// © 2017 and later: Unicode, Inc. and others. // License & terms of use: http://www.unicode.org/copyright.html #include "unicode/utypes.h" #if !UCONFIG_NO_FORMATTING #include "uassert.h" #include "unicode/numberformatter.h" #include "number_decimalquantity.h" #include "number_formatimpl.h" #include "umutex.h" #include "number_asformat.h" #include "number_utils.h" #include "number_utypes.h" #include "number_mapper.h" #include "util.h" #include "fphdlimp.h" using namespace icu; using namespace icu::number; using namespace icu::number::impl; #if (U_PF_WINDOWS <= U_PLATFORM && U_PLATFORM <= U_PF_CYGWIN) && defined(_MSC_VER) // Ignore MSVC warning 4661. This is generated for NumberFormatterSettings<>::toSkeleton() as this method // is defined elsewhere (in number_skeletons.cpp). The compiler is warning that the explicit template instantiation // inside this single translation unit (CPP file) is incomplete, and thus it isn't sure if the template class is // fully defined. However, since each translation unit explicitly instantiates all the necessary template classes, // they will all be passed to the linker, and the linker will still find and export all the class members. #pragma warning(push) #pragma warning(disable: 4661) #endif template Derived NumberFormatterSettings::notation(const Notation& notation) const& { Derived copy(*this); // NOTE: Slicing is OK. copy.fMacros.notation = notation; return copy; } template Derived NumberFormatterSettings::notation(const Notation& notation)&& { Derived move(std::move(*this)); // NOTE: Slicing is OK. move.fMacros.notation = notation; return move; } template Derived NumberFormatterSettings::unit(const icu::MeasureUnit& unit) const& { Derived copy(*this); // NOTE: Slicing occurs here. However, CurrencyUnit can be restored from MeasureUnit. // TimeUnit may be affected, but TimeUnit is not as relevant to number formatting. copy.fMacros.unit = unit; return copy; } template Derived NumberFormatterSettings::unit(const icu::MeasureUnit& unit)&& { Derived move(std::move(*this)); // See comments above about slicing. move.fMacros.unit = unit; return move; } template Derived NumberFormatterSettings::adoptUnit(icu::MeasureUnit* unit) const& { Derived copy(*this); // Just move the unit into the MacroProps by value, and delete it since we have ownership. // NOTE: Slicing occurs here. However, CurrencyUnit can be restored from MeasureUnit. // TimeUnit may be affected, but TimeUnit is not as relevant to number formatting. if (unit != nullptr) { // TODO: On nullptr, reset to default value? copy.fMacros.unit = std::move(*unit); delete unit; } return copy; } template Derived NumberFormatterSettings::adoptUnit(icu::MeasureUnit* unit)&& { Derived move(std::move(*this)); // See comments above about slicing and ownership. if (unit != nullptr) { // TODO: On nullptr, reset to default value? move.fMacros.unit = std::move(*unit); delete unit; } return move; } template Derived NumberFormatterSettings::perUnit(const icu::MeasureUnit& perUnit) const& { Derived copy(*this); // See comments above about slicing. copy.fMacros.perUnit = perUnit; return copy; } template Derived NumberFormatterSettings::perUnit(const icu::MeasureUnit& perUnit)&& { Derived move(std::move(*this)); // See comments above about slicing. move.fMacros.perUnit = perUnit; return move; } template Derived NumberFormatterSettings::adoptPerUnit(icu::MeasureUnit* perUnit) const& { Derived copy(*this); // See comments above about slicing and ownership. if (perUnit != nullptr) { // TODO: On nullptr, reset to default value? copy.fMacros.perUnit = std::move(*perUnit); delete perUnit; } return copy; } template Derived NumberFormatterSettings::adoptPerUnit(icu::MeasureUnit* perUnit)&& { Derived move(std::move(*this)); // See comments above about slicing and ownership. if (perUnit != nullptr) { // TODO: On nullptr, reset to default value? move.fMacros.perUnit = std::move(*perUnit); delete perUnit; } return move; } template Derived NumberFormatterSettings::precision(const Precision& precision) const& { Derived copy(*this); // NOTE: Slicing is OK. copy.fMacros.precision = precision; return copy; } template Derived NumberFormatterSettings::precision(const Precision& precision)&& { Derived move(std::move(*this)); // NOTE: Slicing is OK. move.fMacros.precision = precision; return move; } template Derived NumberFormatterSettings::roundingMode(UNumberFormatRoundingMode roundingMode) const& { Derived copy(*this); copy.fMacros.roundingMode = roundingMode; return copy; } template Derived NumberFormatterSettings::roundingMode(UNumberFormatRoundingMode roundingMode)&& { Derived move(std::move(*this)); move.fMacros.roundingMode = roundingMode; return move; } template Derived NumberFormatterSettings::grouping(UNumberGroupingStrategy strategy) const& { Derived copy(*this); // NOTE: This is slightly different than how the setting is stored in Java // because we want to put it on the stack. copy.fMacros.grouper = Grouper::forStrategy(strategy); return copy; } template Derived NumberFormatterSettings::grouping(UNumberGroupingStrategy strategy)&& { Derived move(std::move(*this)); move.fMacros.grouper = Grouper::forStrategy(strategy); return move; } template Derived NumberFormatterSettings::integerWidth(const IntegerWidth& style) const& { Derived copy(*this); copy.fMacros.integerWidth = style; return copy; } template Derived NumberFormatterSettings::integerWidth(const IntegerWidth& style)&& { Derived move(std::move(*this)); move.fMacros.integerWidth = style; return move; } template Derived NumberFormatterSettings::symbols(const DecimalFormatSymbols& symbols) const& { Derived copy(*this); copy.fMacros.symbols.setTo(symbols); return copy; } template Derived NumberFormatterSettings::symbols(const DecimalFormatSymbols& symbols)&& { Derived move(std::move(*this)); move.fMacros.symbols.setTo(symbols); return move; } template Derived NumberFormatterSettings::adoptSymbols(NumberingSystem* ns) const& { Derived copy(*this); copy.fMacros.symbols.setTo(ns); return copy; } template Derived NumberFormatterSettings::adoptSymbols(NumberingSystem* ns)&& { Derived move(std::move(*this)); move.fMacros.symbols.setTo(ns); return move; } template Derived NumberFormatterSettings::unitWidth(UNumberUnitWidth width) const& { Derived copy(*this); copy.fMacros.unitWidth = width; return copy; } template Derived NumberFormatterSettings::unitWidth(UNumberUnitWidth width)&& { Derived move(std::move(*this)); move.fMacros.unitWidth = width; return move; } template Derived NumberFormatterSettings::sign(UNumberSignDisplay style) const& { Derived copy(*this); copy.fMacros.sign = style; return copy; } template Derived NumberFormatterSettings::sign(UNumberSignDisplay style)&& { Derived move(std::move(*this)); move.fMacros.sign = style; return move; } template Derived NumberFormatterSettings::decimal(UNumberDecimalSeparatorDisplay style) const& { Derived copy(*this); copy.fMacros.decimal = style; return copy; } template Derived NumberFormatterSettings::decimal(UNumberDecimalSeparatorDisplay style)&& { Derived move(std::move(*this)); move.fMacros.decimal = style; return move; } template Derived NumberFormatterSettings::scale(const Scale& scale) const& { Derived copy(*this); copy.fMacros.scale = scale; return copy; } template Derived NumberFormatterSettings::scale(const Scale& scale)&& { Derived move(std::move(*this)); move.fMacros.scale = scale; return move; } template Derived NumberFormatterSettings::usage(const StringPiece usage) const& { Derived copy(*this); copy.fMacros.usage.set(usage); return copy; } template Derived NumberFormatterSettings::usage(const StringPiece usage)&& { Derived move(std::move(*this)); move.fMacros.usage.set(usage); return move; } template Derived NumberFormatterSettings::displayOptions(const DisplayOptions &displayOptions) const & { Derived copy(*this); // `displayCase` does not recognise the `undefined` if (displayOptions.getGrammaticalCase() == UDISPOPT_GRAMMATICAL_CASE_UNDEFINED) { copy.fMacros.unitDisplayCase.set(nullptr); return copy; } copy.fMacros.unitDisplayCase.set( udispopt_getGrammaticalCaseIdentifier(displayOptions.getGrammaticalCase())); return copy; } template Derived NumberFormatterSettings::displayOptions(const DisplayOptions &displayOptions) && { Derived move(std::move(*this)); // `displayCase` does not recognise the `undefined` if (displayOptions.getGrammaticalCase() == UDISPOPT_GRAMMATICAL_CASE_UNDEFINED) { move.fMacros.unitDisplayCase.set(nullptr); return move; } move.fMacros.unitDisplayCase.set( udispopt_getGrammaticalCaseIdentifier(displayOptions.getGrammaticalCase())); return