/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim: set ts=8 sts=2 et sw=2 tw=80: */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "base/process_util.h" #include "base/task.h" #ifdef XP_UNIX # include #endif #include #include "mozilla/IntegerPrintfMacros.h" #include "mozilla/ipc/ProtocolMessageUtils.h" #include "mozilla/ipc/ProtocolUtils.h" #include "mozilla/ipc/MessageChannel.h" #include "mozilla/ipc/IPDLParamTraits.h" #include "mozilla/StaticMutex.h" #if defined(DEBUG) || defined(FUZZING) # include "mozilla/Tokenizer.h" #endif #include "mozilla/Unused.h" #include "nsPrintfCString.h" #include "nsReadableUtils.h" #if defined(MOZ_SANDBOX) && defined(XP_WIN) # include "mozilla/sandboxTarget.h" #endif #if defined(XP_WIN) # include "aclapi.h" # include "sddl.h" #endif #ifdef FUZZING_SNAPSHOT # include "mozilla/fuzzing/IPCFuzzController.h" #endif using namespace IPC; using base::GetCurrentProcId; using base::ProcessHandle; using base::ProcessId; namespace mozilla { namespace ipc { /* static */ IPCResult IPCResult::FailImpl(NotNull actor, const char* where, const char* why) { // Calls top-level protocol to handle the error. nsPrintfCString errorMsg("%s %s\n", where, why); actor->GetIPCChannel()->Listener()->ProcessingError( HasResultCodes::MsgProcessingError, errorMsg.get()); #if defined(DEBUG) && !defined(FUZZING) // We do not expect IPC_FAIL to ever happen in normal operations. If this // happens in DEBUG, we most likely see some behavior during a test we should // really investigate. nsPrintfCString crashMsg( "Use IPC_FAIL only in an " "unrecoverable, unexpected state: %s", errorMsg.get()); // We already leak the same information potentially on child process failures // even in release, and here we are only in DEBUG. MOZ_CRASH_UNSAFE(crashMsg.get()); #else return IPCResult(false); #endif } /* static */ IPCResult IPCResult::FailForTesting(NotNull actor, const char* where, const char* why) { return IPCResult(false); } void AnnotateSystemError() { uint32_t error = 0; #if defined(XP_WIN) error = ::GetLastError(); #else error = errno; #endif if (error) { CrashReporter::RecordAnnotationU32( CrashReporter::Annotation::IPCSystemError, error); } } #if defined(XP_MACOSX) void AnnotateCrashReportWithErrno(CrashReporter::Annotation tag, int error) { CrashReporter::RecordAnnotationU32(tag, static_cast(error)); } #endif // defined(XP_MACOSX) #if defined(DEBUG) || defined(FUZZING) // If aTopLevelProtocol matches any token in aFilter, return true. // // aTopLevelProtocol is a protocol name, without the "Parent" / "Child" suffix. // aSide indicates whether we're logging parent-side or child-side activity. // // aFilter is a list of protocol names separated by commas and/or // spaces. These may include the "Child" / "Parent" suffix, or omit // the suffix to log activity on both sides. // // This overload is for testability; application code should use the single- // argument version (defined in the ProtocolUtils.h) which takes the filter from // the environment. bool LoggingEnabledFor(const char* aTopLevelProtocol, Side aSide, const char* aFilter) { if (!aFilter) { return false; } if (strcmp(aFilter, "1") == 0) { return true; } const char kDelimiters[] = ", "; Tokenizer tokens(aFilter, kDelimiters); Tokenizer::Token t; while (tokens.Next(t)) { if (t.Type() == Tokenizer::TOKEN_WORD) { auto filter = t.AsString(); // Since aTopLevelProtocol never includes the "Parent" / "Child" suffix, // this will only occur when filter doesn't include it either, meaning // that we should log activity on both sides. if (filter == aTopLevelProtocol) { return true; } if (aSide == ParentSide && StringEndsWith(filter, nsDependentCString("Parent")) && Substring(filter, 0, filter.Length() - 6) == aTopLevelProtocol) { return true; } if (aSide == ChildSide && StringEndsWith(filter, nsDependentCString("Child")) && Substring(filter, 0, filter.Length() - 5) == aTopLevelProtocol) { return true; } } } return false; } #endif // defined(DEBUG) || defined(FUZZING) void LogMessageForProtocol(const char* aTopLevelProtocol, base::ProcessId aOtherPid, const char* aContextDescription, uint32_t aMessageId, MessageDirection aDirection) { nsPrintfCString logMessage( "[time: %" PRId64 "][%" PRIPID "%s%" PRIPID "] [%s] %s %s\n", PR_Now(), base::GetCurrentProcId(), aDirection == MessageDirection::eReceiving ? "<-" : "->", aOtherPid, aTopLevelProtocol, aContextDescription, StringFromIPCMessageType(aMessageId)); #ifdef ANDROID __android_log_write(ANDROID_LOG_INFO, "GeckoIPC", logMessage.get()); #endif fputs(logMessage.get(), stderr); } void ProtocolErrorBreakpoint(const char* aMsg) { // Bugs that generate these error messages can be tough to // reproduce. Log always in the hope that someone finds the error // message. printf_stderr("IPDL protocol error: %s\n", aMsg); } void PickleFatalError(const char* aMsg, IProtocol* aActor) { if (aActor) { aActor->FatalError(aMsg); } else { FatalError(aMsg, false); } } void FatalError(const char* aMsg, bool aIsParent) { #ifndef FUZZING ProtocolErrorBreakpoint(aMsg); #endif nsAutoCString formattedMessage("IPDL error: \""); formattedMessage.AppendASCII(aMsg); if (aIsParent) { // We're going to crash the parent process because at this time // there's no other really nice way of getting a minidump out of // this process if we're off the main thread. formattedMessage.AppendLiteral("\". Intentionally crashing."); NS_ERROR(formattedMessage.get()); CrashReporter::RecordAnnotationCString( CrashReporter::Annotation::IPCFatalErrorMsg, aMsg); AnnotateSystemError(); #ifndef FUZZING MOZ_CRASH("IPC FatalError in the parent process!"); #endif } else { formattedMessage.AppendLiteral("\". abort()ing as a result."); #ifndef FUZZING MOZ_CRASH_UNSAFE(formattedMessage.get()); #endif } } void LogicError(const char* aMsg) { MOZ_CRASH_UNSAFE(aMsg); } void ActorIdReadError(const char* aActorDescription) { #ifndef FUZZING MOZ_CRASH_UNSAFE_PRINTF("Error deserializing id for %s", aActorDescription); #endif } void BadActorIdError(const char* aActorDescription) { nsPrintfCString message("bad id for %s", aActorDescription); ProtocolErrorBreakpoint(message.get()); } void ActorLookupError(const char* aActorDescription) { nsPrintfCString message("could not lookup id for %s", aActorDescription); ProtocolErrorBreakpoint(message.get()); } void MismatchedActorTypeError(const char* aActorDescription) { nsPrintfCString message("actor that should be of type %s has different type", aActorDescription); ProtocolErrorBreakpoint(message.get()); } void UnionTypeReadError(const char* aUnionName) { MOZ_CRASH_UNSAFE_PRINTF("error deserializing type of union %s", aUnionName); } void