/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
 * vim: set ts=8 sts=2 et sw=2 tw=80:
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef jit_arm64_MacroAssembler_arm64_inl_h
#define jit_arm64_MacroAssembler_arm64_inl_h

#include "jit/arm64/MacroAssembler-arm64.h"

namespace js {
namespace jit {

//{{{ check_macroassembler_style

void MacroAssembler::move64(Register64 src, Register64 dest) {
  Mov(ARMRegister(dest.reg, 64), ARMRegister(src.reg, 64));
}

void MacroAssembler::move64(Imm64 imm, Register64 dest) {
  Mov(ARMRegister(dest.reg, 64), imm.value);
}

void MacroAssembler::moveFloat32ToGPR(FloatRegister src, Register dest) {
  Fmov(ARMRegister(dest, 32), ARMFPRegister(src, 32));
}

void MacroAssembler::moveGPRToFloat32(Register src, FloatRegister dest) {
  Fmov(ARMFPRegister(dest, 32), ARMRegister(src, 32));
}

void MacroAssembler::move8ZeroExtend(Register src, Register dest) {
  Uxtb(ARMRegister(dest, 32), ARMRegister(src, 32));
}

void MacroAssembler::move8SignExtend(Register src, Register dest) {
  Sxtb(ARMRegister(dest, 32), ARMRegister(src, 32));
}

void MacroAssembler::move16SignExtend(Register src, Register dest) {
  Sxth(ARMRegister(dest, 32), ARMRegister(src, 32));
}

void MacroAssembler::moveDoubleToGPR64(FloatRegister src, Register64 dest) {
  Fmov(ARMRegister(dest.reg, 64), ARMFPRegister(src, 64));
}

void MacroAssembler::moveGPR64ToDouble(Register64 src, FloatRegister dest) {
  Fmov(ARMFPRegister(dest, 64), ARMRegister(src.reg, 64));
}

void MacroAssembler::move64To32(Register64 src, Register dest) {
  Mov(ARMRegister(dest, 32), ARMRegister(src.reg, 32));
}

void MacroAssembler::move32To64ZeroExtend(Register src, Register64 dest) {
  Uxtw(ARMRegister(dest.reg, 64), ARMRegister(src, 64));
}

void MacroAssembler::move8To64SignExtend(Register src, Register64 dest) {
  Sxtb(ARMRegister(dest.reg, 64), ARMRegister(src, 32));
}

void MacroAssembler::move16To64SignExtend(Register src, Register64 dest) {
  Sxth(ARMRegister(dest.reg, 64), ARMRegister(src, 32));
}

void MacroAssembler::move32To64SignExtend(Register src, Register64 dest) {
  Sxtw(ARMRegister(dest.reg, 64), ARMRegister(src, 32));
}

void MacroAssembler::move32SignExtendToPtr(Register src, Register dest) {
  Sxtw(ARMRegister(dest, 64), ARMRegister(src, 32));
}

void MacroAssembler::move32ZeroExtendToPtr(Register src, Register dest) {
  Uxtw(ARMRegister(dest, 64), ARMRegister(src, 64));
}

// ===============================================================
// Load instructions

void MacroAssembler::load32SignExtendToPtr(const Address& src, Register dest) {
  load32(src, dest);
  move32To64SignExtend(dest, Register64(dest));
}

void MacroAssembler::loadAbiReturnAddress(Register dest) { movePtr(lr, dest); }

// ===============================================================
// Logical instructions

void MacroAssembler::not32(Register reg) {
  Orn(ARMRegister(reg, 32), vixl::wzr, ARMRegister(reg, 32));
}

void MacroAssembler::notPtr(Register reg) {
  Orn(ARMRegister(reg, 64), vixl::xzr, ARMRegister(reg, 64));
}

void MacroAssembler::and32(Register src, Register dest) {
  And(ARMRegister(dest, 32), ARMRegister(dest, 32),
      Operand(ARMRegister(src, 32)));
}

void MacroAssembler::and32(Imm32 imm, Register dest) {
  And(ARMRegister(dest, 32), ARMRegister(dest, 32), Operand(imm.value));
}

void MacroAssembler::and32(Imm32 imm, Register src, Register dest) {
  And(ARMRegister(dest, 32), ARMRegister(src, 32), Operand(imm.value));
}

void MacroAssembler::and32(Imm32 imm, const Address& dest) {
  vixl::UseScratchRegisterScope temps(this);
  const ARMRegister scratch32 = temps.AcquireW();
  MOZ_ASSERT(scratch32.asUnsized() != dest.base);
  load32(dest, scratch32.asUnsized());
  And(scratch32, scratch32, Operand(imm.value));
  store32(scratch32.asUnsized(), dest);
}

void MacroAssembler::and32(const Address& src, Register dest) {
  vixl::UseScratchRegisterScope temps(this);
  const ARMRegister scratch32 = temps.AcquireW();
  MOZ_ASSERT(scratch32.asUnsized() != src.base);
  load32(src, scratch32.asUnsized());
  And(ARMRegister(dest, 32), ARMRegister(dest, 32), Operand(scratch32));
}

void MacroAssembler::andPtr(Register src, Register dest) {
  And(ARMRegister(dest, 64), ARMRegister(dest, 64),
      Operand(ARMRegister(src, 64)));
}

void MacroAssembler::andPtr(Imm32 imm, Register dest) {
  And(ARMRegister(dest, 64), ARMRegister(dest, 64), Operand(imm.value));
}

void MacroAssembler::and64(Imm64 imm, Register64 dest) {
  And(ARMRegister(dest.reg, 64), ARMRegister(dest.reg, 64), Operand(imm.value));
}

void MacroAssembler::and64(Register64 src, Register64 dest) {
  And(ARMRegister(dest.reg, 64), ARMRegister(dest.reg, 64),
      ARMRegister(src.reg, 64));
}

void MacroAssembler::or64(Imm64 imm, Register64 dest) {
  Orr(ARMRegister(dest.reg, 64), ARMRegister(dest.reg, 64), Operand(imm.value));
}

void MacroAssembler::or32(Imm32 imm, Register dest) {
  Orr(ARMRegister(dest, 32), ARMRegister(dest, 32), Operand(imm.value));
}

void MacroAssembler::or32(Register src, Register dest) {
  Orr(ARMRegister(dest, 32), ARMRegister(dest, 32),
      Operand(ARMRegister(src, 32)));
}

void MacroAssembler::or32(Imm32 imm, const Address& dest) {
  vixl::UseScratchRegisterScope temps(this);
  const ARMRegister scratch32 = temps.AcquireW();
  MOZ_ASSERT(scratch32.asUnsized() != dest.base);
  load32(dest, scratch32.asUnsized());
  Orr(scratch32, scratch32, Operand(imm.value));
  store32(scratch32.asUnsized(), dest);
}

void MacroAssembler::orPtr(Register src, Register dest) {
  Orr(ARMRegister(dest, 64), ARMRegister(dest, 64),
      Operand(ARMRegister(src, 64)));
}

void MacroAssembler::orPtr(Imm32 imm, Register dest) {
  Orr(ARMRegister(dest, 64), ARMRegister(dest, 64), Operand(imm.value));
}

void MacroAssembler::or64(Register64 src, Register64 dest) {
  orPtr(src.reg, dest.reg);
}

void MacroAssembler::xor64(Register64 src, Register64 dest) {
  xorPtr(src.reg, dest.reg);
}

void MacroAssembler::xor32(Register src, Register dest) {
  Eor(ARMRegister(dest, 32), ARMRegister(dest, 32),
      Operand(ARMRegister(src, 32)));
}

void MacroAssembler::xor32(Imm32 imm, Register dest) {
  Eor(ARMRegister(dest, 32), ARMRegister(dest, 32), Operand(imm.value));
}

void MacroAssembler::xor32(Imm32 imm, const Address& dest) {
  vixl::UseScratchRegisterScope temps(this);
  const ARMRegister scratch32 = temps.AcquireW();
  MOZ_ASSERT(scratch32.asUnsized() != dest.base);
  load32(dest, scratch32.asUnsized());
  Eor(scratch32, scratch32, Operand(imm.value));
  store32(scratch32.asUnsized(), dest);
}

void MacroAssembler::xor32(const Address& src, Register dest) {
  vixl::UseScratchRegisterScope temps(this);
  const ARMRegister scratch32 = temps.AcquireW();
  MOZ_ASSERT(scratch32.asUnsized() != src.base);
  load32(src, scratch32.asUnsized());
  Eor(ARMRegister(dest, 32), ARMRegister(dest, 32), Operand(scratch32));
}

void MacroAssembler::xorPtr(Register src, Register dest) {
  Eor(ARMRegister(dest, 64), ARMRegister(dest, 64),
      Operand(ARMRegister(src, 64)));
}

void MacroAssembler::xorPtr(Imm32 imm, Register dest) {
  Eor(ARMRegister(dest, 64), ARMRegister(dest, 64), Operand(imm.value));
}

void MacroAssembler::xor64(Imm64 imm, Register64 dest) {
  Eor(ARMRegister(dest.reg, 64), ARMRegister(dest.reg, 64), Operand(imm.value));
}

// ===============================================================
// Swap instructions

void MacroAssembler::byteSwap16SignExtend(Register reg) {
  rev16(ARMRegister(reg, 32), ARMRegister(reg, 32));
  sxth(ARMRegister(reg, 32), ARMRegister(reg, 32));
}

void MacroAssembler::byteSwap16ZeroExtend(Register reg) {
  rev16(ARMRegister(reg, 32), ARMRegister(reg, 32));
  uxth(ARMRegister(reg, 32), ARMRegister(reg, 32));
}

void MacroAssembler::byteSwap32(Register reg) {
  rev(ARMRegister(reg, 32), ARMRegister(reg, 32));
}

void MacroAssembler::byteSwap64(Register64 reg) {
  rev(ARMRegister(reg.reg, 64), ARMRegister(reg.reg, 64));
}

// ===============================================================
// Arithmetic functions

void MacroAssembler::add32(Register src, Register dest) {
  Add(ARMRegister(dest, 32), ARMRegister(dest, 32),
      Operand(ARMRegister(src, 32)));
}

void MacroAssembler::add32(Imm32 imm, Register dest) {
  Add(ARMRegister(dest, 32), ARMRegister(dest, 32), Operand(imm.value));
}

void MacroAssembler::add32(Imm32 imm, Register src, Register dest) {
  Add(ARMRegister(dest, 32), ARMRegister(src, 32), Operand(imm.value));
}

void MacroAssembler::add32(Imm32 imm, const Address& dest) {
  vixl::UseScratchRegisterScope temps(this);
  const ARMRegister scratch32 = temps.AcquireW();
  MOZ_ASSERT(scratch32.asUnsized() != dest.base);

  Ldr(scratch32, toMemOperand(dest));
  Add(scratch32, scratch32, Operand(imm.value));
  Str(scratch32, toMemOperand(dest));
}

void MacroAssembler::addPtr(Register src, Register dest) {
  addPtr(src, dest, dest);
}

void MacroAssembler::addPtr(Register src1, Register src2, Register dest) {
  Add(ARMRegister(dest, 64), ARMRegister(src1, 64),
      Operand(ARMRegister(src2, 64)));
}

void MacroAssembler::addPtr(Imm32 imm, Register dest) {
  addPtr(imm, dest, dest);
}

void MacroAssembler::addPtr(Imm32 imm, Register src, Register dest) {
  Add(ARMRegister(dest, 64), ARMRegister(src, 64), Operand(imm.value));
}

void MacroAssembler::addPtr(ImmWord imm, Register dest) {
  Add(ARMRegister(dest, 64), ARMRegister(dest, 64), Operand(imm.value));
}

void MacroAssembler::addPtr(Imm32 imm, const Address& dest) {
  vixl::UseScratchRegisterScope temps(this);
  const ARMRegister scratch64 = temps.AcquireX();
  MOZ_ASSERT(scratch64.asUnsized() != dest.base);

  Ldr(scratch64, toMemOperand(dest));
  Add(scratch64, scratch64, Operand(imm.value));
  Str(scratch64, toMemOperand(dest));
}

void MacroAssembler::addPtr(const Address& src, Register dest) {
  vixl::UseScratchRegisterScope temps(this);
  const ARMRegister scratch64 = temps.AcquireX();
  MOZ_ASSERT(scratch64.asUnsized() != src.base);

  Ldr(scratch64, toMemOperand(src));
  Add(ARMRegister(dest, 64), ARMRegister(dest, 64), Operand(scratch64));
}

void MacroAssembler::add64(Register64 src, Register64 dest) {
  addPtr(src.reg, dest.reg);
}

void MacroAssembler::add64(Imm32 imm, Register64 dest) {
  Add(ARMRegister(dest.reg, 64), ARMRegister(dest.reg, 64), Operand(imm.value));
}

void MacroAssembler::add64(Imm64 imm, Register64 dest) {
  Add(ARMRegister(dest.reg, 64), ARMRegister(dest.reg, 64), Operand(imm.value));
}

CodeOffset MacroAssembler::sub32FromStackPtrWithPatch(Register dest) {
  vixl::UseScratchRegisterScope temps(this);
  const ARMRegister scratch = temps.AcquireX();
  AutoForbidPoolsAndNops afp(this,
                             /* max number of instructions in scope = */ 3);
  CodeOffset offs = CodeOffset(currentOffset());
  movz(scratch, 0, 0);
  movk(scratch, 0, 16);
  Sub(ARMRegister(dest, 64), sp, scratch);
  return offs;
}

void MacroAssembler::patchSub32FromStackPtr(CodeOffset offset, Imm32 imm) {
  Instruction* i1 = getInstructionAt(BufferOffset(offset.offset()));
  MOZ_ASSERT(i1->IsMovz());
  i1->SetInstructionBits(i1->InstructionBits() |
                         ImmMoveWide(uint16_t(imm.value)));

  Instruction* i2 = getInstructionAt(BufferOffset(offset.offset() + 4));
  MOZ_ASSERT(i2->IsMovk());
  i2->SetInstructionBits(i2->InstructionBits() |
                         ImmMoveWide(uint16_t(imm.value >> 16)));
}

void MacroAssembler::addDouble(FloatRegister src, FloatRegister dest) {
  fadd(ARMFPRegister(dest, 64), ARMFPRegister(dest, 64),
       ARMFPRegister(src, 64));
}

void MacroAssembler::addFloat32(FloatRegister src, FloatRegister dest) {
  fadd(ARMFPRegister(dest, 32), ARMFPRegister(dest, 32),
       ARMFPRegister(src, 32));
}

void MacroAssembler::sub32(Imm32 imm, Register dest) {
  Sub(ARMRegister(dest, 32), ARMRegister(dest, 32), Operand(imm.value));
}

void MacroAssembler::sub32(Register src, Register dest) {
  Sub(ARMRegister(dest, 32), ARMRegister(dest, 32),
      Operand(ARMRegister(src, 32)));
}

void MacroAssembler::sub32(const Address& src, Register dest) {
  vixl::UseScratchRegisterScope temps(this);
  const ARMRegister scratch32 = temps.AcquireW();
  MOZ_ASSERT(scratch32.asUnsized() != src.base);
  load32(src, scratch32.asUnsized());
  Sub(ARMRegister(dest, 32), ARMRegister(dest, 32), Operand(scratch32));
}

void MacroAssembler::subPtr(Register src, Register dest) {
  Sub(ARMRegister(dest, 64), ARMRegister(dest, 64),
      Operand(ARMRegister(src, 64)));
}

void MacroAssembler::subPtr(Register src, const Address& dest) {
  vixl::UseScratchRegisterScope temps(this);
  const ARMRegister scratch64 = temps.AcquireX();
  MOZ_ASSERT(scratch64.asUnsized() != dest.base);

