// Test that wasm atomic operations implement correct mutual exclusion. // // We have several agents that attempt to hammer on a shared location with rmw // operations in such a way that failed atomicity will lead to an incorrect // result. Each agent attempts to clear or set specific bits in a shared datum. // 1 for a little bit, 2 for a lot, 3 to quit before running tests const DEBUG = 0; // The longer we run, the better, really, but we don't want to time out. const ITERATIONS = 100000; // If you change NUMWORKERS you must also change the tables for INIT, VAL, and // RESULT for all the operations, below, by adding or removing bits. const NUMWORKERS = 2; const NUMAGENTS = NUMWORKERS + 1; // Need at least one thread per agent. if (!wasmThreadsEnabled() || helperThreadCount() < NUMWORKERS) { if (DEBUG > 0) print("Threads not supported"); quit(0); } // Unless there are enough actual cores the spinning threads will not interact // in the desired way (we'll be waiting on preemption to advance), and this // makes the test pointless and also will usually make it time out. So bail out // if we can't have one core per agent. if (getCoreCount() < NUMAGENTS) { if (DEBUG > 0) print("Fake or feeble hardware"); quit(0); } // Most of the simulators have poor support for mutual exclusion and are anyway // too slow; avoid intermittent failures and timeouts. if (getBuildConfiguration("arm-simulator") || getBuildConfiguration("arm64-simulator") || getBuildConfiguration("mips32-simulator") || getBuildConfiguration("mips64-simulator")) { if (DEBUG > 0) print("Atomicity test disabled on simulator"); quit(0); } //////////////////////////////////////////////////////////////////////// // // Coordination code for bootstrapping workers - use spawn() to create a worker, // send() to send an item to a worker. send() will send to anyone, so only one // worker should be receiving at a time. spawn() will block until the worker is // running; send() will block until the message has been received. var COORD_BUSY = 0; var COORD_NUMLOC = 1; var coord = new Int32Array(new SharedArrayBuffer(COORD_NUMLOC*4)); function spawn(text) { text = ` var _coord = new Int32Array(getSharedObject()); Atomics.store(_coord, ${COORD_BUSY}, 0); function receive() { while (!Atomics.load(_coord, ${COORD_BUSY})) ; let x = getSharedObject(); Atomics.store(_coord, ${COORD_BUSY}, 0); return x; } ` + text; setSharedObject(coord.buffer); Atomics.store(coord, COORD_BUSY, 1); evalInWorker(text); while (Atomics.load(coord, COORD_BUSY)) ; } function send(x) { while(Atomics.load(coord, COORD_BUSY)) ; setSharedObject(x); Atomics.store(coord, COORD_BUSY, 1); while(Atomics.load(coord, COORD_BUSY)) ; } ///////////////////////////////////////////////////////////////////////////////// // // The "agents" comprise one master and one or more additional workers. We make // a separate module for each agent so that test values can be inlined as // constants. // // The master initially sets a shared location LOC to a value START. // // Each agent then operates atomically on LOC with an operation OP and a value // VAL. The operation OP is the same for all agents but each agent `i` has a // different VAL_i. // // To make this more interesting, the value START is distributed as many times // through the value at LOC as there is space for, and we perform several // operations back-to-back, with the VAL_i appropriately shifted. // // Each agent then spin-waits for LOC to contain a