliminate the // need to extrapolate this with the sub-pixel coverage // calculation in the vertex shader. // Calculate the screen space position of this vertex, in screen pixels vs << " vec4 ssPos = finalPosition;" << endl; vs << " ssPos.xy -= uRenderTargetOffset * finalPosition.w;" << endl; vs << " ssPos = uMatrixProj * ssPos;" << endl; vs << " ssPos.xy = ((ssPos.xy/ssPos.w)*0.5+0.5)*uViewportSize;" << endl; if (aConfig.mFeatures & ENABLE_MASK || !(aConfig.mFeatures & ENABLE_RENDER_COLOR)) { vs << " vec4 coordAdjusted;" << endl; vs << " coordAdjusted.xy = aCoord.xy;" << endl; } // It is necessary to dilate edges away from uVisibleCenter to ensure that // fragments with less than 50% sub-pixel coverage will be shaded. // This offset is applied when the sub-pixel coverage of the vertex is // less than 100%. Expanding by 0.5 pixels in screen space is sufficient // to include these pixels. vs << " if (dot(uSSEdges[0], vec3(ssPos.xy, 1.0)) < 1.5 ||" << endl; vs << " dot(uSSEdges[1], vec3(ssPos.xy, 1.0)) < 1.5 ||" << endl; vs << " dot(uSSEdges[2], vec3(ssPos.xy, 1.0)) < 1.5 ||" << endl; vs << " dot(uSSEdges[3], vec3(ssPos.xy, 1.0)) < 1.5) {" << endl; // If the shader reaches this branch, then this vertex is on the edge of // the layer's visible rect and should be dilated away from the center of // the visible rect. We don't want to hit this for inner facing // edges between tiles, as the pixels may be covered twice without clipping // against uSSEdges. If all edges were dilated, it would result in // artifacts visible within semi-transparent layers with multiple tiles. vs << " vec4 visibleCenter = uLayerTransform * vec4(uVisibleCenter, " "0.0, 1.0);" << endl; vs << " vec2 dilateDir = finalPosition.xy / finalPosition.w - " "visibleCenter.xy / visibleCenter.w;" << endl; vs << " vec2 offset = sign(dilateDir) * 0.5;" << endl; vs << " finalPosition.xy += offset * finalPosition.w;" << endl; if (!(aConfig.mFeatures & ENABLE_RENDER_COLOR)) { // We must adjust the texture coordinates to compensate for the dilation vs << " coordAdjusted = uLayerTransformInverse * finalPosition;" << endl; vs << " coordAdjusted /= coordAdjusted.w;" << endl; if (!(aConfig.mFeatures & ENABLE_DYNAMIC_GEOMETRY)) { vs << " coordAdjusted.xy -= layerRect.xy;" << endl; vs << " coordAdjusted.xy /= layerRect.zw;" << endl; } } vs << " }" << endl; if (!(aConfig.mFeatures & ENABLE_RENDER_COLOR)) { if (aConfig.mFeatures & ENABLE_DYNAMIC_GEOMETRY) { vs << " vTexCoord = (uTextureTransform * vec4(aTexCoord, 0.0, " "1.0)).xy;" << endl; } else { vs << " vec4 textureRect = uTextureRects[vertexID];" << endl; vs << " vec2 texCoord = coordAdjusted.xy * textureRect.zw + " "textureRect.xy;" << endl; vs << " vTexCoord = (uTextureTransform * vec4(texCoord, 0.0, 1.0)).xy;" << endl; } } } else if (!(aConfig.mFeatures & ENABLE_RENDER_COLOR)) { if (aConfig.mFeatures & ENABLE_DYNAMIC_GEOMETRY) { vs << " vTexCoord = (uTextureTransform * vec4(aTexCoord, 0.0, 1.0)).xy;" << endl; } else { vs << " vec4 textureRect = uTextureRects[vertexID];" << endl; vs << " vec2 texCoord = aCoord.xy * textureRect.zw + textureRect.xy;" << endl; vs << " vTexCoord = (uTextureTransform * vec4(texCoord, 0.0, 1.0)).xy;" << endl; } } if (aConfig.mFeatures & ENABLE_MASK) { vs << " vMaskCoord.xy = (uMaskTransform * (finalPosition / " "finalPosition.w)).xy;" << endl; // correct for perspective correct interpolation, see comment in D3D11 // shader vs << " vMaskCoord.z = 1.0;" << endl; vs << " vMaskCoord *= finalPosition.w;" << endl; } vs << " finalPosition.xy -= uRenderTargetOffset * finalPosition.w;" << endl; vs << " finalPosition = uMatrixProj * finalPosition;" << endl; if (BlendOpIsMixBlendMode(blendOp)) { // Translate from clip space (-1, 1) to (0..1), apply the backdrop // transform, then invert the y-axis. vs << " vBackdropCoord.x = (finalPosition.x + 1.0) / 2.0;" << endl; vs << " vBackdropCoord.y = 1.0 - (finalPosition.y + 1.0) / 2.0;" << endl; vs << " vBackdropCoord = (uBackdropTransform * vec4(vBackdropCoord.xy, " "0.0, 1.0)).xy;" << endl; vs << " vBackdropCoord.y = 1.0 - vBackdropCoord.y;" << endl; } vs << " gl_Position = finalPosition;" << endl; vs << "}" << endl; if (aConfig.mFeatures & ENABLE_TEXTURE_RECT) { fs << "#extension GL_ARB_texture_rectangle : require" << endl; } if (aConfig.mFeatures & ENABLE_TEXTURE_EXTERNAL) { fs << "#extension GL_OES_EGL_image_external : require" << endl; } fs << "#ifdef GL_ES" << endl; fs << "precision mediump float;" << endl; fs << "#define COLOR_PRECISION lowp" << endl; fs << "#define EDGE_PRECISION mediump" << endl; fs << "#else" << endl; fs << "#define COLOR_PRECISION" << endl; fs << "#define EDGE_PRECISION" << endl; fs << "#endif" << endl; if (aConfig.mFeatures & ENABLE_RENDER_COLOR) { fs << "uniform COLOR_PRECISION vec4 uRenderColor;" << endl; } else { // for tiling, texcoord can be greater than the lowfp range fs << "varying vec2 vTexCoord;" << endl; if (aConfig.mFeatures & ENABLE_BLUR) { fs << "uniform bool uBlurAlpha;" << endl; fs << "uniform vec2 uBlurRadius;" << endl; fs << "uniform vec2 uBlurOffset;" << endl; fs << "uniform float uBlurGaussianKernel[" << GAUSSIAN_KERNEL_HALF_WIDTH << "];" << endl; } if (aConfig.mFeatures & ENABLE_COLOR_MATRIX) { fs << "uniform mat4 uColorMatrix;" << endl; fs << "uniform vec4 uColorMatrixVector;" << endl; } if (aConfig.mFeatures & ENABLE_OPACITY) { fs << "uniform COLOR_PRECISION float uLayerOpacity;" << endl; } } if (BlendOpIsMixBlendMode(blendOp)) { fs << "varying vec2 vBackdropCoord;" << endl; } const char* sampler2D = "sampler2D"; const char* texture2D = "texture2D"; if (aConfig.mFeatures & ENABLE_TEXTURE_RECT) { fs << "uniform vec2 uTexCoordMultiplier;" << endl; if (aConfig.mFeatures & ENABLE_TEXTURE_YCBCR || aConfig.mFeatures & ENABLE_TEXTURE_NV12) { fs << "uniform vec2 uCbCrTexCoordMultiplier;" << endl; } sampler2D = "sampler2DRect"; texture2D = "texture2DRect"; } const char* maskSampler2D = "sampler2D"; const char* maskTexture2D = "texture2D"; if (aConfig.mFeatures & ENABLE_MASK && aConfig.mFeatures & ENABLE_MASK_TEXTURE_RECT) { fs << "uniform vec2 uMaskCoordMultiplier;" << endl; maskSampler2D = "sampler2DRect"; maskTexture2D = "texture2DRect"; } if (aConfig.mFeatures & ENABLE_TEXTURE_EXTERNAL) { sampler2D = "samplerExternalOES"; } if (aConfig.mFeatures & ENABLE_TEXTURE_YCBCR) { fs << "uniform " << sampler2D << " uYTexture;" << endl; fs << "uniform " << sampler2D << " uCbTexture;" << endl; fs << "uniform " << sampler2D << " uCrTexture;" << endl; fs << "uniform mat3 uYuvColorMatrix;" << endl; fs << "uniform vec3 uYuvOffsetVector;" << endl; } else if (aConfig.mFeatures & ENABLE_TEXTURE_NV12) { fs << "uniform " << sampler2D << " uYTexture;" << endl; fs << "uniform " << sampler2D << " uCbTexture;" << endl; fs << "uniform mat3 uYuvColorMatrix;" << endl; fs << "uniform vec3 uYuvOffsetVector;" << endl; } else if (aConfig.mFeatures & ENABLE_TEXTURE_COMPONENT_ALPHA) { fs << "uniform " << sampler2D << " uBlackTexture;" << endl; fs << "uniform " << sampler2D << " uWhiteTexture;" << endl; fs << "uniform bool uTexturePass2;" << endl; } else { fs << "uniform " << sampler2D << " uTexture;" << endl; } if (BlendOpIsMixBlendMode(blendOp)) { // Component alpha should be flattened away inside blend containers. MOZ_ASSERT(!