  Ldr(scratch64, toMemOperand(dest));
  Sub(scratch64, scratch64, Operand(ARMRegister(src, 64)));
  Str(scratch64, toMemOperand(dest));
}

void MacroAssembler::subPtr(Imm32 imm, Register dest) {
  Sub(ARMRegister(dest, 64), ARMRegister(dest, 64), Operand(imm.value));
}

void MacroAssembler::subPtr(const Address& addr, Register dest) {
  vixl::UseScratchRegisterScope temps(this);
  const ARMRegister scratch64 = temps.AcquireX();
  MOZ_ASSERT(scratch64.asUnsized() != addr.base);

  Ldr(scratch64, toMemOperand(addr));
  Sub(ARMRegister(dest, 64), ARMRegister(dest, 64), Operand(scratch64));
}

void MacroAssembler::sub64(Register64 src, Register64 dest) {
  Sub(ARMRegister(dest.reg, 64), ARMRegister(dest.reg, 64),
      ARMRegister(src.reg, 64));
}

void MacroAssembler::sub64(Imm64 imm, Register64 dest) {
  Sub(ARMRegister(dest.reg, 64), ARMRegister(dest.reg, 64), Operand(imm.value));
}

void MacroAssembler::subDouble(FloatRegister src, FloatRegister dest) {
  fsub(ARMFPRegister(dest, 64), ARMFPRegister(dest, 64),
       ARMFPRegister(src, 64));
}

void MacroAssembler::subFloat32(FloatRegister src, FloatRegister dest) {
  fsub(ARMFPRegister(dest, 32), ARMFPRegister(dest, 32),
       ARMFPRegister(src, 32));
}

void MacroAssembler::mul32(Register rhs, Register srcDest) {
  mul32(srcDest, rhs, srcDest, nullptr);
}

void MacroAssembler::mul32(Imm32 imm, Register srcDest) {
  vixl::UseScratchRegisterScope temps(this);
  const ARMRegister scratch32 = temps.AcquireW();

  move32(imm, scratch32.asUnsized());
  mul32(scratch32.asUnsized(), srcDest);
}

void MacroAssembler::mul32(Register src1, Register src2, Register dest,
                           Label* onOver) {
  if (onOver) {
    Smull(ARMRegister(dest, 64), ARMRegister(src1, 32), ARMRegister(src2, 32));
    Cmp(ARMRegister(dest, 64), Operand(ARMRegister(dest, 32), vixl::SXTW));
    B(onOver, NotEqual);

    // Clear upper 32 bits.
    Uxtw(ARMRegister(dest, 64), ARMRegister(dest, 64));
  } else {
    Mul(ARMRegister(dest, 32), ARMRegister(src1, 32), ARMRegister(src2, 32));
  }
}

void MacroAssembler::mulHighUnsigned32(Imm32 imm, Register src, Register dest) {
  vixl::UseScratchRegisterScope temps(this);
  const ARMRegister scratch32 = temps.AcquireW();

  Mov(scratch32, int32_t(imm.value));
  Umull(ARMRegister(dest, 64), scratch32, ARMRegister(src, 32));

  Lsr(ARMRegister(dest, 64), ARMRegister(dest, 64), 32);
}

void MacroAssembler::mulPtr(Register rhs, Register srcDest) {
  Mul(ARMRegister(srcDest, 64), ARMRegister(srcDest, 64), ARMRegister(rhs, 64));
}

void MacroAssembler::mul64(Imm64 imm, const Register64& dest) {
  vixl::UseScratchRegisterScope temps(this);
  const ARMRegister scratch64 = temps.AcquireX();
  MOZ_ASSERT(dest.reg != scratch64.asUnsized());
  mov(ImmWord(imm.value), scratch64.asUnsized());
  Mul(ARMRegister(dest.reg, 64), ARMRegister(dest.reg, 64), scratch64);
}

void MacroAssembler::mul64(const Register64& src, const Register64& dest,
                           const Register temp) {
  MOZ_ASSERT(temp == Register::Invalid());
  Mul(ARMRegister(dest.reg, 64), ARMRegister(dest.reg, 64),
      ARMRegister(src.reg, 64));
}

void MacroAssembler::mul64(const Register64& src1, const Register64& src2,
                           const Register64& dest) {
  Mul(ARMRegister(dest.reg, 64), ARMRegister(src1.reg, 64),
      ARMRegister(src2.reg, 64));
}

void MacroAssembler::mul64(Imm64 src1, const Register64& src2,
                           const Register64& dest) {
  vixl::UseScratchRegisterScope temps(this);
  const ARMRegister scratch64 = temps.AcquireX();
  MOZ_ASSERT(dest.reg != scratch64.asUnsized());
  mov(ImmWord(src1.value), scratch64.asUnsized());
  Mul(ARMRegister(dest.reg, 64), ARMRegister(src2.reg, 64), scratch64);
}

void MacroAssembler::mulBy3(Register src, Register dest) {
  ARMRegister xdest(dest, 64);
  ARMRegister xsrc(src, 64);
  Add(xdest, xsrc, Operand(xsrc, vixl::LSL, 1));
}

void MacroAssembler::mulFloat32(FloatRegister src, FloatRegister dest) {
  fmul(ARMFPRegister(dest, 32), ARMFPRegister(dest, 32),
       ARMFPRegister(src, 32));
}

void MacroAssembler::mulDouble(FloatRegister src, FloatRegister dest) {
  fmul(ARMFPRegister(dest, 64), ARMFPRegister(dest, 64),
       ARMFPRegister(src, 64));
}

void MacroAssembler::mulDoublePtr(ImmPtr imm, Register temp,
                                  FloatRegister dest) {
  vixl::UseScratchRegisterScope temps(this);
  const Register scratch = temps.AcquireX().asUnsized();
  MOZ_ASSERT(temp != scratch);
  movePtr(imm, scratch);
  const ARMFPRegister scratchDouble = temps.AcquireD();
  Ldr(scratchDouble, MemOperand(Address(scratch, 0)));
  fmul(ARMFPRegister(dest, 64), ARMFPRegister(dest, 64), scratchDouble);
}

void MacroAssembler::quotient32(Register rhs, Register srcDest,
                                bool isUnsigned) {
  if (isUnsigned) {
    Udiv(ARMRegister(srcDest, 32), ARMRegister(srcDest, 32),
         ARMRegister(rhs, 32));
  } else {
    Sdiv(ARMRegister(srcDest, 32), ARMRegister(srcDest, 32),
         ARMRegister(rhs, 32));
  }
}

// This does not deal with x % 0 or INT_MIN % -1, the caller needs to filter
// those cases when they may occur.

void MacroAssembler::remainder32(Register rhs, Register srcDest,
                                 bool isUnsigned) {
  vixl::UseScratchRegisterScope temps(this);
  ARMRegister scratch = temps.AcquireW();
  if (isUnsigned) {
    Udiv(scratch, ARMRegister(srcDest, 32), ARMRegister(rhs, 32));
  } else {
    Sdiv(scratch, ARMRegister(srcDest, 32), ARMRegister(rhs, 32));
  }
  Mul(scratch, scratch, ARMRegister(rhs, 32));
  Sub(ARMRegister(srcDest, 32), ARMRegister(srcDest, 32), scratch);
}

void MacroAssembler::divFloat32(FloatRegister src, FloatRegister dest) {
  fdiv(ARMFPRegister(dest, 32), ARMFPRegister(dest, 32),
       ARMFPRegister(src, 32));
}

void MacroAssembler::divDouble(FloatRegister src, FloatRegister dest) {
  fdiv(ARMFPRegister(dest, 64), ARMFPRegister(dest, 64),
       ARMFPRegister(src, 64));
}

void MacroAssembler::inc64(AbsoluteAddress dest) {
  vixl::UseScratchRegisterScope temps(this);
  const ARMRegister scratchAddr64 = temps.AcquireX();
  const ARMRegister scratch64 = temps.AcquireX();

  Mov(scratchAddr64, uint64_t(dest.addr));
  Ldr(scratch64, MemOperand(scratchAddr64, 0));
  Add(scratch64, scratch64, Operand(1));
  Str(scratch64, MemOperand(scratchAddr64, 0));
}

void MacroAssembler::neg32(Register reg) {
  Neg(ARMRegister(reg, 32), Operand(ARMRegister(reg, 32)));
}

void MacroAssembler::neg64(Register64 reg) { negPtr(reg.reg); }

void MacroAssembler::negPtr(Register reg) {
  Neg(ARMRegister(reg, 64), Operand(ARMRegister(reg, 64)));
}

void MacroAssembler::negateFloat(FloatRegister reg) {
  fneg(ARMFPRegister(reg, 32), ARMFPRegister(reg, 32));
}

void MacroAssembler::negateDouble(FloatRegister reg) {
  fneg(ARMFPRegister(reg, 64), ARMFPRegister(reg, 64));
}

void MacroAssembler::abs32(Register src, Register dest) {
  Cmp(ARMRegister(src, 32), wzr);
  Cneg(ARMRegister(dest, 32), ARMRegister(src, 32), Assembler::LessThan);
}

void MacroAssembler::absFloat32(FloatRegister src, FloatRegister dest) {
  fabs(ARMFPRegister(dest, 32), ARMFPRegister(src, 32));
}

void MacroAssembler::absDouble(FloatRegister src, FloatRegister dest) {
  fabs(ARMFPRegister(dest, 64), ARMFPRegister(src, 64));
}

void MacroAssembler::sqrtFloat32(FloatRegister src, FloatRegister dest) {
  fsqrt(ARMFPRegister(dest, 32), ARMFPRegister(src, 32));
}

void MacroAssembler::sqrtDouble(FloatRegister src, FloatRegister dest) {
  fsqrt(ARMFPRegister(dest, 64), ARMFPRegister(src, 64));
}

void MacroAssembler::minFloat32(FloatRegister other, FloatRegister srcDest,
                                bool handleNaN) {
  MOZ_ASSERT(handleNaN);  // Always true for wasm
  fmin(ARMFPRegister(srcDest, 32), ARMFPRegister(srcDest, 32),
       ARMFPRegister(other, 32));
}

void MacroAssembler::minDouble(FloatRegister other, FloatRegister srcDest,
                               bool handleNaN) {
  MOZ_ASSERT(handleNaN);  // Always true for wasm
  fmin(ARMFPRegister(srcDest, 64), ARMFPRegister(srcDest, 64),
       ARMFPRegister(other, 64));
}

void MacroAssembler::maxFloat32(FloatRegister other, FloatRegister srcDest,
                                bool handleNaN) {
  MOZ_ASSERT(handleNaN);  // Always true for wasm
  fmax(ARMFPRegister(srcDest, 32), ARMFPRegister(srcDest, 32),
       ARMFPRegister(other, 32));
}

void MacroAssembler::maxDouble(FloatRegister other, FloatRegister srcDest,
                               bool handleNaN) {
  MOZ_ASSERT(handleNaN);  // Always true for wasm
  fmax(ARMFPRegister(srcDest, 64), ARMFPRegister(srcDest, 64),
       ARMFPRegister(other, 64));
}

// ===============================================================
// Shift functions

void MacroAssembler::lshiftPtr(Imm32 imm, Register dest) {
  MOZ_ASSERT(0 <= imm.value && imm.value < 64);
  Lsl(ARMRegister(dest, 64), ARMRegister(dest, 64), imm.value);
}

void MacroAssembler::lshiftPtr(Register shift, Register dest) {
  Lsl(ARMRegister(dest, 64), ARMRegister(dest, 64), ARMRegister(shift, 64));
}

void MacroAssembler::lshift64(Imm32 imm, Register64 dest) {
  MOZ_ASSERT(0 <= imm.value && imm.value < 64);
  lshiftPtr(imm, dest.reg);
}

void MacroAssembler::lshift64(Register shift, Register64 srcDest) {
  Lsl(ARMRegister(srcDest.reg, 64), ARMRegister(srcDest.reg, 64),
      ARMRegister(shift, 64));
}

void MacroAssembler::lshift32(Register shift, Register dest) {
  Lsl(ARMRegister(dest, 32), ARMRegister(dest, 32), ARMRegister(shift, 32));
}

void MacroAssembler::flexibleLshift32(Register src, Register dest) {
  lshift32(src, dest);
}

void MacroAssembler::lshift32(Imm32 imm, Register dest) {
  MOZ_ASSERT(0 <= imm.value && imm.value < 32);
  Lsl(ARMRegister(dest, 32), ARMRegister(dest, 32), imm.value);
}

void MacroAssembler::rshiftPtr(Imm32 imm, Register dest) {
  MOZ_ASSERT(0 <= imm.value && imm.value < 64);
  Lsr(ARMRegister(dest, 64), ARMRegister(dest, 64), imm.value);
}

void MacroAssembler::rshiftPtr(Imm32 imm, Register src, Register dest) {
  MOZ_ASSERT(0 <= imm.value && imm.value < 64);
  Lsr(ARMRegister(dest, 64), ARMRegister(src, 64), imm.value);
}

void MacroAssembler::rshiftPtr(Register shift, Register dest) {
  Lsr(ARMRegister(dest, 64), ARMRegister(dest, 64), ARMRegister(shift, 64));
}

void MacroAssembler::rshift32(Register shift, Register dest) {
  Lsr(ARMRegister(dest, 32), ARMRegister(dest, 32), ARMRegister(shift, 32));
}

void MacroAssembler::flexibleRshift32(Register src, Register dest) {
  rshift32(src, dest);
}

void MacroAssembler::rshift32(Imm32 imm, Register dest) {
  MOZ_ASSERT(0 <= imm.value && imm.value < 32);
  Lsr(ARMRegister(dest, 32), ARMRegister(dest, 32), imm.value);
}

void MacroAssembler::rshiftPtrArithmetic(Imm32 imm, Register dest) {
  MOZ_ASSERT(0 <= imm.value && imm.value < 64);
  Asr(ARMRegister(dest, 64), ARMRegister(dest, 64), imm.value);
}

void MacroAssembler::rshift32Arithmetic(Register shift, Register dest) {
  Asr(ARMRegister(dest, 32), ARMRegister(dest, 32), ARMRegister(shift, 32));
}

void MacroAssembler::rshift32Arithmetic(Imm32 imm, Register dest) {
  MOZ_ASSERT(0 <= imm.value && imm.value < 32);
  Asr(ARMRegister(dest, 32), ARMRegister(dest, 32), imm.value);
}

void MacroAssembler::flexibleRshift32Arithmetic(Register src, Register dest) {
  rshift32Arithmetic(src, dest);
}

void MacroAssembler::rshift64(Imm32 imm, Register64 dest) {
  MOZ_ASSERT(0 <= imm.value && imm.value < 64);
  rshiftPtr(imm, dest.reg);
}

void MacroAssembler::rshift64(Register shift, Register64 srcDest) {
  Lsr(ARMRegister(srcDest.reg, 64), ARMRegister(srcDest.reg, 64),
      ARMRegister(shift, 64));
}

void MacroAssembler::rshift64Arithmetic(Imm32 imm, Register64 dest) {
  Asr(ARMRegister(dest.reg, 64), ARMRegister(dest.reg, 64), imm.value);
}

void MacroAssembler::rshift64Arithmetic(Register shift, Register64 srcDest) {
  Asr(ARMRegister(srcDest.reg, 64), ARMRegister(srcDest.reg, 64),
      ARMRegister(shift, 64));
}

