/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- * vim: set ts=8 sts=2 et sw=2 tw=80: * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ /* JS::Value implementation. */ #ifndef js_Value_h #define js_Value_h #include "mozilla/Attributes.h" #include "mozilla/Casting.h" #include "mozilla/FloatingPoint.h" #include "mozilla/Likely.h" #include "mozilla/Maybe.h" #include /* for std::numeric_limits */ #include #include "jstypes.h" #include "js/HeapAPI.h" #include "js/RootingAPI.h" #include "js/TypeDecls.h" namespace JS { class JS_PUBLIC_API Value; } // [SMDOC] JS::Value Boxing Formats // // JS::Value is a 64-bit value, on all architectures. It is conceptually a // discriminated union of all the types of values that can be represented in SM: // - Object Pointers // - 64 bit IEEE 754 floats // - 32-bit integer values // - and quite a few more (see JSValueType) // // The ECMAScript standard specifies that ECMAScript numbers are IEEE 64-bit // floating-point values. A JS::Value can represent any JavaScript number // value directly, without referring to additional storage, or represent an // object, string, or other ECMAScript value, and remember which type it is. // // This may seem surprising: how can a 64-bit type hold all the 64-bit IEEE // values, and still distinguish them from objects, strings, and so on, // which have 64-bit addresses ? // // This is possible for two reasons: // // - First, ECMAScript implementations aren't required to distinguish all // the values the IEEE 64-bit format can represent. // // The IEEE 754 format for floating point numbers specifies that every // floating-point value whose 11-bit exponent field is all ones, and whose // 52-bit fraction field is non-zero, has the value NaN. EMCAScript requires // only one NaN value. This means we can use one IEEE NaN to represent // ECMAScript's NaN, and use all the other 2^52-2 NaN bitstrings to // represent the other ECMAScript values. // // - Second, on the 64 bit architectures we suppport, only the // lower 48 bits of an address are currently significant. The upper sixteen // bits are required to be the sign-extension of bit 48. Furthermore, user // code always runs in "positive addresses": those in which bit 48 is zero. So // we only actually need 47 bits to store all possible object or string // addresses, even on 64-bit platforms. // // Our memory initialization system ensures that all pointers we will store in // objects use only 47 bits. See js::gc::MapAlignedPagesRandom. // // The introduction of 5-level page tables, supporting 57-bit virtual // addresses, is a potential complication. For now, large addresses are // opt-in, and we simply don't use them. // // With a 52-bit fraction field, and 47 bits needed for the 'payload', we // have up to five bits left to store a 'tag' value, to indicate which // branch of our discriminated union is live. (In practice, one of those // bits is used up to simplify NaN representation; see micro-optimization 5 // below.) // // Thus, we define JS::Value representations in terms of the IEEE 64-bit // floating-point format: // // - Any bitstring that IEEE calls a number or an infinity represents that // ECMAScript number. // // - Any bitstring that IEEE calls a NaN represents either an ECMAScript NaN // or a non-number ECMAScript value, as determined by a tag field stored // towards the most significant end of the fraction field (exactly where // depends on the address size). If the tag field indicates that this // JS::Value is an object, the fraction field's least significant end // holds the address of a JSObject; if a string, the address of a // JSString; and so on. // // To enforce this invariant, anywhere that may provide a numerical value // which may have a non-canonical NaN value (NaN, but not the one we've chosen // for ECMAScript) we must convert that to the canonical NaN. See // JS::CanonicalizeNaN. // // We have two boxing modes defined: NUNBOX32 and PUNBOX64.The first is // "NaN unboxed boxing" (or Nunboxing), as non-Number payload are stored // unaltered in the lower bits. The second is "Packed NaN boxing" (or // punboxing), which is 'logically like nunboxing, but with all the unused bits // sucked out' [1], as we rely on unused bits of the payload to pack the // payload in the lower bits using Nunboxing. // // - In NUNBOX32 the tag is stored in the least-significant bits of the high // word of the NaN. Since it's used on 32-bit systems, this has the nice // property that boxed values are simply stored in the low-word of the 8-byte // NaN. // // - In PUNBOX64, since we need to store more pointer bits (47, see above), the // tag is stored in the 5 most significant bits of the fraction adjacent to // the exponent. // // Tag values are carefully ordered to support a set of micro-optimizations. In // particular: // // 1. Object is the highest tag, to simplify isPrimitive checks. (See // ValueUpperExclPrimitiveTag) // 2. Numbers (Double and Int32) are the lowest tags, to simplify isNumber // checks. (See ValueUpperInclNumberTag) // 3. Non-GC tags are ordered before GC-tags, to simplify isGCThing checks. (See // ValueLowerInclGCThingTag) // 4. The tags for Object and Null differ by a single flipped bit, to simplify // toObjectOrNull. (See ValueObjectOrNullBit) // 5. In PUNBOX64, the most significant bit of every non-Double tag is always // set. This is to simplify isDouble checks. Note that the highest bitstring // that corresponds to a non-NaN double is -Infinity: // 0xfff0_0000_0000_0000 // But the canonical hardware NaN (produced by, for example, 0/0) is: // 0x?ff8_0000_0000_0000 // on all platforms with JIT support*. (The most significant bit is the sign // bit; it is 1 on x86, but 0 on ARM.) The most significant bit of the // fraction field is set, which