/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- * vim: set ts=8 sts=2 et sw=2 tw=80: * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ /* * GC-internal definitions of ArenaList and associated heap data structures. */ #ifndef gc_ArenaList_h #define gc_ArenaList_h #include "ds/SinglyLinkedList.h" #include "gc/AllocKind.h" #include "js/GCAPI.h" #include "js/HeapAPI.h" #include "js/TypeDecls.h" #include "threading/ProtectedData.h" namespace js { class Nursery; class SliceBudget; namespace gcstats { struct Statistics; } namespace gc { class Arena; class AutoGatherSweptArenas; class BackgroundUnmarkTask; struct FinalizePhase; class FreeSpan; class TenuredCell; class TenuringTracer; /* * Arena lists contain a singly linked lists of arenas starting from a head * pointer. * * They also have a cursor, which conceptually lies on arena boundaries, * i.e. before the first arena, between two arenas, or after the last arena. * * Arenas are sorted in order of increasing free space, with the cursor before * the first arena with any free space. This provides a convenient way of * getting the next arena with free space when allocating. The cursor is updated * when this happens to point to the following arena. * * The ordering is chosen to try and fill up arenas as much as possible and * leave more empty arenas to be reclaimed when their contents die. * * The ordering should not be treated as an invariant, however, as the free * lists may be cleared, leaving arenas previously used for allocation partially * full. Sorting order is restored during sweeping. */ class ArenaList { // The cursor is implemented via an indirect pointer, |cursorp_|, to allow // for efficient list insertion at the cursor point and other list // manipulations. // // - If the list is empty: |head| is null, |cursorp_| points to |head|, and // therefore |*cursorp_| is null. // // - If the list is not empty: |head| is non-null, and... // // - If the cursor is at the start of the list: |cursorp_| points to // |head|, and therefore |*cursorp_| points to the first arena. // // - If cursor is at the end of the list: |cursorp_| points to the |next| // field of the last arena, and therefore |*cursorp_| is null. // // - If the cursor is at neither the start nor the end of the list: // |cursorp_| points to the |next| field of the arena preceding the // cursor, and therefore |*cursorp_| points to the arena following the // cursor. // // |cursorp_| is never null. // Arena* head_; Arena** cursorp_; // Transfers the contents of |other| to this list and clears |other|. inline void moveFrom(ArenaList& other); public: inline ArenaList(); inline ArenaList(ArenaList&& other); inline ~ArenaList(); inline ArenaList& operator=(ArenaList&& other); // It doesn't make sense for arenas to be present in more than one list, so // list copy operations are not provided. ArenaList(const ArenaList& other) = delete; ArenaList& operator=(const ArenaList& other) = delete; inline ArenaList(Arena* head, Arena* arenaBeforeCursor); inline void check() const; inline void clear(); inline bool isEmpty() const; // This returns nullptr if the list is empty. inline Arena* head() const; inline bool isCursorAtHead() const; inline bool isCursorAtEnd() const; // This can return nullptr. inline Arena* arenaAfterCursor() const; // This returns the arena after the cursor and moves the cursor past it. inline Arena* takeNextArena(); // This does two things. // - Inserts |a| at the cursor. // - Leaves the cursor sitting just before |a|, if |a| is not full, or just // after |a|, if |a| is full. inline void insertAtCursor(Arena* a); // Inserts |a| at the cursor, then moves the cursor past it. inline void insertBeforeCursor(Arena* a); // This inserts the contents of |other|, which must be full, at the cursor of // |this| and clears |other|. inline ArenaList& insertListWithCursorAtEnd(ArenaList& other); inline