// ===============================================================
// Condition functions

void MacroAssembler::cmp8Set(Condition cond, Address lhs, Imm32 rhs,
                             Register dest) {
  vixl::UseScratchRegisterScope temps(this);
  Register scratch = temps.AcquireX().asUnsized();
  MOZ_ASSERT(scratch != lhs.base);

  switch (cond) {
    case Assembler::Equal:
    case Assembler::NotEqual:
    case Assembler::Above:
    case Assembler::AboveOrEqual:
    case Assembler::Below:
    case Assembler::BelowOrEqual:
      load8ZeroExtend(lhs, scratch);
      cmp32Set(cond, scratch, Imm32(uint8_t(rhs.value)), dest);
      break;

    case Assembler::GreaterThan:
    case Assembler::GreaterThanOrEqual:
    case Assembler::LessThan:
    case Assembler::LessThanOrEqual:
      load8SignExtend(lhs, scratch);
      cmp32Set(cond, scratch, Imm32(int8_t(rhs.value)), dest);
      break;

    default:
      MOZ_CRASH("unexpected condition");
  }
}

void MacroAssembler::cmp16Set(Condition cond, Address lhs, Imm32 rhs,
                              Register dest) {
  vixl::UseScratchRegisterScope temps(this);
  Register scratch = temps.AcquireX().asUnsized();
  MOZ_ASSERT(scratch != lhs.base);

  switch (cond) {
    case Assembler::Equal:
    case Assembler::NotEqual:
    case Assembler::Above:
    case Assembler::AboveOrEqual:
    case Assembler::Below:
    case Assembler::BelowOrEqual:
      load16ZeroExtend(lhs, scratch);
      cmp32Set(cond, scratch, Imm32(uint16_t(rhs.value)), dest);
      break;

    case Assembler::GreaterThan:
    case Assembler::GreaterThanOrEqual:
    case Assembler::LessThan:
    case Assembler::LessThanOrEqual:
      load16SignExtend(lhs, scratch);
      cmp32Set(cond, scratch, Imm32(int16_t(rhs.value)), dest);
      break;

    default:
      MOZ_CRASH("unexpected condition");
  }
}

template <typename T1, typename T2>
void MacroAssembler::cmp32Set(Condition cond, T1 lhs, T2 rhs, Register dest) {
  cmp32(lhs, rhs);
  emitSet(cond, dest);
}

void MacroAssembler::cmp64Set(Condition cond, Address lhs, Imm64 rhs,
                              Register dest) {
  cmpPtrSet(cond, lhs, ImmWord(static_cast<uintptr_t>(rhs.value)), dest);
}

template <typename T1, typename T2>
void MacroAssembler::cmpPtrSet(Condition cond, T1 lhs, T2 rhs, Register dest) {
  cmpPtr(lhs, rhs);
  emitSet(cond, dest);
}

// ===============================================================
// Rotation functions

void MacroAssembler::rotateLeft(Imm32 count, Register input, Register dest) {
  Ror(ARMRegister(dest, 32), ARMRegister(input, 32), (32 - count.value) & 31);
}

void MacroAssembler::rotateLeft(Register count, Register input, Register dest) {
  vixl::UseScratchRegisterScope temps(this);
  const ARMRegister scratch = temps.AcquireW();
  // Really 32 - count, but the upper bits of the result are ignored.
  Neg(scratch, ARMRegister(count, 32));
  Ror(ARMRegister(dest, 32), ARMRegister(input, 32), scratch);
}

void MacroAssembler::rotateRight(Imm32 count, Register input, Register dest) {
  Ror(ARMRegister(dest, 32), ARMRegister(input, 32), count.value & 31);
}

void MacroAssembler::rotateRight(Register count, Register input,
                                 Register dest) {
  Ror(ARMRegister(dest, 32), ARMRegister(input, 32), ARMRegister(count, 32));
}

void MacroAssembler::rotateLeft64(Register count, Register64 input,
                                  Register64 dest, Register temp) {
  MOZ_ASSERT(temp == Register::Invalid());

  vixl::UseScratchRegisterScope temps(this);
  const ARMRegister scratch = temps.AcquireX();
  // Really 64 - count, but the upper bits of the result are ignored.
  Neg(scratch, ARMRegister(count, 64));
  Ror(ARMRegister(dest.reg, 64), ARMRegister(input.reg, 64), scratch);
}

void MacroAssembler::rotateLeft64(Imm32 count, Register64 input,
                                  Register64 dest, Register temp) {
  MOZ_ASSERT(temp == Register::Invalid());

  Ror(ARMRegister(dest.reg, 64), ARMRegister(input.reg, 64),
      (64 - count.value) & 63);
}

void MacroAssembler::rotateRight64(Register count, Register64 input,
                                   Register64 dest, Register temp) {
  MOZ_ASSERT(temp == Register::Invalid());

  Ror(ARMRegister(dest.reg, 64), ARMRegister(input.reg, 64),
      ARMRegister(count, 64));
}

void MacroAssembler::rotateRight64(Imm32 count, Register64 input,
                                   Register64 dest, Register temp) {
  MOZ_ASSERT(temp == Register::Invalid());

  Ror(ARMRegister(dest.reg, 64), ARMRegister(input.reg, 64), count.value & 63);
}

// ===============================================================
// Bit counting functions

void MacroAssembler::clz32(Register src, Register dest, bool knownNotZero) {
  Clz(ARMRegister(dest, 32), ARMRegister(src, 32));
}

void MacroAssembler::ctz32(Register src, Register dest, bool knownNotZero) {
  Rbit(ARMRegister(dest, 32), ARMRegister(src, 32));
  Clz(ARMRegister(dest, 32), ARMRegister(dest, 32));
}

void MacroAssembler::clz64(Register64 src, Register dest) {
  Clz(ARMRegister(dest, 64), ARMRegister(src.reg, 64));
}

void MacroAssembler::ctz64(Register64 src, Register dest) {
  Rbit(ARMRegister(dest, 64), ARMRegister(src.reg, 64));
  Clz(ARMRegister(dest, 64), ARMRegister(dest, 64));
}

void MacroAssembler::popcnt32(Register src_, Register dest_, Register tmp_) {
  MOZ_ASSERT(tmp_ != Register::Invalid());

  // Equivalent to mozilla::CountPopulation32().

  ARMRegister src(src_, 32);
  ARMRegister dest(dest_, 32);
  ARMRegister tmp(tmp_, 32);

  Mov(tmp, src);
  if (src_ != dest_) {
    Mov(dest, src);
  }
  Lsr(dest, dest, 1);
  And(dest, dest, 0x55555555);
  Sub(dest, tmp, dest);
  Lsr(tmp, dest, 2);
  And(tmp, tmp, 0x33333333);
  And(dest, dest, 0x33333333);
  Add(dest, tmp, dest);
  Add(dest, dest, Operand(dest, vixl::LSR, 4));
  And(dest, dest, 0x0F0F0F0F);
  Add(dest, dest, Operand(dest, vixl::LSL, 8));
  Add(dest, dest, Operand(dest, vixl::LSL, 16));
  Lsr(dest, dest, 24);
}

void MacroAssembler::popcnt64(Register64 src_, Register64 dest_,
                              Register tmp_) {
  MOZ_ASSERT(tmp_ != Register::Invalid());

  // Equivalent to mozilla::CountPopulation64(), though likely more efficient.

  ARMRegister src(src_.reg, 64);
  ARMRegister dest(dest_.reg, 64);
  ARMRegister tmp(tmp_, 64);

  Mov(tmp, src);
  if (src_ != dest_) {
    Mov(dest, src);
  }
  Lsr(dest, dest, 1);
  And(dest, dest, 0x5555555555555555);
  Sub(dest, tmp, dest);
  Lsr(tmp, dest, 2);
  And(tmp, tmp, 0x3333333333333333);
  And(dest, dest, 0x3333333333333333);
  Add(dest, tmp, dest);
  Add(dest, dest, Operand(dest, vixl::LSR, 4));
  And(dest, dest, 0x0F0F0F0F0F0F0F0F);
  Add(dest, dest, Operand(dest, vixl::LSL, 8));
  Add(dest, dest, Operand(dest, vixl::LSL, 16));
  Add(dest, dest, Operand(dest, vixl::LSL, 32));
  Lsr(dest, dest, 56);
}

// ===============================================================
// Branch functions

void MacroAssembler::branch8(Condition cond, const Address& lhs, Imm32 rhs,
                             Label* label) {
  vixl::UseScratchRegisterScope temps(this);
  Register scratch = temps.AcquireX().asUnsized();
  MOZ_ASSERT(scratch != lhs.base);

  switch (cond) {
    case Assembler::Equal:
    case Assembler::NotEqual:
    case Assembler::Above:
    case Assembler::AboveOrEqual:
    case Assembler::Below:
    case Assembler::BelowOrEqual:
      load8ZeroExtend(lhs, scratch);
      branch32(cond, scratch, Imm32(uint8_t(rhs.value)), label);
      break;

    case Assembler::GreaterThan:
    case Assembler::GreaterThanOrEqual:
    case Assembler::LessThan:
    case Assembler::LessThanOrEqual:
      load8SignExtend(lhs, scratch);
      branch32(cond, scratch, Imm32(int8_t(rhs.value)), label);
      break;

    default:
      MOZ_CRASH("unexpected condition");
  }
}

void MacroAssembler::branch8(Condition cond, const BaseIndex& lhs, Register rhs,
                             Label* label) {
  vixl::UseScratchRegisterScope temps(this);
  Register scratch = temps.AcquireX().asUnsized();
  MOZ_ASSERT(scratch != lhs.base);

  switch (cond) {
    case Assembler::Equal:
    case Assembler::NotEqual:
    case Assembler::Above:
    case Assembler::AboveOrEqual:
    case Assembler::Below:
    case Assembler::BelowOrEqual:
      load8ZeroExtend(lhs, scratch);
      branch32(cond, scratch, rhs, label);
      break;

    case Assembler::GreaterThan:
    case Assembler::GreaterThanOrEqual:
    case Assembler::LessThan:
    case Assembler::LessThanOrEqual:
      load8SignExtend(lhs, scratch);
      branch32(cond, scratch, rhs, label);
      break;

    default:
      MOZ_CRASH("unexpected condition");
  }
}

void MacroAssembler::branch16(Condition cond, const Address& lhs, Imm32 rhs,
                              Label* label) {
  vixl::UseScratchRegisterScope temps(this);
  Register scratch = temps.AcquireX().asUnsized();
  MOZ_ASSERT(scratch != lhs.base);

  switch (cond) {
    case Assembler::Equal:
    case Assembler::NotEqual:
    case Assembler::Above:
    case Assembler::AboveOrEqual:
    case Assembler::Below:
    case Assembler::BelowOrEqual:
      load16ZeroExtend(lhs, scratch);
      branch32(cond, scratch, Imm32(uint16_t(rhs.value)), label);
      break;

    case Assembler::GreaterThan:
    case Assembler::GreaterThanOrEqual:
    case Assembler::LessThan:
    case Assembler::LessThanOrEqual:
      load16SignExtend(lhs, scratch);
      branch32(cond, scratch, Imm32(int16_t(rhs.value)), label);
      break;

    default:
      MOZ_CRASH("unexpected condition");
  }
}

template <class L>
void MacroAssembler::branch32(Condition cond, Register lhs, Register rhs,
                              L label) {
  cmp32(lhs, rhs);
  B(label, cond);
}

template <class L>
void MacroAssembler::branch32(Condition cond, Register lhs, Imm32 imm,
                              L label) {
  if (imm.value == 0 && cond == Assembler::Equal) {
    Cbz(ARMRegister(lhs, 32), label);
  } else if (imm.value == 0 && cond == Assembler::NotEqual) {
    Cbnz(ARMRegister(lhs, 32), label);
  } else {
    cmp32(lhs, imm);
    B(label, cond);
  }
}

void MacroAssembler::branch32(Condition cond, Register lhs, const Address& rhs,
                              Label* label) {
  vixl::UseScratchRegisterScope temps(this);
  const Register scratch = temps.AcquireX().asUnsized();
  MOZ_ASSERT(scratch != lhs);
  MOZ_ASSERT(scratch != rhs.base);
  load32(rhs, scratch);
  branch32(cond, lhs, scratch, label);
}

void MacroAssembler::branch32(Condition cond, const Address& lhs, Register rhs,
                              Label* label) {
  vixl::UseScratchRegisterScope temps(this);
  const Register scratch = temps.AcquireX().asUnsized();
  MOZ_ASSERT(scratch != lhs.base);
  MOZ_ASSERT(scratch != rhs);
  load32(lhs, scratch);
  branch32(cond, scratch, rhs, label);
}

void MacroAssembler::branch32(Condition cond, const Address& lhs, Imm32 imm,
                              Label* label) {
  vixl::UseScratchRegisterScope temps(this);
  const Register scratch = temps.AcquireX().asUnsized();
  MOZ_ASSERT(scratch != lhs.base);
  load32(lhs, scratch);
  branch32(cond, scratch, imm, label);
}

void MacroAssembler::branch32(Condition cond, const AbsoluteAddress& lhs,
                              Register rhs, Label* label) {
  vixl::UseScratchRegisterScope temps(this);
  const Register scratch = temps.AcquireX().asUnsized();
  movePtr(ImmPtr(lhs.addr), scratch);
  branch32(cond, Address(scratch, 0), rhs, label);
}

void MacroAssembler::branch32(Condition cond, const AbsoluteAddress& lhs,
                              Imm32 rhs, Label* label) {
  vixl::UseScratchRegisterScope temps(this);
  const Register scratch = temps.AcquireX().asUnsized();
  load32(lhs, scratch);
  branch32(cond, scratch, rhs, label);
}

void MacroAssembler::branch32(Condition cond, const BaseIndex& lhs, Imm32 rhs,
                              Label* label) {
  vixl::UseScratchRegisterScope temps(this);
  const ARMRegister scratch32 = temps.AcquireW();
  MOZ_ASSERT(scratch32.asUnsized() != lhs.base);
  MOZ_ASSERT(scratch32.asUnsized() != lhs.index);
  doBaseIndex(scratch32, lhs, vixl::LDR_w);
  branch32(cond, scratch32.asUnsized(), rhs, label);
}

void MacroAssembler::branch32(Condition cond, wasm::SymbolicAddress lhs,
                              Imm32 rhs, Label* label) {
  vixl::UseScratchRegisterScope temps(this);
  const Register scratch = temps.AcquireX().asUnsized();
  movePtr(lhs, scratch);
  branch32(cond, Address(scratch, 0), rhs, label);
}