corresponds to the most significant of the 5 // tag bits. Because we only use tags that have the high bit set, any Value // represented by a bitstring less than or equal to 0xfff8_..._0000 is a // Double. (If we wanted to use all five bits, we could define 0x10 as // JSVAL_TYPE_NAN, and mask off the most significant bit of the tag for // IsDouble checks. This is not yet necessary, because we still have room // left to allocate new tags.) // // * But see JS_NONCANONICAL_HARDWARE_NAN below. // // [1]: // https://wingolog.org/archives/2011/05/18/value-representation-in-javascript-implementations#969f63bbe4eb912778c9da85feb0f5763e7a7862 /* JS::Value can store a full int32_t. */ #define JSVAL_INT_BITS 32 #define JSVAL_INT_MIN ((int32_t)0x80000000) #define JSVAL_INT_MAX ((int32_t)0x7fffffff) #if defined(JS_NUNBOX32) # define JSVAL_TAG_SHIFT 32 #elif defined(JS_PUNBOX64) # define JSVAL_TAG_SHIFT 47 #endif // Use enums so that printing a JS::Value in the debugger shows nice // symbolic type tags. enum JSValueType : uint8_t { JSVAL_TYPE_DOUBLE = 0x00, JSVAL_TYPE_INT32 = 0x01, JSVAL_TYPE_BOOLEAN = 0x02, JSVAL_TYPE_UNDEFINED = 0x03, JSVAL_TYPE_NULL = 0x04, JSVAL_TYPE_MAGIC = 0x05, JSVAL_TYPE_STRING = 0x06, JSVAL_TYPE_SYMBOL = 0x07, JSVAL_TYPE_PRIVATE_GCTHING = 0x08, JSVAL_TYPE_BIGINT = 0x09, #ifdef ENABLE_RECORD_TUPLE JSVAL_TYPE_EXTENDED_PRIMITIVE = 0x0b, #endif JSVAL_TYPE_OBJECT = 0x0c, // This type never appears in a Value; it's only an out-of-band value. JSVAL_TYPE_UNKNOWN = 0x20 }; namespace JS { enum class ValueType : uint8_t { Double = JSVAL_TYPE_DOUBLE, Int32 = JSVAL_TYPE_INT32, Boolean = JSVAL_TYPE_BOOLEAN, Undefined = JSVAL_TYPE_UNDEFINED, Null = JSVAL_TYPE_NULL, Magic = JSVAL_TYPE_MAGIC, String = JSVAL_TYPE_STRING, Symbol = JSVAL_TYPE_SYMBOL, PrivateGCThing = JSVAL_TYPE_PRIVATE_GCTHING, BigInt = JSVAL_TYPE_BIGINT, #ifdef ENABLE_RECORD_TUPLE ExtendedPrimitive = JSVAL_TYPE_EXTENDED_PRIMITIVE, #endif Object = JSVAL_TYPE_OBJECT, }; } // namespace JS static_assert(sizeof(JSValueType) == 1, "compiler typed enum support is apparently buggy"); #if defined(JS_NUNBOX32) enum JSValueTag : uint32_t { JSVAL_TAG_CLEAR = 0xFFFFFF80, JSVAL_TAG_INT32 = JSVAL_TAG_CLEAR | JSVAL_TYPE_INT32, JSVAL_TAG_UNDEFINED = JSVAL_TAG_CLEAR | JSVAL_TYPE_UNDEFINED, JSVAL_TAG_NULL = JSVAL_TAG_CLEAR | JSVAL_TYPE_NULL, JSVAL_TAG_BOOLEAN = JSVAL_TAG_CLEAR | JSVAL_TYPE_BOOLEAN, JSVAL_TAG_MAGIC = JSVAL_TAG_CLEAR | JSVAL_TYPE_MAGIC, JSVAL_TAG_STRING = JSVAL_TAG_CLEAR | JSVAL_TYPE_STRING, JSVAL_TAG_SYMBOL = JSVAL_TAG_CLEAR | JSVAL_TYPE_SYMBOL, JSVAL_TAG_PRIVATE_GCTHING = JSVAL_TAG_CLEAR | JSVAL_TYPE_PRIVATE_GCTHING, JSVAL_TAG_BIGINT = JSVAL_TAG_CLEAR | JSVAL_TYPE_BIGINT, # ifdef ENABLE_RECORD_TUPLE JSVAL_TAG_EXTENDED_PRIMITIVE = JSVAL_TAG_CLEAR | JSVAL_TYPE_EXTENDED_PRIMITIVE, # endif JSVAL_TAG_OBJECT = JSVAL_TAG_CLEAR | JSVAL_TYPE_OBJECT }; static_assert(sizeof(JSValueTag) == sizeof(uint32_t), "compiler typed enum support is apparently buggy"); #elif defined(JS_PUNBOX64) enum JSValueTag : uint32_t { JSVAL_TAG_MAX_DOUBLE = 0x1FFF0, JSVAL_TAG_INT32 = JSVAL_TAG_MAX_DOUBLE | JSVAL_TYPE_INT32, JSVAL_TAG_UNDEFINED = JSVAL_TAG_MAX_DOUBLE | JSVAL_TYPE_UNDEFINED, JSVAL_TAG_NULL = JSVAL_TAG_MAX_DOUBLE | JSVAL_TYPE_NULL, JSVAL_TAG_BOOLEAN = JSVAL_TAG_MAX_DOUBLE | JSVAL_TYPE_BOOLEAN, JSVAL_TAG_MAGIC = JSVAL_TAG_MAX_DOUBLE | JSVAL_TYPE_MAGIC, JSVAL_TAG_STRING = JSVAL_TAG_MAX_DOUBLE | JSVAL_TYPE_STRING, JSVAL_TAG_SYMBOL = JSVAL_TAG_MAX_DOUBLE | JSVAL_TYPE_SYMBOL, JSVAL_TAG_PRIVATE_GCTHING = JSVAL_TAG_MAX_DOUBLE | JSVAL_TYPE_PRIVATE_GCTHING, JSVAL_TAG_BIGINT = JSVAL_TAG_MAX_DOUBLE | JSVAL_TYPE_BIGINT, # ifdef ENABLE_RECORD_TUPLE JSVAL_TAG_EXTENDED_PRIMITIVE = JSVAL_TAG_MAX_DOUBLE | JSVAL_TYPE_EXTENDED_PRIMITIVE, # endif JSVAL_TAG_OBJECT = JSVAL_TAG_MAX_DOUBLE | JSVAL_TYPE_OBJECT }; static_assert(sizeof(JSValueTag) == sizeof(uint32_t), "compiler typed enum support is apparently buggy"); enum JSValueShiftedTag : uint64_t { // See Bug 584653 for why we include 0xFFFFFFFF. JSVAL_SHIFTED_TAG_MAX_DOUBLE = ((uint64_t(JSVAL_TAG_MAX_DOUBLE) << JSVAL_TAG_SHIFT) | 0xFFFFFFFF), JSVAL_SHIFTED_TAG_INT32 = (uint64_t(JSVAL_TAG_INT32) << JSVAL_TAG_SHIFT), JSVAL_SHIFTED_TAG_UNDEFINED = (uint64_t(JSVAL_TAG_UNDEFINED) << JSVAL_TAG_SHIFT), JSVAL_SHIFTED_TAG_NULL = (uint64_t(JSVAL_TAG_NULL) << JSVAL_TAG_SHIFT), JSVAL_SHIFTED_TAG_BOOLEAN = (uint64_t(JSVAL_TAG_BOOLEAN) << JSVAL_TAG_SHIFT), JSVAL_SHIFTED_TAG_MAGIC = (uint64_t(JSVAL_TAG_MAGIC) << JSVAL_TAG_SHIFT), JSVAL_SHIFTED_TAG_STRING = (uint64_t(JSVAL_TAG_STRING) << JSVAL_TAG_SHIFT), JSVAL_SHIFTED_TAG_SYMBOL = (uint64_t(JSVAL_TAG_SYMBOL) << JSVAL_TAG_SHIFT), JSVAL_SHIFTED_TAG_PRIVATE_GCTHING = (uint64_t(JSVAL_TAG_PRIVATE_GCTHING) << JSVAL_TAG_SHIFT), JSVAL_SHIFTED_TAG_BIGINT = (uint64_t(JSVAL_TAG_BIGINT) << JSVAL_TAG_SHIFT), # ifdef ENABLE_RECORD_TUPLE JSVAL_SHIFTED_TAG_EXTENDED_PRIMITIVE = (uint64_t(JSVAL_TYPE_EXTENDED_PRIMITIVE) << JSVAL_TAG_SHIFT), # endif JSVAL_SHIFTED_TAG_OBJECT = (uint64_t(JSVAL_TAG_OBJECT) << JSVAL_TAG_SHIFT) }; static_assert(sizeof(JSValueShiftedTag) == sizeof(uint64_t), "compiler typed enum support is apparently buggy"); #endif namespace JS { namespace detail { #if defined(JS_NUNBOX32) constexpr JSValueTag ValueTypeToTag(JSValueType type) { return static_cast(JSVAL_TAG_CLEAR | std::underlying_type_t(type)); } constexpr bool ValueIsDouble(uint64_t bits) { return uint32_t(bits >> JSVAL_TAG_SHIFT) <= uint32_t(JSVAL_TAG_CLEAR); } constexpr JSValueTag ValueUpperExclPrimitiveTag = JSVAL_TAG_OBJECT; constexpr JSValueTag ValueUpperInclNumberTag = JSVAL_TAG_INT32; constexpr JSValueTag ValueLowerInclGCThingTag = JSVAL_TAG_STRING; #elif defined(JS_PUNBOX64) constexpr JSValueTag ValueTypeToTag(JSValueType type) { return static_cast(JSVAL_TAG_MAX_DOUBLE | std::underlying_type_t(type)); } constexpr