Arena* takeFirstArena(); Arena* removeRemainingArenas(Arena** arenap); Arena** pickArenasToRelocate(size_t& arenaTotalOut, size_t& relocTotalOut); Arena* relocateArenas(Arena* toRelocate, Arena* relocated, js::SliceBudget& sliceBudget, gcstats::Statistics& stats); #ifdef DEBUG void dump(); #endif }; /* * A class that is used to sort arenas of a single AllocKind into increasing * order of free space. * * It works by adding arenas to a bucket corresponding to the number of free * things in the arena. Each bucket is an independent linked list. * * The buckets can be linked up to form a sorted ArenaList. */ class SortedArenaList { public: static_assert(ArenaSize <= 4096, "When increasing the Arena size, please consider how" " this will affect the size of a SortedArenaList."); static_assert(MinCellSize >= 16, "When decreasing the minimum thing size, please consider" " how this will affect the size of a SortedArenaList."); // The maximum number of GC things that an arena can hold. static const size_t MaxThingsPerArena = (ArenaSize - ArenaHeaderSize) / MinCellSize; // The number of buckets required: one full arenas, one for empty arenas and // half the number of remaining size classes. static const size_t BucketCount = HowMany(MaxThingsPerArena - 1, 2) + 2; private: using Bucket = SinglyLinkedList; const size_t thingsPerArena_; Bucket buckets[BucketCount]; #ifdef DEBUG AllocKind allocKind_; bool isConvertedToArenaList = false; #endif public: inline explicit SortedArenaList(AllocKind allocKind); size_t thingsPerArena() const { return thingsPerArena_; } // Inserts an arena, which has room for |nfree| more things, in its bucket. inline void insertAt(Arena* arena, size_t nfree); // Remove any empty arenas and prepend them to the list pointed to by // |destListHeadPtr|. inline void extractEmptyTo(Arena** destListHeadPtr); // Converts the contents of this data structure to a single list, by linking // up the tail of each non-empty bucket to the head of the next non-empty // bucket. // // Optionally saves internal state to |maybeBucketLastOut| so that it can be // restored later by calling restoreFromArenaList. It is not valid to use this // class in the meantime. inline ArenaList convertToArenaList( Arena* maybeBucketLastOut[BucketCount] = nullptr); // Restore the internal state of this class following conversion to an // ArenaList by the previous method. inline void restoreFromArenaList(ArenaList& list, Arena* bucketLast[BucketCount]); #ifdef DEBUG AllocKind allocKind() const { return allocKind_; } #endif private: inline size_t index(size_t nfree, bool* frontOut) const; inline size_t emptyIndex() const; inline size_t bucketsUsed() const; inline void check() const; }; // Gather together any swept arenas for the given zone and alloc kind. class MOZ_RAII AutoGatherSweptArenas { SortedArenaList* sortedList = nullptr; // Internal state from SortedArenaList so we can restore it later. Arena* bucketLastPointers[SortedArenaList::BucketCount]; // Single result list. ArenaList linked; public: AutoGatherSweptArenas(JS::Zone* zone, AllocKind kind); ~AutoGatherSweptArenas(); Arena* sweptArenas() const; }; enum class ShouldCheckThresholds { DontCheckThresholds = 0, CheckThresholds = 1 }; // For each arena kind its free list is represented as the first span with free // things. Initially all the spans are initialized as empty. After we find a new // arena with available things we move its first free span into the list and set // the arena as fully allocated. That way we do not need to update the arena // after the initial allocation. When starting the GC we only move the head of // the of the list of spans back to the arena only for the arena that was not // fully allocated. class FreeLists { AllAllocKindArray freeLists_; public: // Because the JITs can allocate from the free lists, they cannot be null. // We use a placeholder FreeSpan that is empty (and wihout