void MacroAssembler::branch64(Condition cond, Register64 lhs, Imm64 val,
                              Label* success, Label* fail) {
  if (val.value == 0 && cond == Assembler::Equal) {
    Cbz(ARMRegister(lhs.reg, 64), success);
  } else if (val.value == 0 && cond == Assembler::NotEqual) {
    Cbnz(ARMRegister(lhs.reg, 64), success);
  } else {
    Cmp(ARMRegister(lhs.reg, 64), val.value);
    B(success, cond);
  }
  if (fail) {
    B(fail);
  }
}

void MacroAssembler::branch64(Condition cond, Register64 lhs, Register64 rhs,
                              Label* success, Label* fail) {
  Cmp(ARMRegister(lhs.reg, 64), ARMRegister(rhs.reg, 64));
  B(success, cond);
  if (fail) {
    B(fail);
  }
}

void MacroAssembler::branch64(Condition cond, const Address& lhs, Imm64 val,
                              Label* label) {
  MOZ_ASSERT(cond == Assembler::NotEqual || cond == Assembler::Equal,
             "other condition codes not supported");

  branchPtr(cond, lhs, ImmWord(val.value), label);
}

void MacroAssembler::branch64(Condition cond, const Address& lhs,
                              Register64 rhs, Label* label) {
  MOZ_ASSERT(cond == Assembler::NotEqual || cond == Assembler::Equal,
             "other condition codes not supported");

  branchPtr(cond, lhs, rhs.reg, label);
}

void MacroAssembler::branch64(Condition cond, const Address& lhs,
                              const Address& rhs, Register scratch,
                              Label* label) {
  MOZ_ASSERT(cond == Assembler::NotEqual || cond == Assembler::Equal,
             "other condition codes not supported");
  MOZ_ASSERT(lhs.base != scratch);
  MOZ_ASSERT(rhs.base != scratch);

  loadPtr(rhs, scratch);
  branchPtr(cond, lhs, scratch, label);
}

template <class L>
void MacroAssembler::branchPtr(Condition cond, Register lhs, Register rhs,
                               L label) {
  Cmp(ARMRegister(lhs, 64), ARMRegister(rhs, 64));
  B(label, cond);
}

void MacroAssembler::branchPtr(Condition cond, Register lhs, Imm32 rhs,
                               Label* label) {
  if (rhs.value == 0 && cond == Assembler::Equal) {
    Cbz(ARMRegister(lhs, 64), label);
  } else if (rhs.value == 0 && cond == Assembler::NotEqual) {
    Cbnz(ARMRegister(lhs, 64), label);
  } else {
    cmpPtr(lhs, rhs);
    B(label, cond);
  }
}

void MacroAssembler::branchPtr(Condition cond, Register lhs, ImmPtr rhs,
                               Label* label) {
  if (rhs.value == 0 && cond == Assembler::Equal) {
    Cbz(ARMRegister(lhs, 64), label);
  } else if (rhs.value == 0 && cond == Assembler::NotEqual) {
    Cbnz(ARMRegister(lhs, 64), label);
  } else {
    cmpPtr(lhs, rhs);
    B(label, cond);
  }
}

void MacroAssembler::branchPtr(Condition cond, Register lhs, ImmGCPtr rhs,
                               Label* label) {
  vixl::UseScratchRegisterScope temps(this);
  const Register scratch = temps.AcquireX().asUnsized();
  MOZ_ASSERT(scratch != lhs);
  movePtr(rhs, scratch);
  branchPtr(cond, lhs, scratch, label);
}

void MacroAssembler::branchPtr(Condition cond, Register lhs, ImmWord rhs,
                               Label* label) {
  if (rhs.value == 0 && cond == Assembler::Equal) {
    Cbz(ARMRegister(lhs, 64), label);
  } else if (rhs.value == 0 && cond == Assembler::NotEqual) {
    Cbnz(ARMRegister(lhs, 64), label);
  } else {
    cmpPtr(lhs, rhs);
    B(label, cond);
  }
}

template <class L>
void MacroAssembler::branchPtr(Condition cond, const Address& lhs, Register rhs,
                               L label) {
  vixl::UseScratchRegisterScope temps(this);
  const Register scratch = temps.AcquireX().asUnsized();
  MOZ_ASSERT(scratch != lhs.base);
  MOZ_ASSERT(scratch != rhs);
  loadPtr(lhs, scratch);
  branchPtr(cond, scratch, rhs, label);
}

void MacroAssembler::branchPtr(Condition cond, const Address& lhs, ImmPtr rhs,
                               Label* label) {
  vixl::UseScratchRegisterScope temps(this);
  const Register scratch = temps.AcquireX().asUnsized();
  MOZ_ASSERT(scratch != lhs.base);
  loadPtr(lhs, scratch);
  branchPtr(cond, scratch, rhs, label);
}

void MacroAssembler::branchPtr(Condition cond, const Address& lhs, ImmGCPtr rhs,
                               Label* label) {
  vixl::UseScratchRegisterScope temps(this);
  const ARMRegister scratch1_64 = temps.AcquireX();
  const ARMRegister scratch2_64 = temps.AcquireX();
  MOZ_ASSERT(scratch1_64.asUnsized() != lhs.base);
  MOZ_ASSERT(scratch2_64.asUnsized() != lhs.base);

  movePtr(rhs, scratch1_64.asUnsized());
  loadPtr(lhs, scratch2_64.asUnsized());
  branchPtr(cond, scratch2_64.asUnsized(), scratch1_64.asUnsized(), label);
}

void MacroAssembler::branchPtr(Condition cond, const Address& lhs, ImmWord rhs,
                               Label* label) {
  vixl::UseScratchRegisterScope temps(this);
  const Register scratch = temps.AcquireX().asUnsized();
  MOZ_ASSERT(scratch != lhs.base);
  loadPtr(lhs, scratch);
  branchPtr(cond, scratch, rhs, label);
}

void MacroAssembler::branchPtr(Condition cond, const AbsoluteAddress& lhs,
                               Register rhs, Label* label) {
  vixl::UseScratchRegisterScope temps(this);
  const Register scratch = temps.AcquireX().asUnsized();
  MOZ_ASSERT(scratch != rhs);
  loadPtr(lhs, scratch);
  branchPtr(cond, scratch, rhs, label);
}

void MacroAssembler::branchPtr(Condition cond, const AbsoluteAddress& lhs,
                               ImmWord rhs, Label* label) {
  vixl::UseScratchRegisterScope temps(this);
  const Register scratch = temps.AcquireX().asUnsized();
  loadPtr(lhs, scratch);
  branchPtr(cond, scratch, rhs, label);
}

void MacroAssembler::branchPtr(Condition cond, wasm::SymbolicAddress lhs,
                               Register rhs, Label* label) {
  vixl::UseScratchRegisterScope temps(this);
  const Register scratch = temps.AcquireX().asUnsized();
  MOZ_ASSERT(scratch != rhs);
  loadPtr(lhs, scratch);
  branchPtr(cond, scratch, rhs, label);
}

void MacroAssembler::branchPtr(Condition cond, const BaseIndex& lhs,
                               ImmWord rhs, Label* label) {
  vixl::UseScratchRegisterScope temps(this);
  const Register scratch = temps.AcquireX().asUnsized();
  MOZ_ASSERT(scratch != lhs.base);
  MOZ_ASSERT(scratch != lhs.index);
  loadPtr(lhs, scratch);
  branchPtr(cond, scratch, rhs, label);
}

void MacroAssembler::branchPtr(Condition cond, const BaseIndex& lhs,
                               Register rhs, Label* label) {
  vixl::UseScratchRegisterScope temps(this);
  const Register scratch = temps.AcquireX().asUnsized();
  MOZ_ASSERT(scratch != lhs.base);
  MOZ_ASSERT(scratch != lhs.index);
  loadPtr(lhs, scratch);
  branchPtr(cond, scratch, rhs, label);
}

void MacroAssembler::branchPrivatePtr(Condition cond, const Address& lhs,
                                      Register rhs, Label* label) {
  branchPtr(cond, lhs, rhs, label);
}

void MacroAssembler::branchFloat(DoubleCondition cond, FloatRegister lhs,
                                 FloatRegister rhs, Label* label) {
  compareFloat(cond, lhs, rhs);
  switch (cond) {
    case DoubleNotEqual: {
      Label unordered;
      // not equal *and* ordered
      branch(Overflow, &unordered);
      branch(NotEqual, label);
      bind(&unordered);
      break;
    }
    case DoubleEqualOrUnordered:
      branch(Overflow, label);
      branch(Equal, label);
      break;
    default:
      branch(Condition(cond), label);
  }
}

void MacroAssembler::branchTruncateFloat32MaybeModUint32(FloatRegister src,
                                                         Register dest,
                                                         Label* fail) {
  vixl::UseScratchRegisterScope temps(this);
  const ARMRegister scratch64 = temps.AcquireX();

  ARMFPRegister src32(src, 32);
  ARMRegister dest64(dest, 64);

  MOZ_ASSERT(!scratch64.Is(dest64));

  // Convert scalar to signed 64-bit fixed-point, rounding toward zero.
  // In the case of overflow, the output is saturated.
  // In the case of NaN and -0, the output is zero.
  Fcvtzs(dest64, src32);

  // Fail if the result is saturated, i.e. it's either INT64_MIN or INT64_MAX.
  Add(scratch64, dest64, Operand(0x7fff'ffff'ffff'ffff));
  Cmn(scratch64, 3);
  B(fail, Assembler::Above);

  // Clear upper 32 bits.
  Uxtw(dest64, dest64);
}

void MacroAssembler::branchTruncateFloat32ToInt32(FloatRegister src,
                                                  Register dest, Label* fail) {
  convertFloat32ToInt32(src, dest, fail, false);
}

void MacroAssembler::branchDouble(DoubleCondition cond, FloatRegister lhs,
                                  FloatRegister rhs, Label* label) {
  compareDouble(cond, lhs, rhs);
  switch (cond) {
    case DoubleNotEqual: {
      Label unordered;
      // not equal *and* ordered
      branch(Overflow, &unordered);
      branch(NotEqual, label);
      bind(&unordered);
      break;
    }
    case DoubleEqualOrUnordered:
      branch(Overflow, label);
      branch(Equal, label);
      break;
    default:
      branch(Condition(cond), label);
  }
}

void MacroAssembler::branchTruncateDoubleMaybeModUint32(FloatRegister src,
                                                        Register dest,
                                                        Label* fail) {
  // ARMv8.3 chips support the FJCVTZS instruction, which handles exactly this
  // logic. But the simulator does not implement it.
#if defined(JS_SIMULATOR_ARM64)
  const bool fjscvt = false;
#else
  const bool fjscvt = CPUHas(vixl::CPUFeatures::kFP, vixl::CPUFeatures::kJSCVT);
#endif
  if (fjscvt) {
    Fjcvtzs(ARMRegister(dest, 32), ARMFPRegister(src, 64));
    return;
  }

  vixl::UseScratchRegisterScope temps(this);
  const ARMRegister scratch64 = temps.AcquireX();

  // An out of range integer will be saturated to the destination size.
  ARMFPRegister src64(src, 64);
  ARMRegister dest64(dest, 64);

  MOZ_ASSERT(!scratch64.Is(dest64));

  // Convert scalar to signed 64-bit fixed-point, rounding toward zero.
  // In the case of overflow, the output is saturated.
  // In the case of NaN and -0, the output is zero.
  Fcvtzs(dest64, src64);

  // Fail if the result is saturated, i.e. it's either INT64_MIN or INT64_MAX.
  Add(scratch64, dest64, Operand(0x7fff'ffff'ffff'ffff));
  Cmn(scratch64, 3);
  B(fail, Assembler::Above);

  // Clear upper 32 bits.
  Uxtw(dest64, dest64);
}

void MacroAssembler::branchTruncateDoubleToInt32(FloatRegister src,
                                                 Register dest, Label* fail) {
  ARMFPRegister src64(src, 64);
  ARMRegister dest64(dest, 64);
  ARMRegister dest32(dest, 32);

  // Convert scalar to signed 64-bit fixed-point, rounding toward zero.
  // In the case of overflow, the output is saturated.
  // In the case of NaN and -0, the output is zero.
  Fcvtzs(dest64, src64);

  // Fail on overflow cases.
  Cmp(dest64, Operand(dest32, vixl::SXTW));
  B(fail, Assembler::NotEqual);

  // Clear upper 32 bits.
  Uxtw(dest64, dest64);
}

template <typename T>
void MacroAssembler::branchAdd32(Condition cond, T src, Register dest,
                                 Label* label) {
  adds32(src, dest);
  B(label, cond);
}

template <typename T>
void MacroAssembler::branchSub32(Condition cond, T src, Register dest,
                                 Label* label) {
  subs32(src, dest);
  branch(cond, label);
}

template <typename T>
void MacroAssembler::branchMul32(Condition cond, T src, Register dest,
                                 Label* label) {
  MOZ_ASSERT(cond == Assembler::Overflow);
  vixl::UseScratchRegisterScope temps(this);
  mul32(src, dest, dest, label);
}

template <typename T>
void MacroAssembler::branchRshift32(Condition cond, T src, Register dest,
                                    Label* label) {
  MOZ_ASSERT(cond == Zero || cond == NonZero);
  rshift32(src, dest);
  branch32(cond == Zero ? Equal : NotEqual, dest, Imm32(0), label);
}

void MacroAssembler::branchNeg32(Condition cond, Register reg, Label* label) {
  MOZ_ASSERT(cond == Overflow);
  negs32(reg);
  B(label, cond);
}

template <typename T>
void MacroAssembler::branchAddPtr(Condition cond, T src, Register dest,
                                  Label* label) {
  adds64(src, dest);
  B(label, cond);
}

template <typename T>
void MacroAssembler::branchSubPtr(Condition cond, T src, Register dest,
                                  Label* label) {
  subs64(src, dest);
  B(label, cond);
}

void MacroAssembler::branchMulPtr(Condition cond, Register src, Register dest,
                                  Label* label) {
  MOZ_ASSERT(cond == Assembler::Overflow);

  vixl::UseScratchRegisterScope temps(this);
  const ARMRegister scratch64 = temps.AcquireX();
  const ARMRegister src64(src, 64);
  const ARMRegister dest64(dest, 64);