bool ValueIsDouble(uint64_t bits) { return bits <= JSVAL_SHIFTED_TAG_MAX_DOUBLE; } constexpr uint64_t ValueTagMask = 0xFFFF'8000'0000'0000; // This should only be used in toGCThing. See the 'Spectre mitigations' comment. constexpr uint64_t ValueGCThingPayloadMask = 0x0000'7FFF'FFFF'FFFF; // Mask used to combine an unbox operation with getting the chunk base. constexpr uint64_t ValueGCThingPayloadChunkMask = ValueGCThingPayloadMask & ~js::gc::ChunkMask; constexpr uint64_t ValueTypeToShiftedTag(JSValueType type) { return static_cast(ValueTypeToTag(type)) << JSVAL_TAG_SHIFT; } # define JSVAL_TYPE_TO_SHIFTED_TAG(type) \ (JS::detail::ValueTypeToShiftedTag(type)) constexpr JSValueTag ValueUpperExclPrimitiveTag = JSVAL_TAG_OBJECT; constexpr JSValueTag ValueUpperInclNumberTag = JSVAL_TAG_INT32; constexpr JSValueTag ValueLowerInclGCThingTag = JSVAL_TAG_STRING; constexpr uint64_t ValueUpperExclShiftedPrimitiveTag = JSVAL_SHIFTED_TAG_OBJECT; constexpr uint64_t ValueUpperExclShiftedNumberTag = JSVAL_SHIFTED_TAG_BOOLEAN; constexpr uint64_t ValueLowerInclShiftedGCThingTag = JSVAL_SHIFTED_TAG_STRING; // JSVAL_TYPE_OBJECT and JSVAL_TYPE_NULL differ by one bit. We can use this to // implement toObjectOrNull more efficiently. constexpr uint64_t ValueObjectOrNullBit = 0x8ULL << JSVAL_TAG_SHIFT; static_assert( (JSVAL_SHIFTED_TAG_NULL ^ JSVAL_SHIFTED_TAG_OBJECT) == ValueObjectOrNullBit, "ValueObjectOrNullBit must be consistent with object and null tags"); constexpr uint64_t IsValidUserModePointer(uint64_t bits) { // All 64-bit platforms that we support actually have a 48-bit address space // for user-mode pointers, with the top 16 bits all set to zero. return (bits & 0xFFFF'0000'0000'0000) == 0; } #endif /* JS_PUNBOX64 */ } // namespace detail } // namespace JS #define JSVAL_TYPE_TO_TAG(type) (JS::detail::ValueTypeToTag(type)) enum JSWhyMagic { /** a hole in a native object's elements */ JS_ELEMENTS_HOLE, /** there is not a pending iterator value */ JS_NO_ITER_VALUE, /** exception value thrown when closing a generator */ JS_GENERATOR_CLOSING, /** used in debug builds to catch tracing errors */ JS_ARG_POISON, /** an empty subnode in the AST serializer */ JS_SERIALIZE_NO_NODE, /** magic value passed to natives to indicate construction */ JS_IS_CONSTRUCTING, /** see class js::HashableValue */ JS_HASH_KEY_EMPTY, /** error while running Ion code */ JS_ION_ERROR, /** missing recover instruction result */ JS_ION_BAILOUT, /** optimized out slot */ JS_OPTIMIZED_OUT, /** uninitialized lexical bindings that produce ReferenceError on touch. */ JS_UNINITIALIZED_LEXICAL, /** arguments object can't be created because environment is dead. */ JS_MISSING_ARGUMENTS, /** for local use */ JS_GENERIC_MAGIC, /** * When an error object is created without the error cause argument, we set * the error's cause slot to this magic value. */ JS_ERROR_WITHOUT_CAUSE, JS_WHY_MAGIC_COUNT }; namespace js { class JS_PUBLIC_API GenericPrinter; class JSONPrinter; static inline JS::Value PoisonedObjectValue(uintptr_t poison); #ifdef ENABLE_RECORD_TUPLE // Re-defined in vm/RecordTupleBoxShared.h. We cannot include that // file because it circularly includes this one. bool IsExtendedPrimitive(const JSObject& obj); namespace gc { bool MaybeForwardedIsExtendedPrimitive(const JSObject& obj); } // namespace gc #endif } // namespace js namespace JS { namespace detail { // IEEE-754 bit pattern for double-precision positive infinity. constexpr int InfinitySignBit = 0; constexpr uint64_t InfinityBits = mozilla::InfinityBits::value; // This is a quiet NaN on IEEE-754[2008] compatible platforms, including X86, // ARM, SPARC, RISC-V and modern MIPS. // // Note: The default sign bit for a hardware synthesized NaN differs between X86 // and ARM. Both values are considered compatible values on both // platforms. constexpr int CanonicalizedNaNSignBit = 0; constexpr uint64_t CanonicalizedNaNSignificand = 0x8000000000000; #if defined(__sparc__) // Some architectures (not to name names) generate NaNs with bit patterns that // are incompatible with JS::Value's bit pattern restrictions. Instead we must // canonicalize all hardware values before storing in JS::Value. # define JS_NONCANONICAL_HARDWARE_NAN #endif #if defined(__mips__) && !defined(__mips_nan_2008) // These builds may run on hardware that has differing polarity of the signaling // NaN bit. While the kernel may handle the trap for us, it is a performance // issue so instead we compute the NaN to use on startup. The runtime value must // still meet `ValueIsDouble` requirements which are checked on startup. // In particular, we expect one of the following values on MIPS: // - 0x7FF7FFFFFFFFFFFF Legacy // - 0x7FF8000000000000 IEEE-754[2008] # define JS_RUNTIME_CANONICAL_NAN #endif #if defined(JS_RUNTIME_CANONICAL_NAN) extern uint64_t CanonicalizedNaNBits; #else constexpr uint64_t CanonicalizedNaNBits = mozilla::SpecificNaNBits::value; #endif } // namespace detail // Return a quiet NaN that is compatible with JS::Value restrictions. static MOZ_ALWAYS_INLINE double GenericNaN() { #if !defined(JS_RUNTIME_CANONICAL_NAN) static_assert(detail::ValueIsDouble(detail::CanonicalizedNaNBits), "Canonical NaN must be compatible with JS::Value"); #endif return mozilla::BitwiseCast(detail::CanonicalizedNaNBits); } // Return the infinity the engine uses static MOZ_ALWAYS_INLINE double Infinity() { return mozilla::BitwiseCast(detail::InfinityBits); } // Convert an arbitrary double to one compatible with JS::Value representation // by replacing any NaN value with a canonical one. static MOZ_ALWAYS_INLINE double CanonicalizeNaN(double d) { if (MOZ_UNLIKELY(std::isnan(d))) { return GenericNaN(); } return d; } /** * [SMDOC] JS::Value type * * JS::Value is the interface for a single JavaScript Engine value. A few * general notes