(aConfig.mFeatures & ENABLE_TEXTURE_COMPONENT_ALPHA)); fs << "uniform sampler2D uBackdropTexture;" << endl; } if (aConfig.mFeatures & ENABLE_MASK) { fs << "varying vec3 vMaskCoord;" << endl; fs << "uniform " << maskSampler2D << " uMaskTexture;" << endl; } if (aConfig.mFeatures & ENABLE_DEAA) { fs << "uniform EDGE_PRECISION vec3 uSSEdges[4];" << endl; } if (BlendOpIsMixBlendMode(blendOp)) { BuildMixBlender(aConfig, fs); } if (!(aConfig.mFeatures & ENABLE_RENDER_COLOR)) { fs << "vec4 sample(vec2 coord) {" << endl; fs << " vec4 color;" << endl; if (aConfig.mFeatures & ENABLE_TEXTURE_YCBCR || aConfig.mFeatures & ENABLE_TEXTURE_NV12) { if (aConfig.mFeatures & ENABLE_TEXTURE_YCBCR) { if (aConfig.mFeatures & ENABLE_TEXTURE_RECT) { fs << " COLOR_PRECISION float y = " << texture2D << "(uYTexture, coord * uTexCoordMultiplier).r;" << endl; fs << " COLOR_PRECISION float cb = " << texture2D << "(uCbTexture, coord * uCbCrTexCoordMultiplier).r;" << endl; fs << " COLOR_PRECISION float cr = " << texture2D << "(uCrTexture, coord * uCbCrTexCoordMultiplier).r;" << endl; } else { fs << " COLOR_PRECISION float y = " << texture2D << "(uYTexture, coord).r;" << endl; fs << " COLOR_PRECISION float cb = " << texture2D << "(uCbTexture, coord).r;" << endl; fs << " COLOR_PRECISION float cr = " << texture2D << "(uCrTexture, coord).r;" << endl; } } else { if (aConfig.mFeatures & ENABLE_TEXTURE_RECT) { fs << " COLOR_PRECISION float y = " << texture2D << "(uYTexture, coord * uTexCoordMultiplier).r;" << endl; fs << " COLOR_PRECISION float cb = " << texture2D << "(uCbTexture, coord * uCbCrTexCoordMultiplier).r;" << endl; if (aConfig.mFeatures & ENABLE_TEXTURE_NV12_GA_SWITCH) { fs << " COLOR_PRECISION float cr = " << texture2D << "(uCbTexture, coord * uCbCrTexCoordMultiplier).g;" << endl; } else { fs << " COLOR_PRECISION float cr = " << texture2D << "(uCbTexture, coord * uCbCrTexCoordMultiplier).a;" << endl; } } else { fs << " COLOR_PRECISION float y = " << texture2D << "(uYTexture, coord).r;" << endl; fs << " COLOR_PRECISION float cb = " << texture2D << "(uCbTexture, coord).r;" << endl; if (aConfig.mFeatures & ENABLE_TEXTURE_NV12_GA_SWITCH) { fs << " COLOR_PRECISION float cr = " << texture2D << "(uCbTexture, coord).g;" << endl; } else { fs << " COLOR_PRECISION float cr = " << texture2D << "(uCbTexture, coord).a;" << endl; } } } fs << " vec3 yuv = vec3(y, cb, cr);" << endl; if (aConfig.mMultiplier != 1) { fs << " yuv *= " << aConfig.mMultiplier << ".0;" << endl; } fs << " yuv -= uYuvOffsetVector;" << endl; fs << " color.rgb = uYuvColorMatrix * yuv;" << endl; fs << " color.a = 1.0;" << endl; } else if (aConfig.mFeatures & ENABLE_TEXTURE_COMPONENT_ALPHA) { if (aConfig.mFeatures & ENABLE_TEXTURE_RECT) { fs << " COLOR_PRECISION vec3 onBlack = " << texture2D << "(uBlackTexture, coord * uTexCoordMultiplier).rgb;" << endl; fs << " COLOR_PRECISION vec3 onWhite = " << texture2D << "(uWhiteTexture, coord * uTexCoordMultiplier).rgb;" << endl; } else { fs << " COLOR_PRECISION vec3 onBlack = " << texture2D << "(uBlackTexture, coord).rgb;" << endl; fs << " COLOR_PRECISION vec3 onWhite = " << texture2D << "(uWhiteTexture, coord).rgb;" << endl; } fs << " COLOR_PRECISION vec4 alphas = (1.0 - onWhite + onBlack).rgbg;" << endl; fs << " if (uTexturePass2)" << endl; fs << " color = vec4(onBlack, alphas.a);" << endl; fs << " else" << endl; fs << " color = alphas;" << endl; } else { if (aConfig.mFeatures & ENABLE_TEXTURE_RECT) { fs << " color = " << texture2D << "(uTexture, coord * uTexCoordMultiplier);" << endl; } else { fs << " color = " << texture2D << "(uTexture, coord);" << endl; } } if (aConfig.mFeatures & ENABLE_TEXTURE_RB_SWAP) { fs << " color = color.bgra;" << endl; } if (aConfig.mFeatures & ENABLE_TEXTURE_NO_ALPHA) { fs << " color = vec4(color.rgb, 1.0);" << endl; } fs << " return color;" << endl; fs << "}" << endl; if (aConfig.mFeatures & ENABLE_BLUR) { fs << "vec4 sampleAtRadius(vec2 coord, float radius) {" << endl; fs << " coord += uBlurOffset;" << endl; fs << " coord += radius * uBlurRadius;" << endl; fs << " if (coord.x < 0. || coord.y < 0. || coord.x > 1. || coord.y > " "1.)" << endl; fs << " return vec4(0, 0, 0, 0);" << endl; fs << " return sample(coord);" << endl; fs << "}" << endl; fs << "vec4 blur(vec4 color, vec2 coord) {" << endl; fs << " vec4 total = color * uBlurGaussianKernel[0];" << endl; fs << " for (int i = 1; i < " << GAUSSIAN_KERNEL_HALF_WIDTH << "; ++i) {" << endl; fs << " float r = float(i) * " << GAUSSIAN_KERNEL_STEP << ";" << endl; fs << " float k = uBlurGaussianKernel[i];" << endl; fs << " total += sampleAtRadius(coord, r) * k;" << endl; fs << " total += sampleAtRadius(coord, -r) * k;" << endl; fs << " }" << endl; fs << " if (uBlurAlpha) {" << endl; fs << " color *= total.a;" << endl; fs << " } else {" << endl; fs << " color = total;" << endl; fs << " }" << endl; fs << " return color;" << endl; fs << "}" << endl; } } fs << "void main() {" << endl; if (aConfig.mFeatures & ENABLE_RENDER_COLOR) { fs << " vec4 color = uRenderColor;" << endl; } else { fs << " vec4 color = sample(vTexCoord);" << endl; if (aConfig.mFeatures & ENABLE_BLUR) { fs << " color = blur(color, vTexCoord);" << endl; } if (aConfig.mFeatures & ENABLE_COLOR_MATRIX) { fs << " color = uColorMatrix * vec4(color.rgb / color.a, color.a) + " "uColorMatrixVector;" << endl; fs << " color.rgb *= color.a;" << endl; } if (aConfig.mFeatures & ENABLE_OPACITY) { fs << " color *= uLayerOpacity;" << endl; } } if (aConfig.mFeatures & ENABLE_DEAA) { // Calculate the sub-pixel coverage of the pixel and modulate its opacity // by that amount to perform DEAA. fs << " vec3 ssPos = vec3(gl_FragCoord.xy, 1.0);" << endl; fs << " float deaaCoverage = clamp(dot(uSSEdges[0], ssPos), 0.0, 1.0);" << endl; fs << " deaaCoverage *= clamp(dot(uSSEdges[1], ssPos), 0.0, 1.0);" << endl; fs << " deaaCoverage *= clamp(dot(uSSEdges[2], ssPos), 0.0, 1.0);" << endl; fs << " deaaCoverage *= clamp(dot(uSSEdges[3], ssPos), 0.0, 1.0);" << endl; fs << " color *= deaaCoverage;" << endl; } if (BlendOpIsMixBlendMode(blendOp)) { fs << " vec4 backdrop = texture2D(uBackdropTexture, vBackdropCoord);" << endl; fs << " color = mixAndBlend(backdrop, color);" << endl; } if (aConfig.mFeatures & ENABLE_MASK) { fs << " vec2 maskCoords = vMaskCoord.xy / vMaskCoord.z;" << endl; if (aConfig.mFeatures & ENABLE_MASK_TEXTURE_RECT) { fs << " COLOR_PRECISION float mask = " << maskTexture2D << "(uMaskTexture, maskCoords * uMaskCoordMultiplier).r;" << endl; } else { fs << " COLOR_PRECISION float mask = " << maskTexture2D << "(uMaskTexture, maskCoords).r;" << endl; } fs << " color *= mask;" << endl; } else { fs << " COLOR_PRECISION float mask = 1.0;" << endl; fs << " color *= mask;" << endl; } fs << " gl_FragColor = color;" << endl; fs << "}" << endl; result.mVertexShaderString = vs.str(); result.mFragmentShaderString = fs.str(); if (aConfig.mFeatures & ENABLE_RENDER_COLOR) { result.mTextureCount = 0; } else { if (aConfig.mFeatures & ENABLE_TEXTURE_YCBCR) { result.mTextureCount = 3; } else if (aConfig.mFeatures & ENABLE_TEXTURE_NV12) { result.mTextureCount = 2; } else if (aConfig.mFeatures & ENABLE_TEXTURE_COMPONENT_ALPHA) { result.mTextureCount = 2; } else { result.mTextureCount = 1; } } if (aConfig.mFeatures & ENABLE_MASK) { result.mTextureCount = 1; } if (BlendOpIsMixBlendMode(blendOp)) { result.mTextureCount += 1; } return result; } void ProgramProfileOGL::BuildMixBlender(const ShaderConfigOGL& aConfig, std::ostringstream& fs) { // From the "Compositing and Blending Level 1" spec. // Generate helper functions first. switch (aConfig.mCompositionOp) { case gfx::CompositionOp::OP_OVERLAY: case gfx::CompositionOp::OP_HARD_LIGHT: // Note: we substitute (2*src-1) into the screen formula below. fs << "float hardlight(float dest, float src) {" << endl; fs << " if (src <= 0.5) {" << endl; fs << " return dest * (2.0 * src);" << endl; fs << " } else {" << endl; fs << " return 2.0*dest + 2.0*src - 1.0 - 2.0*dest*src;" << endl; fs << " }" << endl; fs << "}" << endl; break; case gfx::CompositionOp::OP_COLOR_DODGE: fs << "float dodge(float dest, float src) {" << endl; fs << " if (dest == 0.0) {" << endl; fs << " return 0.0;" << endl; fs << " } else if (src == 1.0) {" << endl; fs << " return 1.0;" << endl; fs << " } else {" << endl; fs << " return min(1.0, dest / (1.0 - src));" << endl; fs << " }" << endl; fs << "}" << endl; break; case gfx::CompositionOp::OP_COLOR_BURN: fs << "float burn(float dest, float src) {" << endl; fs << " if (dest == 1.0) {" << endl; fs << " return 1.0;" << endl; fs << " } else if (src == 0.0) {" << endl; fs << " return 0.0;" << endl; fs << " } else {" << endl; fs << " return 1.0 - min(1.0, (1.0 - dest) / src);" << endl; fs << " }" << endl; fs << "}" << endl; break; case gfx::CompositionOp::OP_SOFT_LIGHT: fs << "float darken(float dest) {" << endl; fs << " if (dest <= 0.25) {" << endl; fs << " return ((16.0 * dest - 12.0) * dest + 4.0) * dest;" << endl; fs << " } else {" << endl; fs << " return sqrt(dest);" << endl; fs << " }" << endl; fs << "}" << endl; fs << "float softlight(float dest, float src) {" << endl; fs << " if (src <= 0.5) {" << endl; fs << " return dest - (1.0 - 2.0 * src) * dest * (1.0 - dest);" << endl; fs << " } else {" << endl; fs << " return dest + (2.0 * src - 1.0) * (darken(dest) - dest);" << endl; fs << " }" << endl; fs << "}" << endl; break; case gfx::CompositionOp::OP_HUE: case gfx::CompositionOp::OP_SATURATION: case gfx::CompositionOp::OP_COLOR: case gfx::CompositionOp::OP_LUMINOSITY: fs << "float Lum(vec3 c) {" << endl; fs << " return dot(vec3(0.3, 0.59, 0.11), c);" << endl; fs << "}" << endl; fs << "vec3 ClipColor(vec3 c) {" << endl; fs << " float L = Lum(c);" << endl; fs << " float n = min(min(c.r, c.g), c.b);" << endl; fs << " float x = max(max(c.r, c.g), c.b);" << endl; fs << " if (n < 0.0) {" << endl; fs << " c = L + (((c - L) * L) / (L - n));" << endl; fs << " }" << endl; fs << " if (x > 1.0) {" << endl; fs << " c = L + (((c - L) * (1.0 - L)) / (x - L));" << endl; fs << " }" << endl; fs << " return c;" << endl; fs << "}" << endl; fs << "vec3 SetLum(vec3 c, float L) {" << endl; fs << " float d = L - Lum(c);" << endl; fs << " return