  Smulh(scratch64, dest64, src64);
  Mul(dest64, dest64, src64);
  Cmp(scratch64, Operand(dest64, vixl::ASR, 63));
  B(label, NotEqual);
}

void MacroAssembler::decBranchPtr(Condition cond, Register lhs, Imm32 rhs,
                                  Label* label) {
  Subs(ARMRegister(lhs, 64), ARMRegister(lhs, 64), Operand(rhs.value));
  B(cond, label);
}

template <class L>
void MacroAssembler::branchTest32(Condition cond, Register lhs, Register rhs,
                                  L label) {
  MOZ_ASSERT(cond == Zero || cond == NonZero || cond == Signed ||
             cond == NotSigned);
  // The x86-biased front end prefers |test foo, foo| to |cmp foo, #0|.  We look
  // for the former pattern and expand as Cbz/Cbnz when possible.
  if (lhs == rhs && cond == Zero) {
    Cbz(ARMRegister(lhs, 32), label);
  } else if (lhs == rhs && cond == NonZero) {
    Cbnz(ARMRegister(lhs, 32), label);
  } else {
    test32(lhs, rhs);
    B(label, cond);
  }
}

template <class L>
void MacroAssembler::branchTest32(Condition cond, Register lhs, Imm32 rhs,
                                  L label) {
  MOZ_ASSERT(cond == Zero || cond == NonZero || cond == Signed ||
             cond == NotSigned);
  test32(lhs, rhs);
  B(label, cond);
}

void MacroAssembler::branchTest32(Condition cond, const Address& lhs, Imm32 rhs,
                                  Label* label) {
  vixl::UseScratchRegisterScope temps(this);
  const Register scratch = temps.AcquireX().asUnsized();
  MOZ_ASSERT(scratch != lhs.base);
  load32(lhs, scratch);
  branchTest32(cond, scratch, rhs, label);
}

void MacroAssembler::branchTest32(Condition cond, const AbsoluteAddress& lhs,
                                  Imm32 rhs, Label* label) {
  vixl::UseScratchRegisterScope temps(this);
  const Register scratch = temps.AcquireX().asUnsized();
  load32(lhs, scratch);
  branchTest32(cond, scratch, rhs, label);
}

template <class L>
void MacroAssembler::branchTestPtr(Condition cond, Register lhs, Register rhs,
                                   L label) {
  // See branchTest32.
  MOZ_ASSERT(cond == Zero || cond == NonZero || cond == Signed ||
             cond == NotSigned);
  if (lhs == rhs && cond == Zero) {
    Cbz(ARMRegister(lhs, 64), label);
  } else if (lhs == rhs && cond == NonZero) {
    Cbnz(ARMRegister(lhs, 64), label);
  } else {
    Tst(ARMRegister(lhs, 64), Operand(ARMRegister(rhs, 64)));
    B(label, cond);
  }
}

void MacroAssembler::branchTestPtr(Condition cond, Register lhs, Imm32 rhs,
                                   Label* label) {
  Tst(ARMRegister(lhs, 64), Operand(rhs.value));
  B(label, cond);
}

void MacroAssembler::branchTestPtr(Condition cond, const Address& lhs,
                                   Imm32 rhs, Label* label) {
  vixl::UseScratchRegisterScope temps(this);
  const Register scratch = temps.AcquireX().asUnsized();
  MOZ_ASSERT(scratch != lhs.base);
  loadPtr(lhs, scratch);
  branchTestPtr(cond, scratch, rhs, label);
}

template <class L>
void MacroAssembler::branchTest64(Condition cond, Register64 lhs,
                                  Register64 rhs, Register temp, L label) {
  branchTestPtr(cond, lhs.reg, rhs.reg, label);
}

void MacroAssembler::branchTestUndefined(Condition cond, Register tag,
                                         Label* label) {
  branchTestUndefinedImpl(cond, tag, label);
}

void MacroAssembler::branchTestUndefined(Condition cond, const Address& address,
                                         Label* label) {
  branchTestUndefinedImpl(cond, address, label);
}

void MacroAssembler::branchTestUndefined(Condition cond,
                                         const BaseIndex& address,
                                         Label* label) {
  branchTestUndefinedImpl(cond, address, label);
}

void MacroAssembler::branchTestUndefined(Condition cond,
                                         const ValueOperand& value,
                                         Label* label) {
  branchTestUndefinedImpl(cond, value, label);
}

template <typename T>
void MacroAssembler::branchTestUndefinedImpl(Condition cond, const T& t,
                                             Label* label) {
  Condition c = testUndefined(cond, t);
  B(label, c);
}

void MacroAssembler::branchTestInt32(Condition cond, Register tag,
                                     Label* label) {
  branchTestInt32Impl(cond, tag, label);
}

void MacroAssembler::branchTestInt32(Condition cond, const Address& address,
                                     Label* label) {
  branchTestInt32Impl(cond, address, label);
}

void MacroAssembler::branchTestInt32(Condition cond, const BaseIndex& address,
                                     Label* label) {
  branchTestInt32Impl(cond, address, label);
}

void MacroAssembler::branchTestInt32(Condition cond, const ValueOperand& value,
                                     Label* label) {
  branchTestInt32Impl(cond, value, label);
}

template <typename T>
void MacroAssembler::branchTestInt32Impl(Condition cond, const T& t,
                                         Label* label) {
  Condition c = testInt32(cond, t);
  B(label, c);
}

void MacroAssembler::branchTestInt32Truthy(bool truthy,
                                           const ValueOperand& value,
                                           Label* label) {
  Condition c = testInt32Truthy(truthy, value);
  B(label, c);
}

void MacroAssembler::branchTestDouble(Condition cond, Register tag,
                                      Label* label) {
  branchTestDoubleImpl(cond, tag, label);
}

void MacroAssembler::branchTestDouble(Condition cond, const Address& address,
                                      Label* label) {
  branchTestDoubleImpl(cond, address, label);
}

void MacroAssembler::branchTestDouble(Condition cond, const BaseIndex& address,
                                      Label* label) {
  branchTestDoubleImpl(cond, address, label);
}

void MacroAssembler::branchTestDouble(Condition cond, const ValueOperand& value,
                                      Label* label) {
  branchTestDoubleImpl(cond, value, label);
}

template <typename T>
void MacroAssembler::branchTestDoubleImpl(Condition cond, const T& t,
                                          Label* label) {
  Condition c = testDouble(cond, t);
  B(label, c);
}

void MacroAssembler::branchTestDoubleTruthy(bool truthy, FloatRegister reg,
                                            Label* label) {
  Fcmp(ARMFPRegister(reg, 64), 0.0);
  if (!truthy) {
    // falsy values are zero, and NaN.
    branch(Zero, label);
    branch(Overflow, label);
  } else {
    // truthy values are non-zero and not nan.
    // If it is overflow
    Label onFalse;
    branch(Zero, &onFalse);
    branch(Overflow, &onFalse);
    B(label);
    bind(&onFalse);
  }
}

void MacroAssembler::branchTestNumber(Condition cond, Register tag,
                                      Label* label) {
  branchTestNumberImpl(cond, tag, label);
}

void MacroAssembler::branchTestNumber(Condition cond, const ValueOperand& value,
                                      Label* label) {
  branchTestNumberImpl(cond, value, label);
}

template <typename T>
void MacroAssembler::branchTestNumberImpl(Condition cond, const T& t,
                                          Label* label) {
  Condition c = testNumber(cond, t);
  B(label, c);
}

void MacroAssembler::branchTestBoolean(Condition cond, Register tag,
                                       Label* label) {
  branchTestBooleanImpl(cond, tag, label);
}

void MacroAssembler::branchTestBoolean(Condition cond, const Address& address,
                                       Label* label) {
  branchTestBooleanImpl(cond, address, label);
}

void MacroAssembler::branchTestBoolean(Condition cond, const BaseIndex& address,
                                       Label* label) {
  branchTestBooleanImpl(cond, address, label);
}

void MacroAssembler::branchTestBoolean(Condition cond,
                                       const ValueOperand& value,
                                       Label* label) {
  branchTestBooleanImpl(cond, value, label);
}

template <typename T>
void MacroAssembler::branchTestBooleanImpl(Condition cond, const T& tag,
                                           Label* label) {
  Condition c = testBoolean(cond, tag);
  B(label, c);
}

void MacroAssembler::branchTestBooleanTruthy(bool truthy,
                                             const ValueOperand& value,
                                             Label* label) {
  Condition c = testBooleanTruthy(truthy, value);
  B(label, c);
}

void MacroAssembler::branchTestString(Condition cond, Register tag,
                                      Label* label) {
  branchTestStringImpl(cond, tag, label);
}

void MacroAssembler::branchTestString(Condition cond, const Address& address,
                                      Label* label) {
  branchTestStringImpl(cond, address, label);
}

void MacroAssembler::branchTestString(Condition cond, const BaseIndex& address,
                                      Label* label) {
  branchTestStringImpl(cond, address, label);
}

void MacroAssembler::branchTestString(Condition cond, const ValueOperand& value,
                                      Label* label) {
  branchTestStringImpl(cond, value, label);
}

template <typename T>
void MacroAssembler::branchTestStringImpl(Condition cond, const T& t,
                                          Label* label) {
  Condition c = testString(cond, t);
  B(label, c);
}

void MacroAssembler::branchTestStringTruthy(bool truthy,
                                            const ValueOperand& value,
                                            Label* label) {
  Condition c = testStringTruthy(truthy, value);
  B(label, c);
}

void MacroAssembler::branchTestSymbol(Condition cond, Register tag,
                                      Label* label) {
  branchTestSymbolImpl(cond, tag, label);
}

void MacroAssembler::branchTestSymbol(Condition cond, const Address& address,
                                      Label* label) {
  branchTestSymbolImpl(cond, address, label);
}

void MacroAssembler::branchTestSymbol(Condition cond, const BaseIndex& address,
                                      Label* label) {
  branchTestSymbolImpl(cond, address, label);
}

void MacroAssembler::branchTestSymbol(Condition cond, const ValueOperand& value,
                                      Label* label) {
  branchTestSymbolImpl(cond, value, label);
}

template <typename T>
void MacroAssembler::branchTestSymbolImpl(Condition cond, const T& t,
                                          Label* label) {
  Condition c = testSymbol(cond, t);
  B(label, c);
}

void MacroAssembler::branchTestBigInt(Condition cond, Register tag,
                                      Label* label) {
  branchTestBigIntImpl(cond, tag, label);
}

void MacroAssembler::branchTestBigInt(Condition cond, const Address& address,
                                      Label* label) {
  branchTestBigIntImpl(cond, address, label);
}

void MacroAssembler::branchTestBigInt(Condition cond, const BaseIndex& address,
                                      Label* label) {
  branchTestBigIntImpl(cond, address, label);
}

void MacroAssembler::branchTestBigInt(Condition cond, const ValueOperand& value,
                                      Label* label) {
  branchTestBigIntImpl(cond, value, label);
}

template <typename T>
void MacroAssembler::branchTestBigIntImpl(Condition cond, const T& t,
                                          Label* label) {
  Condition c = testBigInt(cond, t);
  B(label, c);
}

void MacroAssembler::branchTestBigIntTruthy(bool truthy,
                                            const ValueOperand& value,
                                            Label* label) {
  Condition c = testBigIntTruthy(truthy, value);
  B(label, c);
}

void MacroAssembler::branchTestNull(Condition cond, Register tag,
                                    Label* label) {
  branchTestNullImpl(cond, tag, label);
}

void MacroAssembler::branchTestNull(Condition cond, const Address& address,
                                    Label* label) {
  branchTestNullImpl(cond, address, label);
}

void MacroAssembler::branchTestNull(Condition cond, const BaseIndex& address,
                                    Label* label) {
  branchTestNullImpl(cond, address, label);
}

void MacroAssembler::branchTestNull(Condition cond, const ValueOperand& value,
                                    Label* label) {
  branchTestNullImpl(cond, value, label);
}

template <typename T>
void MacroAssembler::branchTestNullImpl(Condition cond, const T& t,
                                        Label* label) {
  Condition c = testNull(cond, t);
  B(label, c);
}

void MacroAssembler::branchTestObject(Condition cond, Register tag,
                                      Label* label) {
  branchTestObjectImpl(cond, tag, label);
}

void MacroAssembler::branchTestObject(Condition cond, const Address& address,
                                      Label* label) {
  branchTestObjectImpl(cond, address, label);
}

void MacroAssembler::branchTestObject(Condition cond, const BaseIndex& address,
                                      Label* label) {
  branchTestObjectImpl(cond, address, label);
}

void MacroAssembler::branchTestObject(Condition cond, const ValueOperand& value,
                                      Label* label) {
  branchTestObjectImpl(cond, value, label);
}

template <typename T>
void MacroAssembler::branchTestObjectImpl(Condition cond, const T& t,
                                          Label* label) {
  Condition c = testObject(cond, t);
  B(label, c);
}

void MacroAssembler::branchTestGCThing(Condition cond, const Address& address,
                                       Label* label) {
  branchTestGCThingImpl(cond, address, label);
}

void MacroAssembler::branchTestGCThing(Condition cond, const BaseIndex& address,
                                       Label* label) {
  branchTestGCThingImpl(cond, address, label);
}

void MacroAssembler::branchTestGCThing(Condition cond,
                                       const ValueOperand& value,
                                       Label* label) {
  branchTestGCThingImpl(cond, value, label);
}

template <typename T>
void MacroAssembler::branchTestGCThingImpl(Condition cond, const T& src,
                                           Label* label) {
  Condition c = testGCThing(cond, src);
  B(label, c);
}

void MacroAssembler::branchTestPrimitive(Condition cond, Register tag,
                                         Label* label) {
  branchTestPrimitiveImpl(cond, tag, label);
}

void MacroAssembler::branchTestPrimitive(Condition cond,
                                         const ValueOperand& value,
                                         Label* label) {
  branchTestPrimitiveImpl(cond, value, label);
}

template <typename T>
void MacroAssembler::branchTestPrimitiveImpl(Condition cond, const T& t,
                                             Label* label) {
  Condition c = testPrimitive(cond, t);
  B(label, c);
}

void MacroAssembler::branchTestMagic(Condition cond, Register tag,
                                     Label* label) {
  branchTestMagicImpl(cond, tag, label);
}

void MacroAssembler::branchTestMagic(Condition cond, const Address& address,
                                     Label* label) {
  branchTestMagicImpl(cond, address, label);
}

void MacroAssembler::branchTestMagic(Condition cond, const BaseIndex& address,
                                     Label* label) {
  branchTestMagicImpl(cond, address, label);
}

template <class L>
void MacroAssembler::branchTestMagic(Condition cond, const ValueOperand& value,
                                     L label) {
  branchTestMagicImpl(cond, value, label);
}

template <typename T, class L>
void MacroAssembler::branchTestMagicImpl(Condition cond, const T& t, L label) {
  Condition c = testMagic(cond, t);
  B(label, c);
}

void MacroAssembler::branchTestMagic(Condition cond, const Address& valaddr,
                                     JSWhyMagic why, Label* label) {
  uint64_t magic = MagicValue(why).asRawBits();
  cmpPtr(valaddr, ImmWord(magic));
  B(label, cond);
}

void MacroAssembler::branchTestValue(Condition cond, const BaseIndex& lhs,
                                     const ValueOperand& rhs, Label* label) {
  MOZ_ASSERT(cond == Assembler::Equal || cond == Assembler::NotEqual);
  branchPtr(cond, lhs, rhs.valueReg(), label);
}

template <typename T>
void MacroAssembler::testNumberSet(Condition cond, const T& src,
                                   Register dest) {
  cond = testNumber(cond, src);
  emitSet(cond, dest);
}

template <typename T>
void MacroAssembler::testBooleanSet(Condition cond, const T& src,
                                    Register dest) {
  cond = testBoolean(cond, src);
  emitSet(cond, dest);
}

template <typename T>
void MacroAssembler::testStringSet(Condition cond, const T& src,
                                   Register dest) {
  cond = testString(cond, src);
  emitSet(cond, dest);
}