ArrayLengthReadError(const char* aElementName) { MOZ_CRASH_UNSAFE_PRINTF("error deserializing length of %s[]", aElementName); } void SentinelReadError(const char* aClassName) { MOZ_CRASH_UNSAFE_PRINTF("incorrect sentinel when reading %s", aClassName); } ActorLifecycleProxy::ActorLifecycleProxy(IProtocol* aActor) : mActor(aActor) { MOZ_ASSERT(mActor); MOZ_ASSERT(mActor->CanSend(), "Cannot create LifecycleProxy for non-connected actor!"); // Take a reference to our manager's lifecycle proxy to try to hold it & // ensure it doesn't die before us. if (mActor->mManager) { mManager = mActor->mManager->mLifecycleProxy; } // Record that we've taken our first reference to our actor. mActor->ActorAlloc(); } WeakActorLifecycleProxy* ActorLifecycleProxy::GetWeakProxy() { if (!mWeakProxy) { mWeakProxy = new WeakActorLifecycleProxy(this); } return mWeakProxy; } ActorLifecycleProxy::~ActorLifecycleProxy() { if (mWeakProxy) { mWeakProxy->mProxy = nullptr; mWeakProxy = nullptr; } // When the LifecycleProxy's lifetime has come to an end, it means that the // actor should have its `Dealloc` method called on it. In a well-behaved // actor, this will release the IPC-held reference to the actor. // // If the actor has already died before the `LifecycleProxy`, the `IProtocol` // destructor below will clear our reference to it, preventing us from // performing a use-after-free here. if (!mActor) { return; } // Clear our actor's state back to inactive, and then invoke ActorDealloc. MOZ_ASSERT(mActor->mLinkStatus == LinkStatus::Destroyed, "Deallocating non-destroyed actor!"); mActor->mLifecycleProxy = nullptr; mActor->mLinkStatus = LinkStatus::Inactive; mActor->ActorDealloc(); mActor = nullptr; } WeakActorLifecycleProxy::WeakActorLifecycleProxy(ActorLifecycleProxy* aProxy) : mProxy(aProxy), mActorEventTarget(GetCurrentSerialEventTarget()) {} WeakActorLifecycleProxy::~WeakActorLifecycleProxy() { MOZ_DIAGNOSTIC_ASSERT(!mProxy, "Destroyed before mProxy was cleared?"); } IProtocol* WeakActorLifecycleProxy::Get() const { MOZ_DIAGNOSTIC_ASSERT(mActorEventTarget->IsOnCurrentThread()); return mProxy ? mProxy->Get() : nullptr; } WeakActorLifecycleProxy* IProtocol::GetWeakLifecycleProxy() { return mLifecycleProxy ? mLifecycleProxy->GetWeakProxy() : nullptr; } IProtocol::~IProtocol() { // If the actor still has a lifecycle proxy when it is being torn down, it // means that IPC was not given control over the lifecycle of the actor // correctly. Usually this means that the actor was destroyed while IPC is // calling a message handler for it, and the actor incorrectly frees itself // during that operation. // // As this happens unfortunately frequently, due to many odd protocols in // Gecko, simply emit a warning and clear the weak backreference from our // LifecycleProxy back to us. if (mLifecycleProxy) { NS_WARNING( nsPrintfCString("Actor destructor for '%s%s' called before IPC " "lifecycle complete!