on JS::Value: * * - JS::Value has setX() and isX() members for X in * * { Int32, Double, String, Symbol, BigInt, Boolean, Undefined, Null, * Object, Magic } * * JS::Value also contains toX() for each of the non-singleton types. * * - Magic is a singleton type whose payload contains either a JSWhyMagic * "reason" for the magic value or a uint32_t value. By providing JSWhyMagic * values when creating and checking for magic values, it is possible to * assert, at runtime, that only magic values with the expected reason flow * through a particular value. For example, if cx->exception has a magic * value, the reason must be JS_GENERATOR_CLOSING. * * - The JS::Value operations are preferred. The JSVAL_* operations remain for * compatibility; they may be removed at some point. These operations mostly * provide similar functionality. But there are a few key differences. One * is that JS::Value gives null a separate type. * Also, to help prevent mistakenly boxing a nullable JSObject* as an object, * Value::setObject takes a JSObject&. (Conversely, Value::toObject returns a * JSObject&.) A convenience member Value::setObjectOrNull is provided. * * - Note that JS::Value is 8 bytes on 32 and 64-bit architectures. Thus, on * 32-bit user code should avoid copying jsval/JS::Value as much as possible, * preferring to pass by const Value&. * * Spectre mitigations * =================== * To mitigate Spectre attacks, we do the following: * * - On 64-bit platforms, when unboxing a Value, we XOR the bits with the * expected type tag (instead of masking the payload bits). This guarantees * that toString, toObject, toSymbol will return an invalid pointer (because * some high bits will be set) when called on a Value with a different type * tag. * * - On 32-bit platforms,when unboxing an object/string/symbol Value, we use a * conditional move (not speculated) to zero the payload register if the type * doesn't match. */ class alignas(8) Value { private: uint64_t asBits_; public: constexpr Value() : asBits_(bitsFromTagAndPayload(JSVAL_TAG_UNDEFINED, 0)) {} private: explicit constexpr Value(uint64_t asBits) : asBits_(asBits) {} static uint64_t bitsFromDouble(double d) { #if defined(JS_NONCANONICAL_HARDWARE_NAN) d = CanonicalizeNaN(d); #endif return mozilla::BitwiseCast(d); } static_assert(sizeof(JSValueType) == 1, "type bits must fit in a single byte"); static_assert(sizeof(JSValueTag) == 4, "32-bit Value's tag_ must have size 4 to complement the " "payload union's size 4"); static_assert(sizeof(JSWhyMagic) <= 4, "32-bit Value's JSWhyMagic payload field must not inflate " "the payload beyond 4 bytes"); public: #if defined(JS_NUNBOX32) using PayloadType = uint32_t; #elif defined(JS_PUNBOX64) using PayloadType = uint64_t; #endif static constexpr uint64_t bitsFromTagAndPayload(JSValueTag tag, PayloadType payload) { return (uint64_t(tag) << JSVAL_TAG_SHIFT) | payload; } static constexpr Value fromTagAndPayload(JSValueTag tag, PayloadType payload) { return fromRawBits(bitsFromTagAndPayload(tag, payload)); } static constexpr Value fromRawBits(uint64_t asBits) { return Value(asBits); } static constexpr Value fromInt32(int32_t i) { return fromTagAndPayload(JSVAL_TAG_INT32, uint32_t(i)); } static Value fromDouble(double d) { return fromRawBits(bitsFromDouble(d)); } /** * Returns false if creating a NumberValue containing the given type would * be lossy, true otherwise. */ template static bool isNumberRepresentable(const T t) { return T(double(t)) == t; } /*** Mutators ***/ void setNull() { asBits_ = bitsFromTagAndPayload(JSVAL_TAG_NULL, 0); MOZ_ASSERT(isNull()); } void setUndefined() { asBits_ = bitsFromTagAndPayload(JSVAL_TAG_UNDEFINED, 0); MOZ_ASSERT(isUndefined()); } void setInt32(int32_t i) { asBits_ = bitsFromTagAndPayload(JSVAL_TAG_INT32, uint32_t(i)); MOZ_ASSERT(toInt32() == i); } void setDouble(double d) { asBits_ = bitsFromDouble(d); MOZ_ASSERT(isDouble()); } void setString(JSString* str) { MOZ_ASSERT(js::gc::IsCellPointerValid(str)); asBits_ = bitsFromTagAndPayload(JSVAL_TAG_STRING, PayloadType(str)); MOZ_ASSERT(toString() == str); } void setSymbol(JS::Symbol* sym) { MOZ_ASSERT(js::gc::IsCellPointerValid(sym)); asBits_ = bitsFromTagAndPayload(JSVAL_TAG_SYMBOL, PayloadType(sym)); MOZ_ASSERT(toSymbol() == sym); } void setBigInt(JS::BigInt* bi) { MOZ_ASSERT(js::gc::IsCellPointerValid(bi)); asBits_ = bitsFromTagAndPayload(JSVAL_TAG_BIGINT, PayloadType(bi)); MOZ_ASSERT(toBigInt() == bi); } void setObject(JSObject& obj) { MOZ_ASSERT(js::gc::IsCellPointerValid(&obj)); #ifdef ENABLE_RECORD_TUPLE MOZ_ASSERT(!js::gc::MaybeForwardedIsExtendedPrimitive(obj)); #endif setObjectNoCheck(&obj); MOZ_ASSERT(&toObject() == &obj); } #ifdef ENABLE_RECORD_TUPLE void setExtendedPrimitive(JSObject& obj) { MOZ_ASSERT(js::gc::IsCellPointerValid(&obj)); MOZ_ASSERT(js::gc::MaybeForwardedIsExtendedPrimitive(obj)); asBits_ = bitsFromTagAndPayload(JSVAL_TAG_EXTENDED_PRIMITIVE, PayloadType(&obj)); MOZ_ASSERT(&toExtendedPrimitive() == &obj); } #endif private: void setObjectNoCheck(JSObject* obj) { asBits_ = bitsFromTagAndPayload(JSVAL_TAG_OBJECT, PayloadType(obj)); } friend inline Value js::PoisonedObjectValue(uintptr_t poison); public: void setBoolean(bool b) { asBits_ = bitsFromTagAndPayload(JSVAL_TAG_BOOLEAN, uint32_t(b)); MOZ_ASSERT(toBoolean() == b); } void setMagic(JSWhyMagic why) { asBits_ = bitsFromTagAndPayload(JSVAL_TAG_MAGIC, uint32_t(why)); MOZ_ASSERT(whyMagic() == why); } void setMagicUint32(uint32_t payload) { MOZ_ASSERT(payload >= JS_WHY_MAGIC_COUNT, "This should only be used for non-standard magic values"); asBits_ = bitsFromTagAndPayload(JSVAL_TAG_MAGIC, payload); MOZ_ASSERT(magicUint32() == payload); } void setNumber(float f) { int32_t i; if (mozilla::NumberIsInt32(f, &i)) { setInt32(i); return; } setDouble(double(f)); } void