template <typename T>
void MacroAssembler::testSymbolSet(Condition cond, const T& src,
                                   Register dest) {
  cond = testSymbol(cond, src);
  emitSet(cond, dest);
}

template <typename T>
void MacroAssembler::testBigIntSet(Condition cond, const T& src,
                                   Register dest) {
  cond = testBigInt(cond, src);
  emitSet(cond, dest);
}

void MacroAssembler::branchToComputedAddress(const BaseIndex& addr) {
  vixl::UseScratchRegisterScope temps(&this->asVIXL());
  const ARMRegister scratch64 = temps.AcquireX();
  loadPtr(addr, scratch64.asUnsized());
  Br(scratch64);
}

void MacroAssembler::cmp32Move32(Condition cond, Register lhs, Imm32 rhs,
                                 Register src, Register dest) {
  cmp32(lhs, rhs);
  Csel(ARMRegister(dest, 32), ARMRegister(src, 32), ARMRegister(dest, 32),
       cond);
}

void MacroAssembler::cmp32Move32(Condition cond, Register lhs, Register rhs,
                                 Register src, Register dest) {
  cmp32(lhs, rhs);
  Csel(ARMRegister(dest, 32), ARMRegister(src, 32), ARMRegister(dest, 32),
       cond);
}

void MacroAssembler::cmp32Move32(Condition cond, Register lhs,
                                 const Address& rhs, Register src,
                                 Register dest) {
  MOZ_CRASH("NYI");
}

void MacroAssembler::cmpPtrMovePtr(Condition cond, Register lhs, Register rhs,
                                   Register src, Register dest) {
  cmpPtr(lhs, rhs);
  Csel(ARMRegister(dest, 64), ARMRegister(src, 64), ARMRegister(dest, 64),
       cond);
}

void MacroAssembler::cmpPtrMovePtr(Condition cond, Register lhs,
                                   const Address& rhs, Register src,
                                   Register dest) {
  MOZ_CRASH("NYI");
}

void MacroAssembler::cmp32Load32(Condition cond, Register lhs,
                                 const Address& rhs, const Address& src,
                                 Register dest) {
  MOZ_CRASH("NYI");
}

void MacroAssembler::cmp32Load32(Condition cond, Register lhs, Register rhs,
                                 const Address& src, Register dest) {
  MOZ_CRASH("NYI");
}

void MacroAssembler::cmp32Load32(Condition cond, Register lhs, Imm32 rhs,
                                 const Address& src, Register dest) {
  // ARM64 does not support conditional loads, so we use a branch with a CSel
  // (to prevent Spectre attacks).
  vixl::UseScratchRegisterScope temps(this);
  const ARMRegister scratch32 = temps.AcquireW();

  // Can't use branch32() here, because it may select Cbz/Cbnz which don't
  // affect condition flags.
  Label done;
  cmp32(lhs, rhs);
  B(&done, Assembler::InvertCondition(cond));

  load32(src, scratch32.asUnsized());
  Csel(ARMRegister(dest, 32), scratch32, ARMRegister(dest, 32), cond);

  bind(&done);
}

void MacroAssembler::cmp32MovePtr(Condition cond, Register lhs, Imm32 rhs,
                                  Register src, Register dest) {
  cmp32(lhs, rhs);
  Csel(ARMRegister(dest, 64), ARMRegister(src, 64), ARMRegister(dest, 64),
       cond);
}

void MacroAssembler::cmp32LoadPtr(Condition cond, const Address& lhs, Imm32 rhs,
                                  const Address& src, Register dest) {
  // ARM64 does not support conditional loads, so we use a branch with a CSel
  // (to prevent Spectre attacks).
  vixl::UseScratchRegisterScope temps(this);
  const ARMRegister scratch64 = temps.AcquireX();

  // Can't use branch32() here, because it may select Cbz/Cbnz which don't
  // affect condition flags.
  Label done;
  cmp32(lhs, rhs);
  B(&done, Assembler::InvertCondition(cond));

  loadPtr(src, scratch64.asUnsized());
  Csel(ARMRegister(dest, 64), scratch64, ARMRegister(dest, 64), cond);
  bind(&done);
}

void MacroAssembler::test32LoadPtr(Condition cond, const Address& addr,
                                   Imm32 mask, const Address& src,
                                   Register dest) {
  MOZ_ASSERT(cond == Assembler::Zero || cond == Assembler::NonZero);

  // ARM64 does not support conditional loads, so we use a branch with a CSel
  // (to prevent Spectre attacks).
  vixl::UseScratchRegisterScope temps(this);
  const ARMRegister scratch64 = temps.AcquireX();
  Label done;
  branchTest32(Assembler::InvertCondition(cond), addr, mask, &done);
  loadPtr(src, scratch64.asUnsized());
  Csel(ARMRegister(dest, 64), scratch64, ARMRegister(dest, 64), cond);
  bind(&done);
}

void MacroAssembler::test32MovePtr(Condition cond, const Address& addr,
                                   Imm32 mask, Register src, Register dest) {
  MOZ_ASSERT(cond == Assembler::Zero || cond == Assembler::NonZero);
  test32(addr, mask);
  Csel(ARMRegister(dest, 64), ARMRegister(src, 64), ARMRegister(dest, 64),
       cond);
}

void MacroAssembler::spectreMovePtr(Condition cond, Register src,
                                    Register dest) {
  Csel(ARMRegister(dest, 64), ARMRegister(src, 64), ARMRegister(dest, 64),
       cond);
}

void MacroAssembler::spectreZeroRegister(Condition cond, Register,
                                         Register dest) {
  Csel(ARMRegister(dest, 64), ARMRegister(dest, 64), vixl::xzr,
       Assembler::InvertCondition(cond));
}

void MacroAssembler::spectreBoundsCheck32(Register index, Register length,
                                          Register maybeScratch,
                                          Label* failure) {
  MOZ_ASSERT(length != maybeScratch);
  MOZ_ASSERT(index != maybeScratch);

  branch32(Assembler::BelowOrEqual, length, index, failure);

  if (JitOptions.spectreIndexMasking) {
    Csel(ARMRegister(index, 32), ARMRegister(index, 32), vixl::wzr,
         Assembler::Above);
  }
}

void MacroAssembler::spectreBoundsCheck32(Register index, const Address& length,
                                          Register maybeScratch,
                                          Label* failure) {
  MOZ_ASSERT(index != length.base);
  MOZ_ASSERT(length.base != maybeScratch);
  MOZ_ASSERT(index != maybeScratch);

  branch32(Assembler::BelowOrEqual, length, index, failure);

  if (JitOptions.spectreIndexMasking) {
    Csel(ARMRegister(index, 32), ARMRegister(index, 32), vixl::wzr,
         Assembler::Above);
  }
}

void MacroAssembler::spectreBoundsCheckPtr(Register index, Register length,
                                           Register maybeScratch,
                                           Label* failure) {
  MOZ_ASSERT(length != maybeScratch);
  MOZ_ASSERT(index != maybeScratch);

  branchPtr(Assembler::BelowOrEqual, length, index, failure);

  if (JitOptions.spectreIndexMasking) {
    Csel(ARMRegister(index, 64), ARMRegister(index, 64), vixl::xzr,
         Assembler::Above);
  }
}

void MacroAssembler::spectreBoundsCheckPtr(Register index,
                                           const Address& length,
                                           Register maybeScratch,
                                           Label* failure) {
  MOZ_ASSERT(index != length.base);
  MOZ_ASSERT(length.base != maybeScratch);
  MOZ_ASSERT(index != maybeScratch);

  branchPtr(Assembler::BelowOrEqual, length, index, failure);

  if (JitOptions.spectreIndexMasking) {
    Csel(ARMRegister(index, 64), ARMRegister(index, 64), vixl::xzr,
         Assembler::Above);
  }
}

// ========================================================================
// Memory access primitives.
FaultingCodeOffset MacroAssembler::storeUncanonicalizedDouble(
    FloatRegister src, const Address& dest) {
  return Str(ARMFPRegister(src, 64), toMemOperand(dest));
}
FaultingCodeOffset MacroAssembler::storeUncanonicalizedDouble(
    FloatRegister src, const BaseIndex& dest) {
  return doBaseIndex(ARMFPRegister(src, 64), dest, vixl::STR_d);
}

FaultingCodeOffset MacroAssembler::storeUncanonicalizedFloat32(
    FloatRegister src, const Address& addr) {
  return Str(ARMFPRegister(src, 32), toMemOperand(addr));
}
FaultingCodeOffset MacroAssembler::storeUncanonicalizedFloat32(
    FloatRegister src, const BaseIndex& addr) {
  return doBaseIndex(ARMFPRegister(src, 32), addr, vixl::STR_s);
}

void MacroAssembler::memoryBarrier(MemoryBarrierBits barrier) {
  // Bug 1715494: Discriminating barriers such as StoreStore are hard to reason
  // about.  Execute the full barrier for everything that requires a barrier.
  if (barrier) {
    Dmb(vixl::InnerShareable, vixl::BarrierAll);
  }
}

// ===============================================================
// Clamping functions.

void MacroAssembler::clampIntToUint8(Register reg) {
  vixl::UseScratchRegisterScope temps(this);
  const ARMRegister scratch32 = temps.AcquireW();
  const ARMRegister reg32(reg, 32);
  MOZ_ASSERT(!scratch32.Is(reg32));

  Cmp(reg32, Operand(reg32, vixl::UXTB));
  Csel(reg32, reg32, vixl::wzr, Assembler::GreaterThanOrEqual);
  Mov(scratch32, Operand(0xff));
  Csel(reg32, reg32, scratch32, Assembler::LessThanOrEqual);
}

void MacroAssembler::fallibleUnboxPtr(const ValueOperand& src, Register dest,
                                      JSValueType type, Label* fail) {
  MOZ_ASSERT(type == JSVAL_TYPE_OBJECT || type == JSVAL_TYPE_STRING ||
             type == JSVAL_TYPE_SYMBOL || type == JSVAL_TYPE_BIGINT);
  // dest := src XOR mask
  // fail if dest >> JSVAL_TAG_SHIFT != 0
  const ARMRegister src64(src.valueReg(), 64);
  const ARMRegister dest64(dest, 64);
  Eor(dest64, src64, Operand(JSVAL_TYPE_TO_SHIFTED_TAG(type)));
  Cmp(vixl::xzr, Operand(dest64, vixl::LSR, JSVAL_TAG_SHIFT));
  j(Assembler::NotEqual, fail);
}

void MacroAssembler::fallibleUnboxPtr(const Address& src, Register dest,
                                      JSValueType type, Label* fail) {
  loadValue(src, ValueOperand(dest));
  fallibleUnboxPtr(ValueOperand(dest), dest, type, fail);
}

void MacroAssembler::fallibleUnboxPtr(const BaseIndex& src, Register dest,
                                      JSValueType type, Label* fail) {
  loadValue(src, ValueOperand(dest));
  fallibleUnboxPtr(ValueOperand(dest), dest, type, fail);
}

//}}} check_macroassembler_style

// Wasm SIMD

static inline ARMFPRegister SimdReg(FloatRegister r) {
  MOZ_ASSERT(r.isSimd128());
  return ARMFPRegister(r, 128);
}

static inline ARMFPRegister Simd16B(FloatRegister r) {
  return SimdReg(r).V16B();
}

static inline ARMFPRegister Simd8B(FloatRegister r) { return SimdReg(r).V8B(); }

static inline ARMFPRegister Simd8H(FloatRegister r) { return SimdReg(r).V8H(); }

static inline ARMFPRegister Simd4H(FloatRegister r) { return SimdReg(r).V4H(); }

static inline ARMFPRegister Simd4S(FloatRegister r) { return SimdReg(r).V4S(); }

static inline ARMFPRegister Simd2S(FloatRegister r) { return SimdReg(r).V2S(); }

static inline ARMFPRegister Simd2D(FloatRegister r) { return SimdReg(r).V2D(); }

static inline ARMFPRegister Simd1D(FloatRegister r) { return SimdReg(r).V1D(); }

static inline ARMFPRegister SimdQ(FloatRegister r) { return SimdReg(r).Q(); }

//{{{ check_macroassembler_style

// Moves

void MacroAssembler::moveSimd128(FloatRegister src, FloatRegister dest) {
  if (src != dest) {
    Mov(SimdReg(dest), SimdReg(src));
  }
}

void MacroAssembler::loadConstantSimd128(const SimdConstant& v,
                                         FloatRegister dest) {
  // Movi does not yet generate good code for many cases, bug 1664397.
  SimdConstant c = SimdConstant::CreateX2((const int64_t*)v.bytes());
  Movi(SimdReg(dest), c.asInt64x2()[1], c.asInt64x2()[0]);
}

// Splat

void MacroAssembler::splatX16(Register src, FloatRegister dest) {
  Dup(Simd16B(dest), ARMRegister(src, 32));
}

void MacroAssembler::splatX16(uint32_t srcLane, FloatRegister src,
                              FloatRegister dest) {
  Dup(Simd16B(dest), Simd16B(src), srcLane);
}

void MacroAssembler::splatX8(Register src, FloatRegister dest) {
  Dup(Simd8H(dest), ARMRegister(src, 32));
}

void MacroAssembler::splatX8(uint32_t srcLane, FloatRegister src,
                             FloatRegister dest) {
  Dup(Simd8H(dest), Simd8H(src), srcLane);
}

void MacroAssembler::splatX4(Register src, FloatRegister dest) {
  Dup(Simd4S(dest), ARMRegister(src, 32));
}

void MacroAssembler::splatX4(FloatRegister src, FloatRegister dest) {
  Dup(Simd4S(dest), ARMFPRegister(src), 0);
}

void MacroAssembler::splatX2(Register64 src, FloatRegister dest) {
  Dup(Simd2D(dest), ARMRegister(src.reg, 64));
}

void MacroAssembler::splatX2(FloatRegister src, FloatRegister dest) {
  Dup(Simd2D(dest), ARMFPRegister(src), 0);
}

// Extract lane as scalar.  Float extraction does not canonicalize the value.

void MacroAssembler::extractLaneInt8x16(uint32_t lane, FloatRegister src,
                                        Register dest_) {
  MOZ_ASSERT(lane < 16);
  ARMRegister dest(dest_, 32);
  Umov(dest, Simd4S(src), lane / 4);
  Sbfx(dest, dest, (lane % 4) * 8, 8);
}

void MacroAssembler::unsignedExtractLaneInt8x16(uint32_t lane,
                                                FloatRegister src,
                                                Register dest_) {
  MOZ_ASSERT(lane < 16);
  ARMRegister dest(dest_, 32);
  Umov(dest, Simd4S(src), lane / 4);
  Ubfx(dest, dest, (lane % 4) * 8, 8);
}

void MacroAssembler::extractLaneInt16x8(uint32_t lane, FloatRegister src,
                                        Register dest_) {
  MOZ_ASSERT(lane < 8);
  ARMRegister dest(dest_, 32);
  Umov(dest, Simd4S(src), lane / 2);
  Sbfx(dest, dest, (lane % 2) * 16, 16);
}

void MacroAssembler::unsignedExtractLaneInt16x8(uint32_t lane,
                                                FloatRegister src,
                                                Register dest_) {
  MOZ_ASSERT(lane < 8);
  ARMRegister dest(dest_, 32);
  Umov(dest, Simd4S(src), lane / 2);
  Ubfx(dest, dest, (lane % 2) * 16, 16);
}

void MacroAssembler::extractLaneInt32x4(uint32_t lane, FloatRegister src,
                                        Register dest_) {
  MOZ_ASSERT(lane < 4);
  ARMRegister dest(dest_, 32);
  Umov(dest, Simd4S(src), lane);
}

void MacroAssembler::extractLaneInt64x2(uint32_t lane, FloatRegister src,
                                        Register64 dest_) {
  MOZ_ASSERT(lane < 2);
  ARMRegister dest(dest_.reg, 64);
  Umov(dest, Simd2D(src), lane);
}

void MacroAssembler::extractLaneFloat32x4(uint32_t lane, FloatRegister src,
                                          FloatRegister dest) {
  MOZ_ASSERT(lane < 4);
  Mov(ARMFPRegister(dest).V4S(), 0, Simd4S(src), lane);
}

void MacroAssembler::extractLaneFloat64x2(uint32_t lane, FloatRegister src,
                                          FloatRegister dest) {
  MOZ_ASSERT(lane < 2);
  Mov(ARMFPRegister(dest).V2D(), 0, Simd2D(src), lane);
}