\n" "References to this actor may unexpectedly dangle!", GetProtocolName(), StringFromIPCSide(GetSide())) .get()); mLifecycleProxy->mActor = nullptr; // If we are somehow being destroyed while active, make sure that the // existing IPC reference has been freed. If the status of the actor is // `Destroyed`, the reference has already been freed, and we shouldn't free // it a second time. MOZ_ASSERT(mLinkStatus != LinkStatus::Inactive); if (mLinkStatus != LinkStatus::Destroyed) { NS_IF_RELEASE(mLifecycleProxy); } mLifecycleProxy = nullptr; } } // The following methods either directly forward to the toplevel protocol, or // almost directly do. int32_t IProtocol::Register(IProtocol* aRouted) { return mToplevel->Register(aRouted); } int32_t IProtocol::RegisterID(IProtocol* aRouted, int32_t aId) { return mToplevel->RegisterID(aRouted, aId); } IProtocol* IProtocol::Lookup(int32_t aId) { return mToplevel->Lookup(aId); } void IProtocol::Unregister(int32_t aId) { if (aId == mId) { mId = kFreedActorId; } return mToplevel->Unregister(aId); } Shmem::SharedMemory* IProtocol::CreateSharedMemory(size_t aSize, bool aUnsafe, int32_t* aId) { return mToplevel->CreateSharedMemory(aSize, aUnsafe, aId); } Shmem::SharedMemory* IProtocol::LookupSharedMemory(int32_t aId) { return mToplevel->LookupSharedMemory(aId); } bool IProtocol::IsTrackingSharedMemory(Shmem::SharedMemory* aSegment) { return mToplevel->IsTrackingSharedMemory(aSegment); } bool IProtocol::DestroySharedMemory(Shmem& aShmem) { return mToplevel->DestroySharedMemory(aShmem); } MessageChannel* IProtocol::GetIPCChannel() { return mToplevel->GetIPCChannel(); } const MessageChannel* IProtocol::GetIPCChannel() const { return mToplevel->GetIPCChannel(); } nsISerialEventTarget* IProtocol::GetActorEventTarget() { return GetIPCChannel()->GetWorkerEventTarget(); } void IProtocol::SetId(int32_t aId) { MOZ_ASSERT(mId == aId || mLinkStatus == LinkStatus::Inactive); mId = aId; } Maybe IProtocol::ReadActor(IPC::MessageReader* aReader, bool aNullable, const char* aActorDescription, int32_t aProtocolTypeId) { int32_t id; if (!IPC::ReadParam(aReader, &id)) { ActorIdReadError(aActorDescription); return Nothing(); } if (id == 1 || (id == 0 && !aNullable)) { BadActorIdError(aActorDescription); return Nothing(); } if (id == 0) { return Some(static_cast(nullptr)); } IProtocol* listener = this->Lookup(id); if (!listener) { ActorLookupError(aActorDescription); return Nothing(); } if (listener->GetProtocolId() != aProtocolTypeId) { MismatchedActorTypeError(aActorDescription); return Nothing(); } return Some(listener); } void IProtocol::FatalError(const char* const aErrorMsg) { HandleFatalError(aErrorMsg); } void IProtocol::HandleFatalError(const char* aErrorMsg) { if (IProtocol* manager = Manager()) { manager->HandleFatalError(aErrorMsg); return; } mozilla::ipc::FatalError(aErrorMsg, mSide == ParentSide); if (CanSend()) { GetIPCChannel()->InduceConnectionError(); } } bool IProtocol::AllocShmem(size_t aSize, Shmem* aOutMem) { if (!CanSend()) { NS_WARNING( "Shmem not allocated. Cannot communicate with the other actor."); return false; } Shmem::id_t id; Shmem::SharedMemory* rawmem(CreateSharedMemory(aSize, false, &id)); if (!rawmem) { return false; } *aOutMem = Shmem(rawmem, id, aSize, false); return true; } bool IProtocol::AllocUnsafeShmem(size_t aSize, Shmem* aOutMem) { if (!CanSend()) { NS_WARNING( "Shmem not allocated. Cannot communicate with the other actor."); return false; } Shmem::id_t id; Shmem::SharedMemory* rawmem(CreateSharedMemory(aSize, true, &id)); if (!rawmem) { return false; } *aOutMem = Shmem(rawmem, id, aSize, true); return true; } bool IProtocol::DeallocShmem(Shmem& aMem) { bool ok = DestroySharedMemory(aMem); #ifdef DEBUG if (!ok) { if (mSide == ChildSide) { FatalError("bad Shmem"); } else { NS_WARNING("bad Shmem"); } return false; } #endif // DEBUG aMem.forget(); return ok; } void IProtocol::SetManager(IProtocol* aManager) { MOZ_RELEASE_ASSERT(!mManager || mManager == aManager); mManager = aManager; mToplevel = aManager->mToplevel; } void IProtocol::SetManagerAndRegister(IProtocol* aManager) { // Set the manager prior to registering so registering properly inherits // the manager's event target. SetManager(aManager); aManager->Register(this); } void IProtocol::SetManagerAndRegister(IProtocol* aManager, int32_t aId) { // Set the manager prior to registering so registering properly inherits // the manager's event target. SetManager(aManager); aManager->RegisterID(this, aId); } bool IProtocol::ChannelSend(UniquePtr aMsg) { if (CanSend()) { // NOTE: This send call failing can only occur during toplevel channel // teardown. As this is an async call, this isn't reasonable to predict or // respond to, so just drop the message on the floor silently. GetIPCChannel()->Send(std::move(aMsg)); return true; } WarnMessageDiscarded(aMsg.get()); return false; } bool IProtocol::ChannelSend(UniquePtr aMsg, UniquePtr* aReply) { if (CanSend()) { return GetIPCChannel()->Send(std::move(aMsg), aReply); } WarnMessageDiscarded(aMsg.get()); return false; } #ifdef DEBUG void IProtocol::WarnMessageDiscarded(IPC::Message* aMsg) { NS_WARNING(nsPrintfCString("IPC message '%s' discarded: actor cannot send", aMsg->name()) .get()); } #endif void IProtocol::ActorConnected() { if (mLinkStatus != LinkStatus::Inactive) { return; } #ifdef FUZZING_SNAPSHOT fuzzing::IPCFuzzController::instance().OnActorConnected(this); #endif mLinkStatus = LinkStatus::Connected; MOZ_ASSERT(!mLifecycleProxy, "double-connecting live actor"); mLifecycleProxy = new ActorLifecycleProxy(this); NS_ADDREF(mLifecycleProxy); // Reference freed in DestroySubtree(); } void IProtocol::DoomSubtree() { MOZ_ASSERT(CanSend(), "dooming non-connected actor"); MOZ_ASSERT(mLifecycleProxy, "dooming zombie actor"); nsTArray> managed; AllManagedActors(managed); for (ActorLifecycleProxy* proxy : managed) { // Guard against actor being disconnected or destroyed during previous Doom IProtocol* actor = proxy->Get(); if (actor && actor->CanSend()) { actor->DoomSubtree(); } } // ActorDoom is called immediately before changing state, this allows messages // to be sent during ActorDoom immediately before the channel is closed and // sending messages is disabled. ActorDoom(); mLinkStatus = LinkStatus::Doomed; } void IProtocol::DestroySubtree(ActorDestroyReason aWhy) { MOZ_ASSERT(CanRecv(), "destroying non-connected actor"); MOZ_ASSERT(mLifecycleProxy, "destroying zombie actor"); #ifdef FUZZING_SNAPSHOT fuzzing::IPCFuzzController::instance().OnActorDestroyed(this); #endif int32_t id = Id(); // If we're a managed actor, unregister from our manager if (Manager()) { Unregister(id); } // Destroy subtree ActorDestroyReason subtreeWhy = aWhy; if (aWhy == Deletion || aWhy == FailedConstructor) { subtreeWhy = AncestorDeletion; } nsTArray> managed; AllManagedActors(managed); for (ActorLifecycleProxy* proxy : managed) { // Guard against actor being disconnected or destroyed during previous // Destroy IProtocol* actor = proxy->Get(); if (actor && actor->CanRecv()) { actor->DestroySubtree(subtreeWhy); } } // Ensure