setNumber(double d) { int32_t i; if (mozilla::NumberIsInt32(d, &i)) { setInt32(i); return; } setDouble(d); } template void setNumber(const T t) { static_assert(std::is_integral::value, "must be integral type"); MOZ_ASSERT(isNumberRepresentable(t), "value creation would be lossy"); if constexpr (std::numeric_limits::is_signed) { if constexpr (sizeof(t) <= sizeof(int32_t)) { setInt32(int32_t(t)); } else { if (JSVAL_INT_MIN <= t && t <= JSVAL_INT_MAX) { setInt32(int32_t(t)); } else { setDouble(double(t)); } } } else { if constexpr (sizeof(t) <= sizeof(uint16_t)) { setInt32(int32_t(t)); } else { if (t <= JSVAL_INT_MAX) { setInt32(int32_t(t)); } else { setDouble(double(t)); } } } } void setObjectOrNull(JSObject* arg) { if (arg) { setObject(*arg); } else { setNull(); } } void swap(Value& rhs) { uint64_t tmp = rhs.asBits_; rhs.asBits_ = asBits_; asBits_ = tmp; } private: JSValueTag toTag() const { return JSValueTag(asBits_ >> JSVAL_TAG_SHIFT); } template T* unboxGCPointer() const { MOZ_ASSERT((asBits_ & js::gc::CellAlignMask) == 0, "GC pointer is not aligned. Is this memory corruption?"); #if defined(JS_NUNBOX32) uintptr_t payload = uint32_t(asBits_); return reinterpret_cast(payload); #elif defined(JS_PUNBOX64) // Note: the 'Spectre mitigations' comment at the top of this class // explains why we use XOR here. constexpr uint64_t shiftedTag = uint64_t(Tag) << JSVAL_TAG_SHIFT; return reinterpret_cast(uintptr_t(asBits_ ^ shiftedTag)); #endif } public: /*** JIT-only interfaces to interact with and create raw Values ***/ #if defined(JS_NUNBOX32) PayloadType toNunboxPayload() const { return uint32_t(asBits_); } JSValueTag toNunboxTag() const { return toTag(); } #elif defined(JS_PUNBOX64) const void* bitsAsPunboxPointer() const { return reinterpret_cast(asBits_); } #endif /*** Value type queries ***/ /* * N.B. GCC, in some but not all cases, chooses to emit signed comparison * of JSValueTag even though its underlying type has been forced to be * uint32_t. Thus, all comparisons should explicitly cast operands to * uint32_t. */ bool isUndefined() const { #if defined(JS_NUNBOX32) return toTag() == JSVAL_TAG_UNDEFINED; #elif defined(JS_PUNBOX64) return asBits_ == JSVAL_SHIFTED_TAG_UNDEFINED; #endif } bool isNull() const { #if defined(JS_NUNBOX32) return toTag() == JSVAL_TAG_NULL; #elif defined(JS_PUNBOX64) return asBits_ == JSVAL_SHIFTED_TAG_NULL; #endif } bool isNullOrUndefined() const { return isNull() || isUndefined(); } bool isInt32() const { return toTag() == JSVAL_TAG_INT32; } bool isInt32(int32_t i32) const { return asBits_ == bitsFromTagAndPayload(JSVAL_TAG_INT32, uint32_t(i32)); } bool isDouble() const { return detail::ValueIsDouble(asBits_); } bool isNumber() const { #if defined(JS_NUNBOX32) MOZ_ASSERT(toTag() != JSVAL_TAG_CLEAR); return uint32_t(toTag()) <= uint32_t(detail::ValueUpperInclNumberTag); #elif defined(JS_PUNBOX64) return asBits_ < detail::ValueUpperExclShiftedNumberTag; #endif } bool isString() const { return toTag() == JSVAL_TAG_STRING; } bool isSymbol() const { return toTag() == JSVAL_TAG_SYMBOL; } bool isBigInt() const { return toTag() == JSVAL_TAG_BIGINT; } bool isObject() const { #if defined(JS_NUNBOX32) return toTag() == JSVAL_TAG_OBJECT; #elif defined(JS_PUNBOX64) MOZ_ASSERT((asBits_ >> JSVAL_TAG_SHIFT) <= JSVAL_TAG_OBJECT); return asBits_ >= JSVAL_SHIFTED_TAG_OBJECT; #endif } #ifdef ENABLE_RECORD_TUPLE bool isExtendedPrimitive() const { return toTag() == JSVAL_TAG_EXTENDED_PRIMITIVE; } #endif bool hasObjectPayload() const { return isObject() || IF_RECORD_TUPLE(isExtendedPrimitive(), false); } bool isPrimitive() const { #if defined(JS_NUNBOX32) return uint32_t(toTag()) < uint32_t(detail::ValueUpperExclPrimitiveTag); #elif defined(JS_PUNBOX64) return asBits_ < detail::ValueUpperExclShiftedPrimitiveTag; #endif } bool isObjectOrNull() const { return isObject() || isNull(); } bool isNumeric() const { return isNumber() || isBigInt(); } bool isGCThing() const { #if defined(JS_NUNBOX32) /* gcc sometimes generates signed < without explicit casts. */ return uint32_t(toTag()) >= uint32_t(detail::ValueLowerInclGCThingTag); #elif defined(JS_PUNBOX64) return asBits_ >= detail::ValueLowerInclShiftedGCThingTag; #endif } bool isBoolean() const { return toTag() == JSVAL_TAG_BOOLEAN; } bool isTrue() const { return asBits_ == bitsFromTagAndPayload(JSVAL_TAG_BOOLEAN, uint32_t(true)); } bool isFalse() const { return asBits_ == bitsFromTagAndPayload(JSVAL_TAG_BOOLEAN, uint32_t(false)); } bool isMagic() const { return toTag() == JSVAL_TAG_MAGIC; } bool isMagic(JSWhyMagic why) const { if (!isMagic()) { return false; } MOZ_RELEASE_ASSERT(whyMagic() == why); return true; } // Like isMagic, but without the release assertion. bool isMagicNoReleaseCheck(JSWhyMagic why) const { if (!isMagic()) { return false; } MOZ_ASSERT(whyMagic() == why); return true; } JS::TraceKind traceKind() const { MOZ_ASSERT(isGCThing()); static_assert((JSVAL_TAG_STRING & 0x03) == size_t(JS::TraceKind::String), "Value type tags must correspond with JS::TraceKinds."); static_assert((JSVAL_TAG_SYMBOL & 0x03) == size_t(JS::TraceKind::Symbol), "Value type tags must correspond with JS::TraceKinds."); static_assert((JSVAL_TAG_OBJECT & 0x03) == size_t(JS::TraceKind::Object), "Value type tags must correspond with JS::TraceKinds."); static_assert((JSVAL_TAG_BIGINT & 0x03) == size_t(JS::TraceKind::BigInt), "Value type tags must correspond with JS::TraceKinds."); if (MOZ_UNLIKELY(isPrivateGCThing())) { return JS::GCThingTraceKind(toGCThing()); } #ifdef ENABLE_RECORD_TUPLE if (isExtendedPrimitive()) { return JS::TraceKind::Object; } #endif return JS::TraceKind(toTag() & 0x03); } JSWhyMagic whyMagic() const { MOZ_ASSERT(magicUint32() < JS_WHY_MAGIC_COUNT); return static_cast(magicUint32()); } uint32_t magicUint32() const { MOZ_ASSERT(isMagic()); return uint32_t(asBits_); } /*** Comparison ***/ bool operator==(const Value& rhs) const { return asBits_ == rhs.asBits_; } bool operator!