// Replace lane value

void MacroAssembler::replaceLaneInt8x16(unsigned lane, Register rhs,
                                        FloatRegister lhsDest) {
  MOZ_ASSERT(lane < 16);
  Mov(Simd16B(lhsDest), lane, ARMRegister(rhs, 32));
}

void MacroAssembler::replaceLaneInt16x8(unsigned lane, Register rhs,
                                        FloatRegister lhsDest) {
  MOZ_ASSERT(lane < 8);
  Mov(Simd8H(lhsDest), lane, ARMRegister(rhs, 32));
}

void MacroAssembler::replaceLaneInt32x4(unsigned lane, Register rhs,
                                        FloatRegister lhsDest) {
  MOZ_ASSERT(lane < 4);
  Mov(Simd4S(lhsDest), lane, ARMRegister(rhs, 32));
}

void MacroAssembler::replaceLaneInt64x2(unsigned lane, Register64 rhs,
                                        FloatRegister lhsDest) {
  MOZ_ASSERT(lane < 2);
  Mov(Simd2D(lhsDest), lane, ARMRegister(rhs.reg, 64));
}

void MacroAssembler::replaceLaneFloat32x4(unsigned lane, FloatRegister rhs,
                                          FloatRegister lhsDest) {
  MOZ_ASSERT(lane < 4);
  Mov(Simd4S(lhsDest), lane, ARMFPRegister(rhs).V4S(), 0);
}

void MacroAssembler::replaceLaneFloat64x2(unsigned lane, FloatRegister rhs,
                                          FloatRegister lhsDest) {
  MOZ_ASSERT(lane < 2);
  Mov(Simd2D(lhsDest), lane, ARMFPRegister(rhs).V2D(), 0);
}

// Shuffle - blend and permute with immediate indices, and its many
// specializations.  Lane values other than those mentioned are illegal.

// lane values 0..31
void MacroAssembler::shuffleInt8x16(const uint8_t lanes[16], FloatRegister lhs,
                                    FloatRegister rhs, FloatRegister dest) {
  // The general solution generates ho-hum code.  Realistic programs will use
  // patterns that can be specialized, and this will be much better.  That will
  // be handled by bug 1656834, so don't worry about it here.

  // Set scratch to the lanevalue when it selects from lhs or ~lanevalue when it
  // selects from rhs.
  ScratchSimd128Scope scratch(*this);
  int8_t idx[16];

  if (lhs == rhs) {
    for (unsigned i = 0; i < 16; i++) {
      idx[i] = lanes[i] < 16 ? lanes[i] : (lanes[i] - 16);
    }
    loadConstantSimd128(SimdConstant::CreateX16(idx), scratch);
    Tbl(Simd16B(dest), Simd16B(lhs), Simd16B(scratch));
    return;
  }

  if (rhs != dest) {
    for (unsigned i = 0; i < 16; i++) {
      idx[i] = lanes[i] < 16 ? lanes[i] : ~(lanes[i] - 16);
    }
  } else {
    MOZ_ASSERT(lhs != dest);
    for (unsigned i = 0; i < 16; i++) {
      idx[i] = lanes[i] < 16 ? ~lanes[i] : (lanes[i] - 16);
    }
    std::swap(lhs, rhs);
  }
  loadConstantSimd128(SimdConstant::CreateX16(idx), scratch);
  Tbl(Simd16B(dest), Simd16B(lhs), Simd16B(scratch));
  Not(Simd16B(scratch), Simd16B(scratch));
  Tbx(Simd16B(dest), Simd16B(rhs), Simd16B(scratch));
}

void MacroAssembler::shuffleInt8x16(const uint8_t lanes[16], FloatRegister rhs,
                                    FloatRegister lhsDest) {
  shuffleInt8x16(lanes, lhsDest, rhs, lhsDest);
}

void MacroAssembler::blendInt8x16(const uint8_t lanes[16], FloatRegister lhs,
                                  FloatRegister rhs, FloatRegister dest) {
  ScratchSimd128Scope scratch(*this);
  int8_t lanes_[16];

  if (rhs == dest) {
    for (unsigned i = 0; i < 16; i++) {
      lanes_[i] = lanes[i] == 0 ? i : 16 + i;
    }
    loadConstantSimd128(SimdConstant::CreateX16(lanes_), scratch);
    Tbx(Simd16B(dest), Simd16B(lhs), Simd16B(scratch));
    return;
  }

  moveSimd128(lhs, dest);
  for (unsigned i = 0; i < 16; i++) {
    lanes_[i] = lanes[i] != 0 ? i : 16 + i;
  }
  loadConstantSimd128(SimdConstant::CreateX16(lanes_), scratch);
  Tbx(Simd16B(dest), Simd16B(rhs), Simd16B(scratch));
}

void MacroAssembler::blendInt16x8(const uint16_t lanes[8], FloatRegister lhs,
                                  FloatRegister rhs, FloatRegister dest) {
  static_assert(sizeof(const uint16_t /*lanes*/[8]) == sizeof(uint8_t[16]));
  blendInt8x16(reinterpret_cast<const uint8_t*>(lanes), lhs, rhs, dest);
}

void MacroAssembler::laneSelectSimd128(FloatRegister mask, FloatRegister lhs,
                                       FloatRegister rhs, FloatRegister dest) {
  MOZ_ASSERT(mask == dest);
  Bsl(Simd16B(mask), Simd16B(lhs), Simd16B(rhs));
}

void MacroAssembler::interleaveHighInt16x8(FloatRegister lhs, FloatRegister rhs,
                                           FloatRegister dest) {
  Zip2(Simd8H(dest), Simd8H(lhs), Simd8H(rhs));
}

void MacroAssembler::interleaveHighInt32x4(FloatRegister lhs, FloatRegister rhs,
                                           FloatRegister dest) {
  Zip2(Simd4S(dest), Simd4S(lhs), Simd4S(rhs));
}

void MacroAssembler::interleaveHighInt64x2(FloatRegister lhs, FloatRegister rhs,
                                           FloatRegister dest) {
  Zip2(Simd2D(dest), Simd2D(lhs), Simd2D(rhs));
}

void MacroAssembler::interleaveHighInt8x16(FloatRegister lhs, FloatRegister rhs,
                                           FloatRegister dest) {
  Zip2(Simd16B(dest), Simd16B(lhs), Simd16B(rhs));
}

void MacroAssembler::interleaveLowInt16x8(FloatRegister lhs, FloatRegister rhs,
                                          FloatRegister dest) {
  Zip1(Simd8H(dest), Simd8H(lhs), Simd8H(rhs));
}

void MacroAssembler::interleaveLowInt32x4(FloatRegister lhs, FloatRegister rhs,
                                          FloatRegister dest) {
  Zip1(Simd4S(dest), Simd4S(lhs), Simd4S(rhs));
}

void MacroAssembler::interleaveLowInt64x2(FloatRegister lhs, FloatRegister rhs,
                                          FloatRegister dest) {
  Zip1(Simd2D(dest), Simd2D(lhs), Simd2D(rhs));
}

void MacroAssembler::interleaveLowInt8x16(FloatRegister lhs, FloatRegister rhs,
                                          FloatRegister dest) {
  Zip1(Simd16B(dest), Simd16B(lhs), Simd16B(rhs));
}

void MacroAssembler::permuteInt8x16(const uint8_t lanes[16], FloatRegister src,
                                    FloatRegister dest) {
  ScratchSimd128Scope scratch(*this);
  loadConstantSimd128(SimdConstant::CreateX16((const int8_t*)lanes), scratch);
  Tbl(Simd16B(dest), Simd16B(src), Simd16B(scratch));
}

void MacroAssembler::permuteInt16x8(const uint16_t lanes[8], FloatRegister src,
                                    FloatRegister dest) {
  MOZ_ASSERT(lanes[0] < 8 && lanes[1] < 8 && lanes[2] < 8 && lanes[3] < 8 &&
             lanes[4] < 8 && lanes[5] < 8 && lanes[6] < 8 && lanes[7] < 8);
  const int8_t lanes_[16] = {
      (int8_t)(lanes[0] << 1), (int8_t)((lanes[0] << 1) + 1),
      (int8_t)(lanes[1] << 1), (int8_t)((lanes[1] << 1) + 1),
      (int8_t)(lanes[2] << 1), (int8_t)((lanes[2] << 1) + 1),
      (int8_t)(lanes[3] << 1), (int8_t)((lanes[3] << 1) + 1),
      (int8_t)(lanes[4] << 1), (int8_t)((lanes[4] << 1) + 1),
      (int8_t)(lanes[5] << 1), (int8_t)((lanes[5] << 1) + 1),
      (int8_t)(lanes[6] << 1), (int8_t)((lanes[6] << 1) + 1),
      (int8_t)(lanes[7] << 1), (int8_t)((lanes[7] << 1) + 1),
  };
  ScratchSimd128Scope scratch(*this);
  loadConstantSimd128(SimdConstant::CreateX16(lanes_), scratch);
  Tbl(Simd16B(dest), Simd16B(src), Simd16B(scratch));
}

void MacroAssembler::permuteInt32x4(const uint32_t lanes[4], FloatRegister src,
                                    FloatRegister dest) {
  ScratchSimd128Scope scratch(*this);
  const int8_t lanes_[16] = {
      (int8_t)(lanes[0] << 2),       (int8_t)((lanes[0] << 2) + 1),
      (int8_t)((lanes[0] << 2) + 2), (int8_t)((lanes[0] << 2) + 3),
      (int8_t)(lanes[1] << 2),       (int8_t)((lanes[1] << 2) + 1),
      (int8_t)((lanes[1] << 2) + 2), (int8_t)((lanes[1] << 2) + 3),
      (int8_t)(lanes[2] << 2),       (int8_t)((lanes[2] << 2) + 1),
      (int8_t)((lanes[2] << 2) + 2), (int8_t)((lanes[2] << 2) + 3),
      (int8_t)(lanes[3] << 2),       (int8_t)((lanes[3] << 2) + 1),
      (int8_t)((lanes[3] << 2) + 2), (int8_t)((lanes[3] << 2) + 3),
  };
  loadConstantSimd128(SimdConstant::CreateX16(lanes_), scratch);
  Tbl(Simd16B(dest), Simd16B(src), Simd16B(scratch));
}

void MacroAssembler::rotateRightSimd128(FloatRegister src, FloatRegister dest,
                                        uint32_t shift) {
  Ext(Simd16B(dest), Simd16B(src), Simd16B(src), shift);
}

void MacroAssembler::leftShiftSimd128(Imm32 count, FloatRegister src,
                                      FloatRegister dest) {
  MOZ_ASSERT(count.value < 16);
  ScratchSimd128Scope scratch(*this);
  Movi(Simd16B(scratch), 0);
  Ext(Simd16B(dest), Simd16B(scratch), Simd16B(src), 16 - count.value);
}

void MacroAssembler::rightShiftSimd128(Imm32 count, FloatRegister src,
                                       FloatRegister dest) {
  MOZ_ASSERT(count.value < 16);
  ScratchSimd128Scope scratch(*this);
  Movi(Simd16B(scratch), 0);
  Ext(Simd16B(dest), Simd16B(src), Simd16B(scratch), count.value);
}

void MacroAssembler::concatAndRightShiftSimd128(FloatRegister lhs,
                                                FloatRegister rhs,
                                                FloatRegister dest,
                                                uint32_t shift) {
  MOZ_ASSERT(shift < 16);
  Ext(Simd16B(dest), Simd16B(rhs), Simd16B(lhs), shift);
}

// Zero extend int values.

void MacroAssembler::zeroExtend8x16To16x8(FloatRegister src,
                                          FloatRegister dest) {
  Ushll(Simd8H(dest), Simd8B(src), 0);
}

void MacroAssembler::zeroExtend8x16To32x4(FloatRegister src,
                                          FloatRegister dest) {
  Ushll(Simd8H(dest), Simd8B(src), 0);
  Ushll(Simd4S(dest), Simd4H(dest), 0);
}

void MacroAssembler::zeroExtend8x16To64x2(FloatRegister src,
                                          FloatRegister dest) {
  Ushll(Simd8H(dest), Simd8B(src), 0);
  Ushll(Simd4S(dest), Simd4H(dest), 0);
  Ushll(Simd2D(dest), Simd2S(dest), 0);
}

void MacroAssembler::zeroExtend16x8To32x4(FloatRegister src,
                                          FloatRegister dest) {
  Ushll(Simd4S(dest), Simd4H(src), 0);
}

void MacroAssembler::zeroExtend16x8To64x2(FloatRegister src,
                                          FloatRegister dest) {
  Ushll(Simd4S(dest), Simd4H(src), 0);
  Ushll(Simd2D(dest), Simd2S(dest), 0);
}

void MacroAssembler::zeroExtend32x4To64x2(FloatRegister src,
                                          FloatRegister dest) {
  Ushll(Simd2D(dest), Simd2S(src), 0);
}

// Reverse bytes in lanes.

void MacroAssembler::reverseInt16x8(FloatRegister src, FloatRegister dest) {
  Rev16(Simd16B(dest), Simd16B(src));
}

void MacroAssembler::reverseInt32x4(FloatRegister src, FloatRegister dest) {
  Rev32(Simd16B(dest), Simd16B(src));
}

void MacroAssembler::reverseInt64x2(FloatRegister src, FloatRegister dest) {
  Rev64(Simd16B(dest), Simd16B(src));
}

// Swizzle - permute with variable indices.  `rhs` holds the lanes parameter.

void MacroAssembler::swizzleInt8x16(FloatRegister lhs, FloatRegister rhs,
                                    FloatRegister dest) {
  Tbl(Simd16B(dest), Simd16B(lhs), Simd16B(rhs));
}

void MacroAssembler::swizzleInt8x16Relaxed(FloatRegister lhs, FloatRegister rhs,
                                           FloatRegister dest) {
  Tbl(Simd16B(dest), Simd16B(lhs), Simd16B(rhs));
}