that we don't send any messages while we're calling `ActorDestroy` // by setting our state to `Doomed`. mLinkStatus = LinkStatus::Doomed; // The actor is being destroyed, reject any pending responses, invoke // `ActorDestroy` to destroy it, and then clear our status to // `LinkStatus::Destroyed`. GetIPCChannel()->RejectPendingResponsesForActor(id); ActorDestroy(aWhy); mLinkStatus = LinkStatus::Destroyed; } IToplevelProtocol::IToplevelProtocol(const char* aName, ProtocolId aProtoId, Side aSide) : IRefCountedProtocol(aProtoId, aSide), mOtherPid(base::kInvalidProcessId), mLastLocalId(0), mChannel(aName, this) { mToplevel = this; } void IToplevelProtocol::SetOtherProcessId(base::ProcessId aOtherPid) { mOtherPid = aOtherPid; } bool IToplevelProtocol::Open(ScopedPort aPort, const nsID& aMessageChannelId, base::ProcessId aOtherPid, nsISerialEventTarget* aEventTarget) { SetOtherProcessId(aOtherPid); return GetIPCChannel()->Open(std::move(aPort), mSide, aMessageChannelId, aEventTarget); } bool IToplevelProtocol::Open(IToplevelProtocol* aTarget, nsISerialEventTarget* aEventTarget, mozilla::ipc::Side aSide) { SetOtherProcessId(base::GetCurrentProcId()); aTarget->SetOtherProcessId(base::GetCurrentProcId()); return GetIPCChannel()->Open(aTarget->GetIPCChannel(), aEventTarget, aSide); } bool IToplevelProtocol::OpenOnSameThread(IToplevelProtocol* aTarget, Side aSide) { SetOtherProcessId(base::GetCurrentProcId()); aTarget->SetOtherProcessId(base::GetCurrentProcId()); return GetIPCChannel()->OpenOnSameThread(aTarget->GetIPCChannel(), aSide); } void IToplevelProtocol::NotifyImpendingShutdown() { if (CanRecv()) { GetIPCChannel()->NotifyImpendingShutdown(); } } void IToplevelProtocol::Close() { GetIPCChannel()->Close(); } void IToplevelProtocol::SetReplyTimeoutMs(int32_t aTimeoutMs) { GetIPCChannel()->SetReplyTimeoutMs(aTimeoutMs); } bool IToplevelProtocol::IsOnCxxStack() const { return GetIPCChannel()->IsOnCxxStack(); } int32_t IToplevelProtocol::NextId() { // Generate the next ID to use for a shared memory or protocol. Parent and // Child sides of the protocol use different pools. int32_t tag = 0; if (GetSide() == ParentSide) { tag |= 1 << 1; } // Check any overflow MOZ_RELEASE_ASSERT(mLastLocalId < (1 << 29)); // Compute the ID to use with the low two bits as our tag, and the remaining // bits as a monotonic. return (++mLastLocalId << 2) | tag; } int32_t IToplevelProtocol::Register(IProtocol* aRouted) { if (aRouted->Id() != kNullActorId && aRouted->Id() != kFreedActorId) { // If there's already an ID, just return that. return aRouted->Id(); } return RegisterID(aRouted, NextId()); } int32_t IToplevelProtocol::RegisterID(IProtocol* aRouted, int32_t aId) { aRouted->SetId(aId); aRouted->ActorConnected(); MOZ_ASSERT(!mActorMap.Contains(aId), "Don't insert with an existing ID"); mActorMap.InsertOrUpdate(aId, aRouted); return aId; } IProtocol* IToplevelProtocol::Lookup(int32_t aId) { return mActorMap.Get(aId); } void IToplevelProtocol::Unregister(int32_t aId) { MOZ_ASSERT(mActorMap.Contains(aId), "Attempting to remove an ID not in the actor map"); mActorMap.Remove(aId); } Shmem::SharedMemory* IToplevelProtocol::CreateSharedMemory(size_t aSize, bool aUnsafe, Shmem::id_t* aId) { RefPtr segment(Shmem::Alloc(aSize)); if (!segment) { return nullptr; } int32_t