=(const Value& rhs) const { return asBits_ != rhs.asBits_; } friend inline bool SameType(const Value& lhs, const Value& rhs); /*** Extract the value's typed payload ***/ int32_t toInt32() const { MOZ_ASSERT(isInt32()); return int32_t(asBits_); } double toDouble() const { MOZ_ASSERT(isDouble()); return mozilla::BitwiseCast(asBits_); } double toNumber() const { MOZ_ASSERT(isNumber()); return isDouble() ? toDouble() : double(toInt32()); } JSString* toString() const { MOZ_ASSERT(isString()); return unboxGCPointer(); } JS::Symbol* toSymbol() const { MOZ_ASSERT(isSymbol()); return unboxGCPointer(); } JS::BigInt* toBigInt() const { MOZ_ASSERT(isBigInt()); return unboxGCPointer(); } JSObject& toObject() const { MOZ_ASSERT(isObject()); #if defined(JS_PUNBOX64) MOZ_ASSERT((asBits_ & detail::ValueGCThingPayloadMask) != 0); #endif return *unboxGCPointer(); } JSObject* toObjectOrNull() const { MOZ_ASSERT(isObjectOrNull()); #if defined(JS_NUNBOX32) return reinterpret_cast(uintptr_t(asBits_)); #elif defined(JS_PUNBOX64) // Note: the 'Spectre mitigations' comment at the top of this class // explains why we use XOR here and in other to* methods. uint64_t ptrBits = (asBits_ ^ JSVAL_SHIFTED_TAG_OBJECT) & ~detail::ValueObjectOrNullBit; MOZ_ASSERT((ptrBits & 0x7) == 0); return reinterpret_cast(ptrBits); #endif } #ifdef ENABLE_RECORD_TUPLE JSObject& toExtendedPrimitive() const { MOZ_ASSERT(isExtendedPrimitive()); # if defined(JS_PUNBOX64) MOZ_ASSERT((asBits_ & detail::ValueGCThingPayloadMask) != 0); # endif return *unboxGCPointer(); } #endif JSObject& getObjectPayload() const { #ifdef ENABLE_RECORD_TUPLE return isExtendedPrimitive() ? toExtendedPrimitive() : toObject(); #else return toObject(); #endif } js::gc::Cell* toGCThing() const { MOZ_ASSERT(isGCThing()); #if defined(JS_NUNBOX32) return reinterpret_cast(uintptr_t(asBits_)); #elif defined(JS_PUNBOX64) uint64_t ptrBits = asBits_ & detail::ValueGCThingPayloadMask; MOZ_ASSERT((ptrBits & 0x7) == 0); return reinterpret_cast(ptrBits); #endif } GCCellPtr toGCCellPtr() const { return GCCellPtr(toGCThing(), traceKind()); } bool toBoolean() const { MOZ_ASSERT(isBoolean()); #if defined(JS_NUNBOX32) return bool(toNunboxPayload()); #elif defined(JS_PUNBOX64) return bool(asBits_ & 0x1); #endif } constexpr uint64_t asRawBits() const { return asBits_; } JSValueType extractNonDoubleType() const { uint32_t type = toTag() & 0xF; MOZ_ASSERT(type > JSVAL_TYPE_DOUBLE); return JSValueType(type); } JS::ValueType type() const { if (isDouble()) { return JS::ValueType::Double; } JSValueType type = extractNonDoubleType(); MOZ_ASSERT(type <= JSVAL_TYPE_OBJECT); return JS::ValueType(type); } /* * Private API * * Private setters/getters allow the caller to read/write arbitrary * word-size pointers or uint32s. After storing to a value with * setPrivateX, it is the caller's responsibility to only read using * toPrivateX. Private values are given a type which ensures they * aren't marked by the GC. */ void setPrivate(void* ptr) { #if defined(JS_PUNBOX64) MOZ_ASSERT(detail::IsValidUserModePointer(uintptr_t(ptr))); #endif asBits_ = uintptr_t(ptr); MOZ_ASSERT(isDouble()); } void* toPrivate() const { MOZ_ASSERT(isDouble()); #if defined(JS_PUNBOX64) MOZ_ASSERT(detail::IsValidUserModePointer(asBits_)); #endif return reinterpret_cast(uintptr_t(asBits_)); } void* toPrivateUnchecked() const { return reinterpret_cast(uintptr_t(asBits_)); } void setPrivateUint32(uint32_t ui) { MOZ_ASSERT(uint32_t(int32_t(ui)) == ui); setInt32(int32_t(ui)); } uint32_t toPrivateUint32() const { return uint32_t(toInt32()); } /* * Private GC Thing API * * Non-JSObject, JSString, and JS::Symbol cells may be put into the 64-bit * payload as private GC things. Such Values are considered isGCThing(), and * as such, automatically marked. Their traceKind() is gotten via their * cells. */ void setPrivateGCThing(js::gc::Cell* cell) { MOZ_ASSERT(JS::GCThingTraceKind(cell) != JS::TraceKind::String, "Private GC thing Values must not be strings. Make a " "StringValue instead."); MOZ_ASSERT(JS::GCThingTraceKind(cell) != JS::TraceKind::Symbol, "Private GC thing Values must not be symbols. Make a " "SymbolValue instead."); MOZ_ASSERT(JS::GCThingTraceKind(cell) != JS::TraceKind::BigInt, "Private GC thing Values must not be BigInts. Make a " "BigIntValue instead."); MOZ_ASSERT(JS::GCThingTraceKind(cell) != JS::TraceKind::Object, "Private GC thing Values must not be objects. Make an " "ObjectValue instead."); MOZ_ASSERT(js::gc::IsCellPointerValid(cell)); #if defined(JS_PUNBOX64) // VisualStudio cannot contain parenthesized C++ style cast and shift // inside decltype in template parameter: // AssertionConditionType> 1))> // It throws syntax error. MOZ_ASSERT((((uintptr_t)cell) >> JSVAL_TAG_SHIFT) == 0); #endif asBits_ = bitsFromTagAndPayload(JSVAL_TAG_PRIVATE_GCTHING, PayloadType(cell)); } bool isPrivateGCThing() const { return toTag() == JSVAL_TAG_PRIVATE_GCTHING; } #if defined(DEBUG) || defined(JS_JITSPEW) void dump() const; void dump(js::GenericPrinter& out) const; void dump(js::JSONPrinter& json) const; void dumpFields(js::JSONPrinter& json) const; void dumpStringContent(js::GenericPrinter& out) const; #endif } JS_HAZ_GC_POINTER MOZ_NON_PARAM; static_assert(sizeof(Value) == 8, "Value size must leave three tag bits, be a binary power, and " "is ubiquitously depended upon everywhere"); static MOZ_ALWAYS_INLINE void ExposeValueToActiveJS(const Value& v) { #ifdef DEBUG Value tmp = v; MOZ_ASSERT(!js::gc::EdgeNeedsSweepUnbarrieredSlow(&tmp)); #endif if (v.isGCThing()) { js::gc::ExposeGCThingToActiveJS(v.toGCCellPtr()); } } /************************************************************************/ static inline MOZ_MAY_CALL_AFTER_MUST_RETURN Value NullValue() { Value v; v.setNull(); return v; } static constexpr Value UndefinedValue() { return Value(); } static constexpr Value Int32Value(int32_t i32) { return Value::fromInt32(i32); } static inline Value DoubleValue(double dbl) { Value v; v.setDouble(dbl); return v; } static inline Value CanonicalizedDoubleValue(double d) { return Value::fromDouble(CanonicalizeNaN(d)); } static inline Value NaNValue() { return Value::fromRawBits(detail::CanonicalizedNaNBits); } static inline Value InfinityValue() { return Value::fromRawBits(detail::InfinityBits); } static inline Value Float32Value(float f) { Value v; v.setDouble(f); return v; } static inline Value StringValue(JSString* str) { Value v; v.setString(str); return v; } static inline Value SymbolValue(JS::Symbol* sym) { Value v; v.setSymbol(sym); return v; } static inline Value BigIntValue(JS::BigInt* bi) { Value v; v.setBigInt(bi); return v; } static inline Value BooleanValue(bool boo) { Value v; v.setBoolean(boo); return v; } static inline Value TrueValue() { Value v; v.setBoolean(true); return v; } static inline Value FalseValue() { Value v; v.setBoolean(false); return v; } static inline Value ObjectValue(JSObject& obj) { Value v; v.setObject(obj); return v; } #ifdef ENABLE_RECORD_TUPLE static inline Value ExtendedPrimitiveValue(JSObject& obj) { Value v; v.setExtendedPrimitive(obj); return v; } #endif static inline Value MagicValue(JSWhyMagic why) { Value v; v.setMagic(why); return v; } static inline Value MagicValueUint32(uint32_t payload) { Value v; v.setMagicUint32(payload); return v; } static constexpr Value NumberValue(uint32_t i) { return i <= JSVAL_INT_MAX ? Int32Value(int32_t(i)) : Value::fromDouble(double(i)); } template static inline Value NumberValue(const T t) { Value v; v.setNumber(t); return v; } static inline Value ObjectOrNullValue(JSObject* obj) { Value v; v.setObjectOrNull(obj); return v; } static inline Value PrivateValue(void* ptr) { Value v; v.setPrivate(ptr); return v; } static inline Value PrivateValue(uintptr_t ptr) { return PrivateValue(reinterpret_cast(ptr)); } static inline Value PrivateUint32Value(uint32_t ui) { Value v; v.setPrivateUint32(ui); return v; } static inline Value PrivateGCThingValue(js::gc::Cell* cell) { Value v; v.setPrivateGCThing(cell); return v; } inline bool SameType(const Value& lhs, const Value& rhs) { #if defined(JS_NUNBOX32) JSValueTag ltag = lhs.toTag(), rtag = rhs.toTag(); return ltag == rtag || (ltag < JSVAL_TAG_CLEAR && rtag < JSVAL_TAG_CLEAR); #elif defined(JS_PUNBOX64) return (lhs.isDouble() && rhs.isDouble()) || (((lhs.asBits_ ^ rhs.asBits_) & 0xFFFF800000000000ULL) == 0); #endif } } // namespace JS /************************************************************************/ namespace JS { JS_PUBLIC_API void HeapValuePostWriteBarrier(Value* valuep, const Value& prev, const Value& next); JS_PUBLIC_API void HeapValueWriteBarriers(Value* valuep, const Value& prev, const Value& next); template <> struct GCPolicy { static void trace(JSTracer* trc, Value* v, const char* name) { // This should only be called as part of root marking since that's the only // time we should trace unbarriered GC thing pointers. This will assert if // called at other times. TraceRoot(trc, v, name); } static bool isTenured(const Value& thing) { return !thing.isGCThing() || !IsInsideNursery(thing.toGCThing()); } static bool isValid(const Value& value) { return !value.isGCThing() || js::gc::IsCellPointerValid(value.toGCThing()); } }; } // namespace JS namespace js { template <> struct BarrierMethods { static gc::Cell* asGCThingOrNull(const JS::Value& v) { return v.isGCThing() ? v.toGCThing() : nullptr; } static void postWriteBarrier(JS::Value* v, const JS::Value& prev, const JS::Value& next) { JS::HeapValuePostWriteBarrier(v, prev, next); } static void exposeToJS(const JS::Value& v) { JS::ExposeValueToActiveJS(v); } static void readBarrier(const JS::Value& v) { if (v.isGCThing()) { js::gc::IncrementalReadBarrier(v.toGCCellPtr()); } } }; template class MutableValueOperations; /** * A class designed for CRTP use in implementing the non-mutating parts of the * Value interface in Value-like classes. Wrapper must be a class inheriting * ValueOperations with a visible get() method returning a const * reference to the Value abstracted by Wrapper. */ template class WrappedPtrOperations { const JS::Value& value() const { return static_cast(this)->get(); } public: bool isUndefined() const { return value().isUndefined(); } bool isNull() const { return value().isNull(); } bool isBoolean() const { return value().isBoolean(); } bool isTrue() const { return value().isTrue(); } bool isFalse() const { return value().isFalse(); } bool isNumber() const { return value().isNumber(); } bool isInt32() const { return value().isInt32(); } bool isInt32(int32_t i32) const { return value().isInt32(i32); } bool isDouble() const { return value().isDouble(); } bool isString() const { return value().isString(); } bool isSymbol() const { return value().isSymbol(); } bool isBigInt() const { return value().isBigInt(); } bool isObject() const { return value().isObject(); } #ifdef ENABLE_RECORD_TUPLE bool isExtendedPrimitive() const { return value().isExtendedPrimitive(); } #endif bool hasObjectPayload() const { return value().hasObjectPayload(); } bool isMagic() const { return value().isMagic(); } bool isMagic(JSWhyMagic why) const { return value().isMagic(why); } bool isGCThing() const { return value().isGCThing(); } bool isPrivateGCThing() const { return value().isPrivateGCThing(); } bool isPrimitive() const { return value().isPrimitive(); } bool isNullOrUndefined() const { return value().isNullOrUndefined(); } bool isObjectOrNull() const { return value().isObjectOrNull(); } bool