particular RESULT, which is // always (START OP VAL_0 OP VAL_1 ... VAL_k), again repeated throughout the // RESULT as appropriate. // // The process then starts over, and we repeat the process many times. If we // fail to have atomicity at any point the program will hang (LOC will never // attain the desired value) and the test should therefore time out. // // (Barriers are needed to make this all work out.) // // The general principle for the values is that each VAL should add (or clear) a // bit of the stored value. // // OP START VAL0 VAL1 VAL2 RESULT // // ADD[*] 0 1 2 4 7 // SUB 7 1 2 4 0 // AND 7 3 6 5 0 // OR 0 1 2 4 7 // XOR 0 1 2 4 7 // or start with 7 and end with 0 // CMPXCHG 0 1 2 4 7 // use nonatomic "or" to add the bit // // [*] Running the tests actually assumes that ADD works reasonably well. // // TODO - more variants we could test: // // - tests that do not drop the values of the atomic ops but accumulate them: // uses different code generation on x86/x64 // // - Xchg needs a different method, since here the atomic thing is that we read // the "previous value" and set the next value atomically. How can we observe // that that fails? If we run three agents, which all set the value to X, // X+1, ..., X+n, with the initial value being (say) X-1, each can record the // value it observed in a table, and we should be able to predict the counts // in that table once postprocessed. eg, the counts should all be the same. // If atomicity fails then a value is read twice when it shouldn't be, and // some other value is not read at all, and the counts will be off. // // - the different rmw operations can usually be combined so that we can test // the atomicity of operations that may be implemented differently. // // - the same tests, with test values as variables instead of constants. function makeModule(id) { let isMaster = id == 0; let VALSHIFT = NUMAGENTS; // 1 bit per agent function makeLoop(bits, name, op, loc, initial, val, expected) { // Exclude high bit to avoid messing with the sign. let NUMVALS32 = Math.floor(31/VALSHIFT); let NUMVALS = bits == 64 ? 2 * NUMVALS32 : Math.floor(Math.min(bits,31)/VALSHIFT); let BARRIER = "(i32.const 0)"; let barrier = ` ;; Barrier (local.set $barrierValue (i32.add (local.get $barrierValue) (i32.const ${NUMAGENTS}))) (drop (i32.atomic.rmw.add ${BARRIER} (i32.const 1))) (loop $c1 (if (i32.lt_s (i32.atomic.load ${BARRIER}) (local.get $barrierValue)) (then (br $c1)))) ;; End barrier `; // Distribute a value `v` across a word NUMVALs times function distribute(v) { if (bits <= 32) return '0x' + dist32(v); return '0x' + dist32(v) + dist32(v); } function dist32(v) { let n = 0; for (let i=0; i < Math.min(NUMVALS, NUMVALS32); i++) n = n | (v << (i*VALSHIFT)); assertEq(n >= 0, true); return (n + 0x100000000).toString(16).substring(1); } // Position a value `v` at position `pos` in a word function format(val, pos) { if (bits <= 32) return '0x' + format32(val, pos); if (pos < NUMVALS32) return '0x' + '00000000' + format32(val, pos); return '0x' + format32(val, pos - NUMVALS32) + '00000000'; } function format32(val, pos) { return ((val << (pos * VALSHIFT)) + 0x100000000).toString(16).substring(1); } let width = bits < 32 ? '' + bits : ''; let view = bits < 32 ? '_u' : ''; let prefix = bits == 64 ? 