id = NextId(); Shmem shmem(segment.get(), id, aSize, aUnsafe); UniquePtr descriptor = shmem.MkCreatedMessage(MSG_ROUTING_CONTROL); if (!descriptor) { return nullptr; } Unused << GetIPCChannel()->Send(std::move(descriptor)); *aId = shmem.Id(); Shmem::SharedMemory* rawSegment = segment.get(); MOZ_ASSERT(!mShmemMap.Contains(*aId), "Don't insert with an existing ID"); mShmemMap.InsertOrUpdate(*aId, std::move(segment)); return rawSegment; } Shmem::SharedMemory* IToplevelProtocol::LookupSharedMemory(Shmem::id_t aId) { auto entry = mShmemMap.Lookup(aId); return entry ? entry.Data().get() : nullptr; } bool IToplevelProtocol::IsTrackingSharedMemory(Shmem::SharedMemory* segment) { for (const auto& shmem : mShmemMap.Values()) { if (segment == shmem) { return true; } } return false; } bool IToplevelProtocol::DestroySharedMemory(Shmem& shmem) { Shmem::id_t aId = shmem.Id(); Shmem::SharedMemory* segment = LookupSharedMemory(aId); if (!segment) { return false; } UniquePtr descriptor = shmem.MkDestroyedMessage(MSG_ROUTING_CONTROL); MOZ_ASSERT(mShmemMap.Contains(aId), "Attempting to remove an ID not in the shmem map"); mShmemMap.Remove(aId); MessageChannel* channel = GetIPCChannel(); if (!channel->CanSend()) { return true; } return descriptor && channel->Send(std::move(descriptor)); } void IToplevelProtocol::DeallocShmems() { mShmemMap.Clear(); } bool IToplevelProtocol::ShmemCreated(const Message& aMsg) { Shmem::id_t id; RefPtr rawmem(Shmem::OpenExisting(aMsg, &id, true)); if (!rawmem) { return false; } MOZ_ASSERT(!mShmemMap.Contains(id), "Don't insert with an existing ID"); mShmemMap.InsertOrUpdate(id, std::move(rawmem)); return true; } bool IToplevelProtocol::ShmemDestroyed(const Message& aMsg) { Shmem::id_t id; MessageReader reader(aMsg); if (!IPC::ReadParam(&reader, &id)) { return false; } reader.EndRead(); mShmemMap.Remove(id); return true; } IPDLResolverInner::IPDLResolverInner(UniquePtr aReply, IProtocol* aActor) : mReply(std::move(aReply)), mWeakProxy(aActor->GetLifecycleProxy()->GetWeakProxy()) {} void IPDLResolverInner::ResolveOrReject( bool aResolve, FunctionRef aWrite) { MOZ_ASSERT(mWeakProxy); MOZ_ASSERT(mWeakProxy->ActorEventTarget()->IsOnCurrentThread()); MOZ_ASSERT(mReply); UniquePtr reply = std::move(mReply); IProtocol* actor = mWeakProxy->Get(); if (!actor) { NS_WARNING(nsPrintfCString("Not resolving response '%s': actor is dead", reply->name()) .get()); return; } IPC::MessageWriter writer(*reply, actor); WriteIPDLParam(&writer, actor, aResolve); aWrite(reply.get(), actor); actor->ChannelSend(std::move(reply)); } void IPDLResolverInner::Destroy() { if (mReply) { NS_PROXY_DELETE_TO_EVENT_TARGET(IPDLResolverInner, mWeakProxy->ActorEventTarget()); } else { // If we've already been consumed, just delete without proxying. This avoids // leaking the resolver if the actor's thread is already dead. delete this; } } IPDLResolverInner::~IPDLResolverInner() { if (mReply) { NS_WARNING( nsPrintfCString( "Rejecting reply '%s': resolver dropped without being called", mReply->name()) .get()); ResolveOrReject(false, [](IPC::Message* aMessage, IProtocol* aActor) { IPC::MessageWriter writer(*aMessage, aActor); ResponseRejectReason reason = ResponseRejectReason::ResolverDestroyed; WriteIPDLParam(&writer, aActor, reason); }); } } } // namespace ipc } // namespace mozilla