move; } template Derived NumberFormatterSettings::unitDisplayCase(const StringPiece unitDisplayCase) const& { Derived copy(*this); copy.fMacros.unitDisplayCase.set(unitDisplayCase); return copy; } template Derived NumberFormatterSettings::unitDisplayCase(const StringPiece unitDisplayCase)&& { Derived move(std::move(*this)); move.fMacros.unitDisplayCase.set(unitDisplayCase); return move; } template Derived NumberFormatterSettings::padding(const Padder& padder) const& { Derived copy(*this); copy.fMacros.padder = padder; return copy; } template Derived NumberFormatterSettings::padding(const Padder& padder)&& { Derived move(std::move(*this)); move.fMacros.padder = padder; return move; } template Derived NumberFormatterSettings::threshold(int32_t threshold) const& { Derived copy(*this); copy.fMacros.threshold = threshold; return copy; } template Derived NumberFormatterSettings::threshold(int32_t threshold)&& { Derived move(std::move(*this)); move.fMacros.threshold = threshold; return move; } template Derived NumberFormatterSettings::macros(const impl::MacroProps& macros) const& { Derived copy(*this); copy.fMacros = macros; return copy; } template Derived NumberFormatterSettings::macros(const impl::MacroProps& macros)&& { Derived move(std::move(*this)); move.fMacros = macros; return move; } template Derived NumberFormatterSettings::macros(impl::MacroProps&& macros) const& { Derived copy(*this); copy.fMacros = std::move(macros); return copy; } template Derived NumberFormatterSettings::macros(impl::MacroProps&& macros)&& { Derived move(std::move(*this)); move.fMacros = std::move(macros); return move; } // Note: toSkeleton defined in number_skeletons.cpp template LocalPointer NumberFormatterSettings::clone() const & { return LocalPointer(new Derived(*this)); } template LocalPointer NumberFormatterSettings::clone() && { return LocalPointer(new Derived(std::move(*this))); } // Declare all classes that implement NumberFormatterSettings // See https://stackoverflow.com/a/495056/1407170 template class icu::number::NumberFormatterSettings; template class icu::number::NumberFormatterSettings; UnlocalizedNumberFormatter NumberFormatter::with() { UnlocalizedNumberFormatter result; return result; } LocalizedNumberFormatter NumberFormatter::withLocale(const Locale& locale) { return with().locale(locale); } // Note: forSkeleton defined in number_skeletons.cpp template using NFS = NumberFormatterSettings; using LNF = LocalizedNumberFormatter; using UNF = UnlocalizedNumberFormatter; UnlocalizedNumberFormatter::UnlocalizedNumberFormatter(const UNF& other) : UNF(static_cast&>(other)) {} UnlocalizedNumberFormatter::UnlocalizedNumberFormatter(const NFS& other) : NFS(other) { // No additional fields to assign } // Make default copy constructor call the NumberFormatterSettings copy constructor. UnlocalizedNumberFormatter::UnlocalizedNumberFormatter(UNF&& src) noexcept : UNF(static_cast&&>(src)) {} UnlocalizedNumberFormatter::UnlocalizedNumberFormatter(NFS&& src) noexcept : NFS(std::move(src)) { // No additional fields to assign } UnlocalizedNumberFormatter& UnlocalizedNumberFormatter::operator=(const UNF& other) { NFS::operator=(static_cast&>(other)); // No additional fields to assign return *this; } UnlocalizedNumberFormatter& UnlocalizedNumberFormatter::operator=(UNF&& src) noexcept { NFS::operator=(static_cast&&>(src)); // No additional fields to assign return *this; } // Make default copy constructor call the NumberFormatterSettings copy constructor. LocalizedNumberFormatter::LocalizedNumberFormatter(const LNF& other) : LNF(static_cast&>(other)) {} LocalizedNumberFormatter::LocalizedNumberFormatter(const NFS& other) : NFS(other) { UErrorCode localStatus = U_ZERO_ERROR; // Can't bubble up the error lnfCopyHelper(static_cast(other), localStatus); } LocalizedNumberFormatter::LocalizedNumberFormatter(LocalizedNumberFormatter&& src) noexcept : LNF(static_cast&&>(src)) {} LocalizedNumberFormatter::LocalizedNumberFormatter(NFS&& src) noexcept : NFS(std::move(src)) { lnfMoveHelper(std::move(static_cast(src))); } LocalizedNumberFormatter& LocalizedNumberFormatter::operator=(const LNF& other) { if (this == &other) { return *this; } // self-assignment: no-op NFS::operator=(static_cast&>(other)); UErrorCode localStatus = U_ZERO_ERROR; // Can't bubble up the error lnfCopyHelper(other, localStatus); return *this; } LocalizedNumberFormatter& LocalizedNumberFormatter::operator=(LNF&& src) noexcept { NFS::operator=(static_cast&&>(src)); lnfMoveHelper(std::move(src)); return *this; } void LocalizedNumberFormatter::resetCompiled() { auto* callCount = reinterpret_cast(fUnsafeCallCount); umtx_storeRelease(*callCount, 0); fCompiled = nullptr; } void LocalizedNumberFormatter::lnfMoveHelper(LNF&& src) { // Copy over the compiled formatter and set call count to INT32_MIN as in computeCompiled(). // Don't copy the call count directly because doing so requires a loadAcquire/storeRelease. // The bits themselves appear to be platform-dependent, so copying them might not be safe. delete fCompiled; if (src.fCompiled != nullptr) { auto* callCount = reinterpret_cast(fUnsafeCallCount); umtx_storeRelease(*callCount, INT32_MIN); fCompiled = src.fCompiled; // Reset the source object to leave it in a safe state. src.resetCompiled(); } else { resetCompiled(); } // Unconditionally move the warehouse delete fWarehouse; fWarehouse = src.fWarehouse; src.fWarehouse = nullptr; } void LocalizedNumberFormatter::lnfCopyHelper(const LNF&, UErrorCode& status) { // When copying, always reset the compiled formatter. delete fCompiled; resetCompiled(); // If MacroProps has a reference to AffixPatternProvider, we need to copy it. // If MacroProps has a reference to PluralRules, copy that one, too. delete fWarehouse; if (fMacros.affixProvider || fMacros.rules) { LocalPointer warehouse(new DecimalFormatWarehouse(), status); if (U_FAILURE(status)) { fWarehouse = nullptr; return; } if (fMacros.affixProvider) { warehouse->affixProvider.setTo(fMacros.affixProvider, status); fMacros.affixProvider = &warehouse->affixProvider.get(); } if (fMacros.rules) { warehouse->rules.adoptInsteadAndCheckErrorCode( new PluralRules(*fMacros.rules), status); fMacros.rules = warehouse->rules.getAlias(); } fWarehouse = warehouse.orphan(); } else { fWarehouse = nullptr; } } LocalizedNumberFormatter::~LocalizedNumberFormatter() { delete fCompiled; delete fWarehouse; } LocalizedNumberFormatter::LocalizedNumberFormatter(const MacroProps& macros, const Locale& locale) { fMacros = macros; fMacros.locale = locale; } LocalizedNumberFormatter::LocalizedNumberFormatter(MacroProps&& macros, const Locale& locale) { fMacros = std::move(macros); fMacros.locale = locale; } LocalizedNumberFormatter UnlocalizedNumberFormatter::locale(const Locale& locale) const& { return LocalizedNumberFormatter(fMacros, locale); } LocalizedNumberFormatter UnlocalizedNumberFormatter::locale(const Locale& locale)&& { return LocalizedNumberFormatter(std::move(fMacros), locale); } FormattedNumber LocalizedNumberFormatter::formatInt(int64_t value, UErrorCode& status) const { if (U_FAILURE(status)) { return FormattedNumber(U_ILLEGAL_ARGUMENT_ERROR); } auto results = new UFormattedNumberData(); if (results == nullptr) { status = U_MEMORY_ALLOCATION_ERROR; return FormattedNumber(status); } results->quantity.setToLong(value); formatImpl(results, status); // Do not save the results object if we encountered a failure. if (U_SUCCESS(status)) { return FormattedNumber(results); } else { delete results; return FormattedNumber(status); } } FormattedNumber LocalizedNumberFormatter::formatDouble(double value, UErrorCode& status) const { if (U_FAILURE(status)) { return FormattedNumber(U_ILLEGAL_ARGUMENT_ERROR); } auto results = new UFormattedNumberData(); if (results == nullptr) { status = U_MEMORY_ALLOCATION_ERROR; return FormattedNumber(status); } results->quantity.setToDouble(value); formatImpl(results, status); // Do not save the results object if we encountered a failure. if (U_SUCCESS(status)) { return FormattedNumber(results); } else { delete results; return FormattedNumber(status); } } FormattedNumber LocalizedNumberFormatter::formatDecimal(StringPiece value, UErrorCode& status) const { if (U_FAILURE(status)) { return FormattedNumber(U_ILLEGAL_ARGUMENT_ERROR); } auto results = new UFormattedNumberData(); if (results == nullptr) { status = U_MEMORY_ALLOCATION_ERROR; return FormattedNumber(status); } results->quantity.setToDecNumber(value, status); formatImpl(results, status); // Do not save the results object if we encountered a failure. if (U_SUCCESS(status)) { return FormattedNumber(results); } else { delete results; return FormattedNumber(status); } } FormattedNumber LocalizedNumberFormatter::formatDecimalQuantity(const DecimalQuantity& dq, UErrorCode& status) const { if (U_FAILURE(status)) { return FormattedNumber(U_ILLEGAL_ARGUMENT_ERROR); } auto results = new UFormattedNumberData(); if (results == nullptr) { status = U_MEMORY_ALLOCATION_ERROR; return FormattedNumber(status); } results->quantity = dq; formatImpl(results, status); // Do not save the results object if we encountered a failure. if (U_SUCCESS(status)) { return FormattedNumber(results); } else { delete results; return FormattedNumber(status); } } void LocalizedNumberFormatter::formatImpl(impl::UFormattedNumberData* results, UErrorCode& status) const { if (computeCompiled(status)) { fCompiled->format(results, status); } else { NumberFormatterImpl::formatStatic(fMacros, results, status); } if (U_FAILURE(status)) { return; } results->getStringRef().writeTerminator(status); } void LocalizedNumberFormatter::getAffixImpl(bool isPrefix, bool isNegative, UnicodeString& result, UErrorCode& status) const { FormattedStringBuilder string; auto signum = static_cast(isNegative ? SIGNUM_NEG : SIGNUM_POS); // Always return affixes for plural form OTHER. static const StandardPlural::Form plural = StandardPlural::OTHER; int32_t prefixLength; if (computeCompiled(status)) { prefixLength = fCompiled->getPrefixSuffix(signum, plural, string, status); } else { prefixLength = NumberFormatterImpl::getPrefixSuffixStatic(fMacros, signum, plural, string, status); } result.remove(); if (isPrefix) { result.append(string.toTempUnicodeString().tempSubStringBetween(0, prefixLength)); } else { result.append(string.toTempUnicodeString().tempSubStringBetween(prefixLength, string.length())); } } bool LocalizedNumberFormatter::computeCompiled(UErrorCode& status) const { // fUnsafeCallCount contains memory to be interpreted as an atomic int, most commonly // std::atomic. Since the type of atomic int is platform-dependent, we cast the // bytes in fUnsafeCallCount to u_atomic_int32_t, a typedef for the platform-dependent // atomic int type defined in umutex.h. static_assert( sizeof(u_atomic_int32_t) <= sizeof(fUnsafeCallCount), "Atomic integer size on this platform exceeds the size allocated by fUnsafeCallCount"); auto* callCount = reinterpret_cast( const_cast(this)->fUnsafeCallCount); // A positive value in the atomic int indicates that the data structure is not yet ready; // a negative value indicates that it is ready. If, after the increment, the atomic int // is exactly threshold, then it is the current thread's job to build the data structure. // Note: We set the callCount to INT32_MIN so that if another thread proceeds to increment // the atomic int, the value remains below zero. int32_t currentCount = umtx_loadAcquire(*callCount); if (0 <= currentCount && currentCount <= fMacros.threshold && fMacros.threshold > 0) { currentCount = umtx_atomic_inc(callCount); } if (currentCount == fMacros.threshold && fMacros.threshold > 0) { // Build the data structure and then use it (slow to fast path). const NumberFormatterImpl* compiled = new NumberFormatterImpl(fMacros, status); if (compiled == nullptr) { status = U_MEMORY_ALLOCATION_ERROR; return false; } U_ASSERT(fCompiled == nullptr); const_cast(this)->fCompiled = compiled; umtx_storeRelease(*callCount, INT32_MIN); return true; } else if (currentCount < 0) { // The data structure is already built; use it (fast path). U_ASSERT(fCompiled != nullptr); return true; } else { // Format the number without building the data structure (slow path). return false; } } const impl::NumberFormatterImpl* LocalizedNumberFormatter::getCompiled() const { return fCompiled; } int32_t LocalizedNumberFormatter::getCallCount() const { auto* callCount = reinterpret_cast( const_cast(this)->fUnsafeCallCount); return umtx_loadAcquire(*callCount); } // Note: toFormat defined in number_asformat.cpp const DecimalFormatSymbols* LocalizedNumberFormatter::getDecimalFormatSymbols() const { return fMacros.symbols.getDecimalFormatSymbols(); } #if (U_PF_WINDOWS <= U_PLATFORM && U_PLATFORM <= U_PF_CYGWIN) && defined(_MSC_VER) // Warning 4661. #pragma warning(pop) #endif #endif /* #if !UCONFIG_NO_FORMATTING */