isNumeric() const { return value().isNumeric(); } bool toBoolean() const { return value().toBoolean(); } double toNumber() const { return value().toNumber(); } int32_t toInt32() const { return value().toInt32(); } double toDouble() const { return value().toDouble(); } JSString* toString() const { return value().toString(); } JS::Symbol* toSymbol() const { return value().toSymbol(); } JS::BigInt* toBigInt() const { return value().toBigInt(); } JSObject& toObject() const { return value().toObject(); } JSObject* toObjectOrNull() const { return value().toObjectOrNull(); } #ifdef ENABLE_RECORD_TUPLE JSObject& toExtendedPrimitive() const { return value().toExtendedPrimitive(); } #endif JSObject& getObjectPayload() const { return value().getObjectPayload(); } JS::GCCellPtr toGCCellPtr() const { return value().toGCCellPtr(); } gc::Cell* toGCThing() const { return value().toGCThing(); } JS::TraceKind traceKind() const { return value().traceKind(); } void* toPrivate() const { return value().toPrivate(); } uint32_t toPrivateUint32() const { return value().toPrivateUint32(); } uint64_t asRawBits() const { return value().asRawBits(); } JSValueType extractNonDoubleType() const { return value().extractNonDoubleType(); } JS::ValueType type() const { return value().type(); } JSWhyMagic whyMagic() const { return value().whyMagic(); } uint32_t magicUint32() const { return value().magicUint32(); } }; /** * A class designed for CRTP use in implementing all the mutating parts of the * Value interface in Value-like classes. Wrapper must be a class inheriting * MutableWrappedPtrOperations with visible get() methods returning * const and non-const references to the Value abstracted by Wrapper. */ template class MutableWrappedPtrOperations : public WrappedPtrOperations { protected: void set(const JS::Value& v) { // Call Wrapper::set to trigger any barriers. static_cast(this)->set(v); } public: void setNull() { set(JS::NullValue()); } void setUndefined() { set(JS::UndefinedValue()); } void setInt32(int32_t i) { set(JS::Int32Value(i)); } void setDouble(double d) { set(JS::DoubleValue(d)); } void setNaN() { set(JS::NaNValue()); } void setInfinity() { set(JS::InfinityValue()); } void setBoolean(bool b) { set(JS::BooleanValue(b)); } void setMagic(JSWhyMagic why) { set(JS::MagicValue(why)); } template void setNumber(T t) { set(JS::NumberValue(t)); } void setString(JSString* str) { set(JS::StringValue(str)); } void setSymbol(JS::Symbol* sym) { set(JS::SymbolValue(sym)); } void setBigInt(JS::BigInt* bi) { set(JS::BigIntValue(bi)); } void setObject(JSObject& obj) { set(JS::ObjectValue(obj)); } void setObjectOrNull(JSObject* arg) { set(JS::ObjectOrNullValue(arg)); } #ifdef ENABLE_RECORD_TUPLE void setExtendedPrimitive(JSObject& obj) { return set(JS::ExtendedPrimitiveValue(obj)); } #endif void setPrivate(void* ptr) { set(JS::PrivateValue(ptr)); } void setPrivateUint32(uint32_t ui) { set(JS::PrivateUint32Value(ui)); } void setPrivateGCThing(js::gc::Cell* cell) { set(JS::PrivateGCThingValue(cell)); } }; /* * Augment the generic Heap interface when T = Value with * type-querying, value-extracting, and mutating operations. */ template class HeapOperations : public MutableWrappedPtrOperations {}; MOZ_HAVE_NORETURN MOZ_COLD MOZ_NEVER_INLINE void ReportBadValueTypeAndCrash( const JS::Value& val); // If the Value is a GC pointer type, call |f| with the pointer cast to that // type and return the result wrapped in a Maybe, otherwise return None(). template auto MapGCThingTyped(const JS::Value& val, F&& f) { switch (val.type()) { case JS::ValueType::String: { JSString* str = val.toString(); MOZ_ASSERT(gc::IsCellPointerValid(str)); return mozilla::Some(f(str)); } #ifdef ENABLE_RECORD_TUPLE case JS::ValueType::ExtendedPrimitive: #endif case JS::ValueType::Object: { JSObject* obj = &val.getObjectPayload(); MOZ_ASSERT(gc::IsCellPointerValid(obj)); return mozilla::Some(f(obj)); } case JS::ValueType::Symbol: { JS::Symbol* sym = val.toSymbol(); MOZ_ASSERT(gc::IsCellPointerValid(sym)); return mozilla::Some(f(sym)); } case JS::ValueType::BigInt: { JS::BigInt* bi = val.toBigInt(); MOZ_ASSERT(gc::IsCellPointerValid(bi)); return mozilla::Some(f(bi)); } case JS::ValueType::PrivateGCThing: { MOZ_ASSERT(gc::IsCellPointerValid(val.toGCThing())); return mozilla::Some(MapGCThingTyped(val.toGCCellPtr(), std::move(f))); } case JS::ValueType::Double: case JS::ValueType::Int32: case JS::ValueType::Boolean: case JS::ValueType::Undefined: case JS::ValueType::Null: case JS::ValueType::Magic: { MOZ_ASSERT(!val.isGCThing()); using ReturnType = decltype(f(static_cast(nullptr))); return mozilla::Maybe(); } } ReportBadValueTypeAndCrash(val); } // If the Value is a GC pointer type, call |f| with the pointer cast to that // type. Return whether this happened. template bool ApplyGCThingTyped(const JS::Value& val, F&& f) { return MapGCThingTyped(val, [&f](auto t) { f(t); return true; }) .isSome(); } static inline JS::Value PoisonedObjectValue(uintptr_t poison) { JS::Value v; v.setObjectNoCheck(reinterpret_cast(poison)); return v; } } // namespace js #ifdef DEBUG namespace JS { MOZ_ALWAYS_INLINE void AssertValueIsNotGray(const Value& value) { if (value.isGCThing()) { AssertCellIsNotGray(value.toGCThing()); } } MOZ_ALWAYS_INLINE void AssertValueIsNotGray(const Heap& value) { AssertValueIsNotGray(value.unbarrieredGet()); } } // namespace JS #endif /************************************************************************/ namespace JS { extern JS_PUBLIC_DATA const HandleValue NullHandleValue; extern JS_PUBLIC_DATA const HandleValue UndefinedHandleValue; extern JS_PUBLIC_DATA const HandleValue TrueHandleValue; extern JS_PUBLIC_DATA const HandleValue FalseHandleValue; extern JS_PUBLIC_DATA const Handle> NothingHandleValue; } // namespace JS #endif /* js_Value_h */