'i64' : 'i32'; return ` (func ${name} (param $barrierValue i32) (result i32) (local $n i32) (local $tmp ${prefix}) (local.set $n (i32.const ${ITERATIONS})) (loop $outer (if (local.get $n) (then (block ${isMaster ? `;; Init (${prefix}.atomic.store${width} ${loc} (${prefix}.const ${distribute(initial)}))` : ``} ${barrier} ${(() => { let s = `;; Do\n`; for (let i=0; i < NUMVALS; i++) { let bitval = `(${prefix}.const ${format(val, i)})` // The load must be atomic though it would be better if it were relaxed, // we would avoid fences in that case. if (op.match(/cmpxchg/)) { s += `(loop $doit (local.set $tmp (${prefix}.atomic.load${width}${view} ${loc})) (br_if $doit (i32.eqz (${prefix}.eq (local.get $tmp) (${op} ${loc} (local.get $tmp) (${prefix}.or (local.get $tmp) ${bitval})))))) `; } else { s += `(drop (${op} ${loc} ${bitval})) `; } } return s })()} (loop $wait_done (br_if $wait_done (${prefix}.ne (${prefix}.atomic.load${width}${view} ${loc}) (${prefix}.const ${distribute(expected)})))) ${barrier} (local.set $n (i32.sub (local.get $n) (i32.const 1))) (br $outer))))) (local.get $barrierValue))`; } const ADDLOC = "(i32.const 256)"; const ADDINIT = 0; const ADDVAL = [1, 2, 4]; const ADDRESULT = 7; const SUBLOC = "(i32.const 512)"; const SUBINIT = 7; const SUBVAL = [1, 2, 4]; const SUBRESULT = 0; const ANDLOC = "(i32.const 768)"; const ANDINIT = 7; const ANDVAL = [3, 6, 5]; const ANDRESULT = 0; const ORLOC = "(i32.const 1024)"; const ORINIT = 0; const ORVAL = [1, 2, 4]; const ORRESULT = 7; const XORLOC = "(i32.const 1280)"; const XORINIT = 0; const XORVAL = [1, 2, 4]; const XORRESULT = 7; const CMPXCHGLOC = "(i32.const 1536)"; const CMPXCHGINIT = 0; const CMPXCHGVAL = [1, 2, 4]; const CMPXCHGRESULT = 7; return ` (module (import "" "memory" (memory 1 1 shared)) (import "" "print" (func $print (param i32))) ${makeLoop(8, "$test_add8", "i32.atomic.rmw8.add_u", ADDLOC, ADDINIT, ADDVAL[id], ADDRESULT)} ${makeLoop(8, "$test_sub8", "i32.atomic.rmw8.sub_u", SUBLOC, SUBINIT, SUBVAL[id], SUBRESULT)} ${makeLoop(8, "$test_and8", "i32.atomic.rmw8.and_u", ANDLOC, ANDINIT, ANDVAL[id], ANDRESULT)} ${makeLoop(8, "$test_or8", "i32.atomic.rmw8.or_u", ORLOC, ORINIT, ORVAL[id], ORRESULT)} ${makeLoop(8, "$test_xor8", "i32.atomic.rmw8.xor_u", XORLOC, XORINIT, XORVAL[id], XORRESULT)} ${makeLoop(8, "$test_cmpxchg8", "i32.atomic.rmw8.cmpxchg_u", CMPXCHGLOC, CMPXCHGINIT, CMPXCHGVAL[id], CMPXCHGRESULT)} ${makeLoop(16, "$test_add16", "i32.atomic.rmw16.add_u", ADDLOC, ADDINIT, ADDVAL[id], ADDRESULT)} ${makeLoop(16, "$test_sub16", "i32.atomic.rmw16.sub_u", SUBLOC, SUBINIT, SUBVAL[id], SUBRESULT)} ${makeLoop(16, "$test_and16", "i32.atomic.rmw16.and_u", ANDLOC, ANDINIT, ANDVAL[id], ANDRESULT)} ${makeLoop(16, "$test_or16", "i32.atomic.rmw16.or_u", ORLOC, ORINIT, ORVAL[id], ORRESULT)} ${makeLoop(16, "$test_xor16", "i32.atomic.rmw16.xor_u", XORLOC, XORINIT, XORVAL[id], XORRESULT)} ${makeLoop(16, "$test_cmpxchg16", "i32.atomic.rmw16.cmpxchg_u", CMPXCHGLOC, CMPXCHGINIT, CMPXCHGVAL[id], CMPXCHGRESULT)} ${makeLoop(32, "$test_add", "i32.atomic.rmw.add", ADDLOC, ADDINIT, ADDVAL[id], ADDRESULT)} ${makeLoop(32, "$test_sub", "i32.atomic.rmw.sub", SUBLOC, SUBINIT, SUBVAL[id], SUBRESULT)} ${makeLoop(32, "$test_and", "i32.atomic.rmw.and", ANDLOC, ANDINIT, ANDVAL[id], ANDRESULT)} ${makeLoop(32, "$test_or", "i32.atomic.rmw.or", ORLOC, ORINIT, ORVAL[id], ORRESULT)} ${makeLoop(32, "$test_xor", "i32.atomic.rmw.xor", XORLOC, XORINIT, XORVAL[id], XORRESULT)} ${makeLoop(32, "$test_cmpxchg", "i32.atomic.rmw.cmpxchg", CMPXCHGLOC, CMPXCHGINIT, CMPXCHGVAL[id], CMPXCHGRESULT)} ${makeLoop(64, "$test_add64", "i64.atomic.rmw.add", ADDLOC, ADDINIT, ADDVAL[id], ADDRESULT)} ${makeLoop(64, "$test_sub64", "i64.atomic.rmw.sub", SUBLOC, SUBINIT, SUBVAL[id], SUBRESULT)} ${makeLoop(64, "$test_and64", "i64.atomic.rmw.and", ANDLOC, ANDINIT, ANDVAL[id], ANDRESULT)} ${makeLoop(64, "$test_or64", "i64.atomic.rmw.or", ORLOC, ORINIT, ORVAL[id], ORRESULT)} ${makeLoop(64, "$test_xor64", "i64.atomic.rmw.xor", XORLOC, XORINIT, XORVAL[id], XORRESULT)} ${makeLoop(64, "$test_cmpxchg64", "i64.atomic.rmw.cmpxchg", CMPXCHGLOC, CMPXCHGINIT, CMPXCHGVAL[id], CMPXCHGRESULT)} (func (export "test") (local $barrierValue i32) (call $print (i32.const ${10 + id})) (local.set $barrierValue (call $test_add8 (local.get $barrierValue))) (local.set $barrierValue (call $test_sub8 (local.get $barrierValue))) (local.set $barrierValue (call $test_and8 (local.get $barrierValue))) (local.set $barrierValue (call $test_or8 (local.get $barrierValue))) (local.set $barrierValue (call $test_xor8 (local.get $barrierValue))) (local.set $barrierValue (call $test_cmpxchg8 (local.get $barrierValue))) (call $print (i32.const ${20 + id})) (local.set $barrierValue (call $test_add16 (local.get $barrierValue))) (local.set $barrierValue (call $test_sub16 (local.get $barrierValue))) (local.set $barrierValue (call $test_and16 (local.get $barrierValue))) (local.set $barrierValue (call $test_or16 (local.get $barrierValue))) (local.set $barrierValue (call $test_xor16 (local.get $barrierValue))) (local.set $barrierValue (call $test_cmpxchg16 (local.get $barrierValue))) (call $print (i32.const ${30 + id})) (local.set $barrierValue (call $test_add (local.get $barrierValue))) (local.set $barrierValue (call $test_sub (local.get $barrierValue))) (local.set $barrierValue (call $test_and (local.get $barrierValue))) (local.set $barrierValue (call $test_or (local.get $barrierValue))) (local.set $barrierValue (call $test_xor (local.get $barrierValue))) (local.set $barrierValue (call $test_cmpxchg (local.get $barrierValue))) (call $print (i32.const ${40 + id})) (local.set $barrierValue (call $test_add64 (local.get $barrierValue))) (local.set $barrierValue (call $test_sub64 (local.get $barrierValue))) (local.set $barrierValue (call $test_and64 (local.get $barrierValue))) (local.set $barrierValue (call $test_or64 (local.get $barrierValue))) (local.set $barrierValue (call $test_xor64 (local.get $barrierValue))) (local.set $barrierValue (call $test_cmpxchg64 (local.get $barrierValue))) )) `; } function makeModule2(id) { let text = makeModule(id); if (DEBUG > 1) print(text); return new WebAssembly.Module(wasmTextToBinary(text)); } var mods = []; mods.push(makeModule2(0)); for ( let i=0; i < NUMWORKERS; i++ ) mods.push(makeModule2(i+1)); if (DEBUG > 2) quit(0); var mem = new WebAssembly.Memory({initial: 1, maximum: 1, shared: true}); //////////////////////////////////////////////////////////////////////// // // Worker code function startWorkers() { for ( let i=0; i < NUMWORKERS; i++ ) { spawn(` var mem = receive(); var mod = receive(); function pr(n) { if (${DEBUG}) print(n); } var ins = new WebAssembly.Instance(mod, {"":{memory: mem, print:pr}}); if (${DEBUG} > 0) print("Running ${i}"); ins.exports.test(); `); send(mem); send(mods[i+1]); } } //////////////////////////////////////////////////////////////////////// // // Main thread code startWorkers(); function pr(n) { if (DEBUG) print(n); } var ins = new WebAssembly.Instance(mods[0], {"":{memory: mem, print:pr}}); if (DEBUG > 0) print("Running master"); ins.exports.test();