ClipColor(vec3(" << endl; fs << " c.r + d," << endl; fs << " c.g + d," << endl; fs << " c.b + d));" << endl; fs << "}" << endl; fs << "float Sat(vec3 c) {" << endl; fs << " return max(max(c.r, c.g), c.b) - min(min(c.r, c.g), c.b);" << endl; fs << "}" << endl; // To use this helper, re-arrange rgb such that r=min, g=mid, and b=max. fs << "vec3 SetSatInner(vec3 c, float s) {" << endl; fs << " if (c.b > c.r) {" << endl; fs << " c.g = (((c.g - c.r) * s) / (c.b - c.r));" << endl; fs << " c.b = s;" << endl; fs << " } else {" << endl; fs << " c.gb = vec2(0.0, 0.0);" << endl; fs << " }" << endl; fs << " return vec3(0.0, c.gb);" << endl; fs << "}" << endl; fs << "vec3 SetSat(vec3 c, float s) {" << endl; fs << " if (c.r <= c.g) {" << endl; fs << " if (c.g <= c.b) {" << endl; fs << " c.rgb = SetSatInner(c.rgb, s);" << endl; fs << " } else if (c.r <= c.b) {" << endl; fs << " c.rbg = SetSatInner(c.rbg, s);" << endl; fs << " } else {" << endl; fs << " c.brg = SetSatInner(c.brg, s);" << endl; fs << " }" << endl; fs << " } else if (c.r <= c.b) {" << endl; fs << " c.grb = SetSatInner(c.grb, s);" << endl; fs << " } else if (c.g <= c.b) {" << endl; fs << " c.gbr = SetSatInner(c.gbr, s);" << endl; fs << " } else {" << endl; fs << " c.bgr = SetSatInner(c.bgr, s);" << endl; fs << " }" << endl; fs << " return c;" << endl; fs << "}" << endl; break; default: break; } // Generate the main blending helper. fs << "vec3 blend(vec3 dest, vec3 src) {" << endl; switch (aConfig.mCompositionOp) { case gfx::CompositionOp::OP_MULTIPLY: fs << " return dest * src;" << endl; break; case gfx::CompositionOp::OP_SCREEN: fs << " return dest + src - (dest * src);" << endl; break; case gfx::CompositionOp::OP_OVERLAY: fs << " return vec3(" << endl; fs << " hardlight(src.r, dest.r)," << endl; fs << " hardlight(src.g, dest.g)," << endl; fs << " hardlight(src.b, dest.b));" << endl; break; case gfx::CompositionOp::OP_DARKEN: fs << " return min(dest, src);" << endl; break; case gfx::CompositionOp::OP_LIGHTEN: fs << " return max(dest, src);" << endl; break; case gfx::CompositionOp::OP_COLOR_DODGE: fs << " return vec3(" << endl; fs << " dodge(dest.r, src.r)," << endl; fs << " dodge(dest.g, src.g)," << endl; fs << " dodge(dest.b, src.b));" << endl; break; case gfx::CompositionOp::OP_COLOR_BURN: fs << " return vec3(" << endl; fs << " burn(dest.r, src.r)," << endl; fs << " burn(dest.g, src.g)," << endl; fs << " burn(dest.b, src.b));" << endl; break; case gfx::CompositionOp::OP_HARD_LIGHT: fs << " return vec3(" << endl; fs << " hardlight(dest.r, src.r)," << endl; fs << " hardlight(dest.g, src.g)," << endl; fs << " hardlight(dest.b, src.b));" << endl; break; case gfx::CompositionOp::OP_SOFT_LIGHT: fs << " return vec3(" << endl; fs << " softlight(dest.r, src.r)," << endl; fs << " softlight(dest.g, src.g)," << endl; fs << " softlight(dest.b, src.b));" << endl; break; case gfx::CompositionOp::OP_DIFFERENCE: fs << " return abs(dest - src);" << endl; break; case gfx::CompositionOp::OP_EXCLUSION: fs << " return dest + src - 2.0*dest*src;" << endl; break; case gfx::CompositionOp::OP_HUE: fs << " return SetLum(SetSat(src, Sat(dest)), Lum(dest));" << endl; break; case gfx::CompositionOp::OP_SATURATION: fs << " return SetLum(SetSat(dest, Sat(src)), Lum(dest));" << endl; break; case gfx::CompositionOp::OP_COLOR: fs << " return SetLum(src, Lum(dest));" << endl; break; case gfx::CompositionOp::OP_LUMINOSITY: fs << " return SetLum(dest, Lum(src));" << endl; break; default: MOZ_ASSERT_UNREACHABLE("unknown blend mode"); } fs << "}" << endl; // Generate the mix-blend function the fragment shader will call. fs << "vec4 mixAndBlend(vec4 backdrop, vec4 color) {" << endl; // Shortcut when the backdrop or source alpha is 0, otherwise we may leak // Infinity into the blend function and return incorrect results. fs << " if (backdrop.a == 0.0) {" << endl; fs << " return color;" << endl; fs << " }" << endl; fs << " if (color.a == 0.0) {" << endl; fs << " return vec4(0.0, 0.0, 0.0, 0.0);" << endl; fs << " }" << endl; // The spec assumes there is no premultiplied alpha. The backdrop is always // premultiplied, so undo the premultiply. If the source is premultiplied we // must fix that as well. fs << " backdrop.rgb /= backdrop.a;" << endl; if (!(aConfig.mFeatures & ENABLE_NO_PREMUL_ALPHA)) { fs << " color.rgb /= color.a;" << endl; } fs << " vec3 blended = blend(backdrop.rgb, color.rgb);" << endl; fs << " color.rgb = (1.0 - backdrop.a) * color.rgb + backdrop.a * " "blended.rgb;" << endl; fs << " color.rgb *= color.a;" << endl; fs << " return color;" << endl; fs << "}" << endl; } ShaderProgramOGL::ShaderProgramOGL(GLContext* aGL, const ProgramProfileOGL& aProfile) : mGL(aGL), mProgram(0), mProfile(aProfile), mProgramState(STATE_NEW) {} ShaderProgramOGL::~ShaderProgramOGL() { if (mProgram <= 0) { return; } RefPtr ctx = mGL->GetSharedContext(); if (!ctx) { ctx = mGL; } ctx->MakeCurrent(); ctx->fDeleteProgram(mProgram); } bool ShaderProgramOGL::Initialize() { NS_ASSERTION(mProgramState == STATE_NEW, "Shader program has already been initialised"); std::ostringstream vs, fs; for (uint32_t i = 0; i < mProfile.mDefines.Length(); ++i) { vs << mProfile.mDefines[i] << endl; fs << mProfile.mDefines[i] << endl; } vs << mProfile.mVertexShaderString << endl; fs << mProfile.mFragmentShaderString << endl; if (!CreateProgram(vs.str().c_str(), fs.str().c_str())) { mProgramState = STATE_ERROR; return false; } mProgramState = STATE_OK; for (uint32_t i = 0; i < KnownUniform::KnownUniformCount; ++i) { mProfile.mUniforms[i].mLocation = mGL->fGetUniformLocation(mProgram, mProfile.mUniforms[i].mNameString); } return true; } GLint ShaderProgramOGL::CreateShader(GLenum aShaderType, const char* aShaderSource) { GLint success, len = 0; GLint sh = mGL->fCreateShader(aShaderType); mGL->fShaderSource(sh, 1, (const GLchar**)&aShaderSource, nullptr); mGL->fCompileShader(sh); mGL->fGetShaderiv(sh, LOCAL_GL_COMPILE_STATUS, &success); mGL->fGetShaderiv(sh, LOCAL_GL_INFO_LOG_LENGTH, (GLint*)&len); /* Even if compiling is successful, there may still be warnings. Print them * in a debug build. The > 10 is to catch silly compilers that might put * some whitespace in the log but otherwise leave it empty. */ if (!success #ifdef DEBUG || (len > 10 && gfxEnv::MOZ_DEBUG_SHADERS()) #endif ) { nsAutoCString log; log.SetLength(len); mGL->fGetShaderInfoLog(sh, len, (GLint*)&len, (char*)log.BeginWriting()); log.Truncate(len); if (!success) { printf_stderr("=== SHADER COMPILATION FAILED ===\n"); } else { printf_stderr("=== SHADER COMPILATION WARNINGS ===\n"); } printf_stderr("=== Source:\n%s\n", aShaderSource); printf_stderr("=== Log:\n%s\n", log.get()); printf_stderr("============\n"); if (!success) { mGL->fDeleteShader(sh); return 0; } } return sh; } bool ShaderProgramOGL::CreateProgram(const char* aVertexShaderString, const char* aFragmentShaderString) { GLuint vertexShader = CreateShader(LOCAL_GL_VERTEX_SHADER, aVertexShaderString); GLuint fragmentShader = CreateShader(LOCAL_GL_FRAGMENT_SHADER, aFragmentShaderString); if (!vertexShader || !fragmentShader) return false; GLint result = mGL->fCreateProgram(); mGL->fAttachShader(result, vertexShader); mGL->fAttachShader(result, fragmentShader); for (std::pair& attribute : mProfile.mAttributes) { mGL->fBindAttribLocation(result, attribute.second, attribute.first.get()); } mGL->fLinkProgram(result); GLint success, len; mGL->fGetProgramiv(result, LOCAL_GL_LINK_STATUS, &success); mGL->fGetProgramiv(result, LOCAL_GL_INFO_LOG_LENGTH, (GLint*)&len); /* Even if linking is successful, there may still be warnings. Print them * in a debug build. The > 10 is to catch silly compilers that might put * some whitespace in the log but otherwise leave it empty. */ if (!success #ifdef DEBUG || (len > 10 && gfxEnv::MOZ_DEBUG_SHADERS()) #endif ) { nsAutoCString log; log.SetLength(len); mGL->fGetProgramInfoLog(result, len, (GLint*)&len, (char*)log.BeginWriting()); if (!success) { printf_stderr("=== PROGRAM LINKING FAILED ===\n"); } else { printf_stderr("=== PROGRAM LINKING WARNINGS ===\n"); } printf_stderr("=== Log:\n%s\n", log.get()); printf_stderr("============\n"); } // We can mark the shaders for deletion; they're attached to the program // and will remain attached. mGL->fDeleteShader(vertexShader); mGL->fDeleteShader(fragmentShader); if (!success) { mGL->fDeleteProgram(result); return false; } mProgram = result; return true; } GLuint ShaderProgramOGL::GetProgram() { if (mProgramState == STATE_NEW) { if (!Initialize()) { NS_WARNING("Shader could not be initialised"); } } MOZ_ASSERT(HasInitialized(), "Attempting to get a program that's not been initialized!"); return mProgram; } void ShaderProgramOGL::SetYUVColorSpace(gfx::YUVColorSpace aYUVColorSpace) { const float* yuvToRgb = gfxUtils::YuvToRgbMatrix3x3ColumnMajor(aYUVColorSpace); SetMatrix3fvUniform(KnownUniform::YuvColorMatrix, yuvToRgb); if (aYUVColorSpace == gfx::YUVColorSpace::Identity) { const float identity[] = {0.0, 0.0, 0.0}; SetVec3fvUniform(KnownUniform::YuvOffsetVector, identity); } else { const float offset[] = {0.06275, 0.50196, 0.50196}; SetVec3fvUniform(KnownUniform::YuvOffsetVector, offset); } } ShaderProgramOGLsHolder::ShaderProgramOGLsHolder(gl::GLContext* aGL) : mGL(aGL) {} ShaderProgramOGLsHolder::~ShaderProgramOGLsHolder() { Clear(); } ShaderProgramOGL* ShaderProgramOGLsHolder::GetShaderProgramFor( const ShaderConfigOGL& aConfig) { auto iter = mPrograms.find(aConfig); if (iter != mPrograms.end()) { return iter->second.get(); } ProgramProfileOGL profile = ProgramProfileOGL::GetProfileFor(aConfig); auto shader = MakeUnique(mGL, profile); if (!shader->Initialize()) { gfxCriticalError() << "Shader compilation failure, cfg:" << " features: " << gfx::hexa(aConfig.mFeatures) << " multiplier: " << aConfig.mMultiplier << " op: " << aConfig.mCompositionOp; return nullptr; } mPrograms.emplace(aConfig, std::move(shader)); return mPrograms[aConfig].get(); } void ShaderProgramOGLsHolder::Clear() { mPrograms.clear(); } ShaderProgramOGL* ShaderProgramOGLsHolder::ActivateProgram( const ShaderConfigOGL& aConfig) { ShaderProgramOGL* program = GetShaderProgramFor(aConfig); MOZ_DIAGNOSTIC_ASSERT(program); if (!program) { return nullptr; } if (mCurrentProgram != program) { mGL->fUseProgram(program->GetProgram()); mCurrentProgram = program; } return program; } void ShaderProgramOGLsHolder::ResetCurrentProgram() { mCurrentProgram = nullptr; } } // namespace layers } // namespace mozilla