an associated // Arena) so the JITs can fall back gracefully. static FreeSpan emptySentinel; FreeLists(); #ifdef DEBUG inline bool allEmpty() const; inline bool isEmpty(AllocKind kind) const; #endif inline void clear(); MOZ_ALWAYS_INLINE TenuredCell* allocate(AllocKind kind); inline void* setArenaAndAllocate(Arena* arena, AllocKind kind); inline void unmarkPreMarkedFreeCells(AllocKind kind); FreeSpan** addressOfFreeList(AllocKind thingKind) { return &freeLists_[thingKind]; } }; class ArenaLists { enum class ConcurrentUse : uint32_t { None, BackgroundFinalize }; using ConcurrentUseState = mozilla::Atomic; JS::Zone* zone_; // Whether this structure can be accessed by other threads. UnprotectedData> concurrentUseState_; MainThreadData freeLists_; /* The main list of arenas for each alloc kind. */ MainThreadOrGCTaskData> arenaLists_; /* * Arenas which are currently being collected. The collector can move arenas * from arenaLists_ here and back again at various points in collection. */ MainThreadOrGCTaskData> collectingArenaLists_; // Arena lists which have yet to be swept, but need additional foreground // processing before they are swept. MainThreadData gcCompactPropMapArenasToUpdate; MainThreadData gcNormalPropMapArenasToUpdate; // The list of empty arenas which are collected during the sweep phase and // released at the end of sweeping every sweep group. MainThreadOrGCTaskData savedEmptyArenas; public: explicit ArenaLists(JS::Zone* zone); ~ArenaLists(); FreeLists& freeLists() { return freeLists_.ref(); } const FreeLists& freeLists() const { return freeLists_.ref(); } FreeSpan** addressOfFreeList(AllocKind thingKind) { return freeLists_.refNoCheck().addressOfFreeList(thingKind); } inline Arena* getFirstArena(AllocKind thingKind) const; inline Arena* getFirstCollectingArena(AllocKind thingKind) const; inline Arena* getArenaAfterCursor(AllocKind thingKind) const; inline bool arenaListsAreEmpty() const; inline bool doneBackgroundFinalize(AllocKind kind) const; inline bool needBackgroundFinalizeWait(AllocKind kind) const; /* Clear the free lists so we won't try to allocate from swept arenas. */ inline void clearFreeLists(); inline void unmarkPreMarkedFreeCells(); MOZ_ALWAYS_INLINE TenuredCell* allocateFromFreeList(AllocKind thingKind); inline void checkEmptyFreeLists(); inline void checkEmptyArenaLists(); inline void checkEmptyFreeList(AllocKind kind); void checkEmptyArenaList(AllocKind kind); bool relocateArenas(Arena*& relocatedListOut, JS::GCReason reason, js::SliceBudget& sliceBudget, gcstats::Statistics& stats); void queueForegroundObjectsForSweep(JS::GCContext* gcx); void queueForegroundThingsForSweep(); Arena* takeSweptEmptyArenas(); void mergeFinalizedArenas(AllocKind thingKind, SortedArenaList& finalizedArenas); void moveArenasToCollectingLists(); void mergeArenasFromCollectingLists(); void checkGCStateNotInUse(); void checkSweepStateNotInUse(); void checkNoArenasToUpdate(); void checkNoArenasToUpdateForKind(AllocKind kind); private: ArenaList& arenaList(AllocKind i) { return arenaLists_.ref()[i]; } const ArenaList& arenaList(AllocKind i) const { return arenaLists_.ref()[i]; } ArenaList& collectingArenaList(AllocKind i) { return collectingArenaLists_.ref()[i]; } const ArenaList& collectingArenaList(AllocKind i) const { return collectingArenaLists_.ref()[i]; } ConcurrentUseState& concurrentUse(AllocKind i) { return concurrentUseState_.ref()[i]; } ConcurrentUse concurrentUse(AllocKind i) const { return concurrentUseState_.ref()[i]; } inline JSRuntime* runtime(); inline JSRuntime* runtimeFromAnyThread(); void initBackgroundSweep(AllocKind thingKind); void* refillFreeListAndAllocate(AllocKind thingKind, ShouldCheckThresholds checkThresholds); friend class BackgroundUnmarkTask; friend class GCRuntime; friend class js::Nursery; friend class TenuringTracer; }; } /* namespace gc */ } /* namespace js */ #endif /* gc_ArenaList_h */