// Integer Add

void MacroAssembler::addInt8x16(FloatRegister lhs, FloatRegister rhs,
                                FloatRegister dest) {
  Add(Simd16B(dest), Simd16B(lhs), Simd16B(rhs));
}

void MacroAssembler::addInt16x8(FloatRegister lhs, FloatRegister rhs,
                                FloatRegister dest) {
  Add(Simd8H(dest), Simd8H(lhs), Simd8H(rhs));
}

void MacroAssembler::addInt32x4(FloatRegister lhs, FloatRegister rhs,
                                FloatRegister dest) {
  Add(Simd4S(dest), Simd4S(lhs), Simd4S(rhs));
}

void MacroAssembler::addInt64x2(FloatRegister lhs, FloatRegister rhs,
                                FloatRegister dest) {
  Add(Simd2D(dest), Simd2D(lhs), Simd2D(rhs));
}

// Integer Subtract

void MacroAssembler::subInt8x16(FloatRegister lhs, FloatRegister rhs,
                                FloatRegister dest) {
  Sub(Simd16B(dest), Simd16B(lhs), Simd16B(rhs));
}

void MacroAssembler::subInt16x8(FloatRegister lhs, FloatRegister rhs,
                                FloatRegister dest) {
  Sub(Simd8H(dest), Simd8H(lhs), Simd8H(rhs));
}

void MacroAssembler::subInt32x4(FloatRegister lhs, FloatRegister rhs,
                                FloatRegister dest) {
  Sub(Simd4S(dest), Simd4S(lhs), Simd4S(rhs));
}

void MacroAssembler::subInt64x2(FloatRegister lhs, FloatRegister rhs,
                                FloatRegister dest) {
  Sub(Simd2D(dest), Simd2D(lhs), Simd2D(rhs));
}

// Integer Multiply

void MacroAssembler::mulInt16x8(FloatRegister lhs, FloatRegister rhs,
                                FloatRegister dest) {
  Mul(Simd8H(dest), Simd8H(lhs), Simd8H(rhs));
}

void MacroAssembler::mulInt32x4(FloatRegister lhs, FloatRegister rhs,
                                FloatRegister dest) {
  Mul(Simd4S(dest), Simd4S(lhs), Simd4S(rhs));
}

void MacroAssembler::mulInt64x2(FloatRegister lhs, FloatRegister rhs,
                                FloatRegister dest, FloatRegister temp1,
                                FloatRegister temp2) {
  // As documented at https://chromium-review.googlesource.com/c/v8/v8/+/1781696
  // lhs = <D C> <B A>
  // rhs = <H G> <F E>
  // result = <(DG+CH)_low+CG_high CG_low> <(BE+AF)_low+AE_high AE_low>
  ScratchSimd128Scope scratch(*this);
  Rev64(Simd4S(temp2), Simd4S(lhs));                  // temp2 = <C D> <A B>
  Mul(Simd4S(temp2), Simd4S(temp2), Simd4S(rhs));     // temp2 = <CH DG> <AF BE>
  Xtn(Simd2S(temp1), Simd2D(rhs));                    // temp1 = <0 0> <G E>
  Addp(Simd4S(temp2), Simd4S(temp2), Simd4S(temp2));  // temp2 = <CH+DG AF+BE>..
  Xtn(Simd2S(scratch), Simd2D(lhs));                  // scratch = <0 0> <C A>
  Shll(Simd2D(dest), Simd2S(temp2), 32);              // dest = <(DG+CH)_low 0>
                                                      //        <(BE+AF)_low 0>
  Umlal(Simd2D(dest), Simd2S(scratch), Simd2S(temp1));
}

void MacroAssembler::extMulLowInt8x16(FloatRegister lhs, FloatRegister rhs,
                                      FloatRegister dest) {
  Smull(Simd8H(dest), Simd8B(lhs), Simd8B(rhs));
}

void MacroAssembler::extMulHighInt8x16(FloatRegister lhs, FloatRegister rhs,
                                       FloatRegister dest) {
  Smull2(Simd8H(dest), Simd16B(lhs), Simd16B(rhs));
}

void MacroAssembler::unsignedExtMulLowInt8x16(FloatRegister lhs,
                                              FloatRegister rhs,
                                              FloatRegister dest) {
  Umull(Simd8H(dest), Simd8B(lhs), Simd8B(rhs));
}

void MacroAssembler::unsignedExtMulHighInt8x16(FloatRegister lhs,
                                               FloatRegister rhs,
                                               FloatRegister dest) {
  Umull2(Simd8H(dest), Simd16B(lhs), Simd16B(rhs));
}

void MacroAssembler::extMulLowInt16x8(FloatRegister lhs, FloatRegister rhs,
                                      FloatRegister dest) {
  Smull(Simd4S(dest), Simd4H(lhs), Simd4H(rhs));
}

void MacroAssembler::extMulHighInt16x8(FloatRegister lhs, FloatRegister rhs,
                                       FloatRegister dest) {
  Smull2(Simd4S(dest), Simd8H(lhs), Simd8H(rhs));
}

void MacroAssembler::unsignedExtMulLowInt16x8(FloatRegister lhs,
                                              FloatRegister rhs,
                                              FloatRegister dest) {
  Umull(Simd4S(dest), Simd4H(lhs), Simd4H(rhs));
}

void MacroAssembler::unsignedExtMulHighInt16x8(FloatRegister lhs,
                                               FloatRegister rhs,
                                               FloatRegister dest) {
  Umull2(Simd4S(dest), Simd8H(lhs), Simd8H(rhs));
}

void MacroAssembler::extMulLowInt32x4(FloatRegister lhs, FloatRegister rhs,
                                      FloatRegister dest) {
  Smull(Simd2D(dest), Simd2S(lhs), Simd2S(rhs));
}

void MacroAssembler::extMulHighInt32x4(FloatRegister lhs, FloatRegister rhs,
                                       FloatRegister dest) {
  Smull2(Simd2D(dest), Simd4S(lhs), Simd4S(rhs));
}

void MacroAssembler::unsignedExtMulLowInt32x4(FloatRegister lhs,
                                              FloatRegister rhs,
                                              FloatRegister dest) {
  Umull(Simd2D(dest), Simd2S(lhs), Simd2S(rhs));
}

void MacroAssembler::unsignedExtMulHighInt32x4(FloatRegister lhs,
                                               FloatRegister rhs,
                                               FloatRegister dest) {
  Umull2(Simd2D(dest), Simd4S(lhs), Simd4S(rhs));
}

void MacroAssembler::q15MulrSatInt16x8(FloatRegister lhs, FloatRegister rhs,
                                       FloatRegister dest) {
  Sqrdmulh(Simd8H(dest), Simd8H(lhs), Simd8H(rhs));
}

void MacroAssembler::q15MulrInt16x8Relaxed(FloatRegister lhs, FloatRegister rhs,
                                           FloatRegister dest) {
  Sqrdmulh(Simd8H(dest), Simd8H(lhs), Simd8H(rhs));
}

// Integer Negate

void MacroAssembler::negInt8x16(FloatRegister src, FloatRegister dest) {
  Neg(Simd16B(dest), Simd16B(src));
}

void MacroAssembler::negInt16x8(FloatRegister src, FloatRegister dest) {
  Neg(Simd8H(dest), Simd8H(src));
}

void MacroAssembler::negInt32x4(FloatRegister src, FloatRegister dest) {
  Neg(Simd4S(dest), Simd4S(src));
}

void MacroAssembler::negInt64x2(FloatRegister src, FloatRegister dest) {
  Neg(Simd2D(dest), Simd2D(src));
}

// Saturating integer add

void MacroAssembler::addSatInt8x16(FloatRegister lhs, FloatRegister rhs,
                                   FloatRegister dest) {
  Sqadd(Simd16B(dest), Simd16B(lhs), Simd16B(rhs));
}

void MacroAssembler::unsignedAddSatInt8x16(FloatRegister lhs, FloatRegister rhs,
                                           FloatRegister dest) {
  Uqadd(Simd16B(dest), Simd16B(lhs), Simd16B(rhs));
}

void MacroAssembler::addSatInt16x8(FloatRegister lhs, FloatRegister rhs,
                                   FloatRegister dest) {
  Sqadd(Simd8H(dest), Simd8H(lhs), Simd8H(rhs));
}

void MacroAssembler::unsignedAddSatInt16x8(FloatRegister lhs, FloatRegister rhs,
                                           FloatRegister dest) {
  Uqadd(Simd8H(dest), Simd8H(lhs), Simd8H(rhs));
}

// Saturating integer subtract

void MacroAssembler::subSatInt8x16(FloatRegister lhs, FloatRegister rhs,
                                   FloatRegister dest) {
  Sqsub(Simd16B(dest), Simd16B(lhs), Simd16B(rhs));
}

void MacroAssembler::unsignedSubSatInt8x16(FloatRegister lhs, FloatRegister rhs,
                                           FloatRegister dest) {
  Uqsub(Simd16B(dest), Simd16B(lhs), Simd16B(rhs));
}

void MacroAssembler::subSatInt16x8(FloatRegister lhs, FloatRegister rhs,
                                   FloatRegister dest) {
  Sqsub(Simd8H(dest), Simd8H(lhs), Simd8H(rhs));
}

void MacroAssembler::unsignedSubSatInt16x8(FloatRegister lhs, FloatRegister rhs,
                                           FloatRegister dest) {
  Uqsub(Simd8H(dest), Simd8H(lhs), Simd8H(rhs));
}

// Lane-wise integer minimum

void MacroAssembler::minInt8x16(FloatRegister lhs, FloatRegister rhs,
                                FloatRegister dest) {
  Smin(Simd16B(dest), Simd16B(lhs), Simd16B(rhs));
}

void MacroAssembler::unsignedMinInt8x16(FloatRegister lhs, FloatRegister rhs,
                                        FloatRegister dest) {
  Umin(Simd16B(dest), Simd16B(lhs), Simd16B(rhs));
}

void MacroAssembler::minInt16x8(FloatRegister lhs, FloatRegister rhs,
                                FloatRegister dest) {
  Smin(Simd8H(dest), Simd8H(lhs), Simd8H(rhs));
}

void MacroAssembler::unsignedMinInt16x8(FloatRegister lhs, FloatRegister rhs,
                                        FloatRegister dest) {
  Umin(Simd8H(dest), Simd8H(lhs), Simd8H(rhs));
}

void MacroAssembler::minInt32x4(FloatRegister lhs, FloatRegister rhs,
                                FloatRegister dest) {
  Smin(Simd4S(dest), Simd4S(lhs), Simd4S(rhs));
}

void MacroAssembler::unsignedMinInt32x4(FloatRegister lhs, FloatRegister rhs,
                                        FloatRegister dest) {
  Umin(Simd4S(dest), Simd4S(lhs), Simd4S(rhs));
}

// Lane-wise integer maximum

void MacroAssembler::maxInt8x16(FloatRegister lhs, FloatRegister rhs,
                                FloatRegister dest) {
  Smax(Simd16B(dest), Simd16B(lhs), Simd16B(rhs));
}

void MacroAssembler::unsignedMaxInt8x16(FloatRegister lhs, FloatRegister rhs,
                                        FloatRegister dest) {
  Umax(Simd16B(dest), Simd16B(lhs), Simd16B(rhs));
}

void MacroAssembler::maxInt16x8(FloatRegister lhs, FloatRegister rhs,
                                FloatRegister dest) {
  Smax(Simd8H(dest), Simd8H(lhs), Simd8H(rhs));
}

void MacroAssembler::unsignedMaxInt16x8(FloatRegister lhs, FloatRegister rhs,
                                        FloatRegister dest) {
  Umax(Simd8H(dest), Simd8H(lhs), Simd8H(rhs));
}

void MacroAssembler::maxInt32x4(FloatRegister lhs, FloatRegister rhs,
                                FloatRegister dest) {
  Smax(Simd4S(dest), Simd4S(lhs), Simd4S(rhs));
}

void MacroAssembler::unsignedMaxInt32x4(FloatRegister lhs, FloatRegister rhs,
                                        FloatRegister dest) {
  Umax(Simd4S(dest), Simd4S(lhs), Simd4S(rhs));
}

// Lane-wise integer rounding average

void MacroAssembler::unsignedAverageInt8x16(FloatRegister lhs,
                                            FloatRegister rhs,
                                            FloatRegister dest) {
  Urhadd(Simd16B(dest), Simd16B(lhs), Simd16B(rhs));
}

void MacroAssembler::unsignedAverageInt16x8(FloatRegister lhs,
                                            FloatRegister rhs,
                                            FloatRegister dest) {
  Urhadd(Simd8H(dest), Simd8H(lhs), Simd8H(rhs));
}

// Lane-wise integer absolute value

void MacroAssembler::absInt8x16(FloatRegister src, FloatRegister dest) {
  Abs(Simd16B(dest), Simd16B(src));
}

void MacroAssembler::absInt16x8(FloatRegister src, FloatRegister dest) {
  Abs(Simd8H(dest), Simd8H(src));
}

void MacroAssembler::absInt32x4(FloatRegister src, FloatRegister dest) {
  Abs(Simd4S(dest), Simd4S(src));
}

void MacroAssembler::absInt64x2(FloatRegister src, FloatRegister dest) {
  Abs(Simd2D(dest), Simd2D(src));
}

// Left shift by variable scalar

void MacroAssembler::leftShiftInt8x16(FloatRegister lhs, Register rhs,
                                      FloatRegister dest) {
  ScratchSimd128Scope vscratch(*this);
  Dup(Simd16B(vscratch), ARMRegister(rhs, 32));
  Sshl(Simd16B(dest), Simd16B(lhs), Simd16B(vscratch));
}

void MacroAssembler::leftShiftInt8x16(Imm32 count, FloatRegister src,
                                      FloatRegister dest) {
  Shl(Simd16B(dest), Simd16B(src), count.value);
}

void MacroAssembler::leftShiftInt16x8(FloatRegister lhs, Register rhs,
                                      FloatRegister dest) {
  ScratchSimd128Scope vscratch(*this);
  Dup(Simd8H(vscratch), ARMRegister(rhs, 32));
  Sshl(Simd8H(dest), Simd8H(lhs), Simd8H(vscratch));
}

void MacroAssembler::leftShiftInt16x8(Imm32 count, FloatRegister src,
                                      FloatRegister dest) {
  Shl(Simd8H(dest), Simd8H(src), count.value);
}

void MacroAssembler::leftShiftInt32x4(FloatRegister lhs, Register rhs,
                                      FloatRegister dest) {
  ScratchSimd128Scope vscratch(*this);
  Dup(Simd4S(vscratch), ARMRegister(rhs, 32));
  Sshl(Simd4S(dest), Simd4S(lhs), Simd4S(vscratch));
}

void MacroAssembler::leftShiftInt32x4(Imm32 count, FloatRegister src,
                                      FloatRegister dest) {
  Shl(Simd4S(dest), Simd4S(src), count.value);
}

void MacroAssembler::leftShiftInt64x2(FloatRegister lhs, Register rhs,
                                      FloatRegister dest) {
  ScratchSimd128Scope vscratch(*this);
  Dup(Simd2D(vscratch), ARMRegister(rhs, 64));
  Sshl(Simd2D(dest), Simd2D(lhs), Simd2D(vscratch));
}

void MacroAssembler::leftShiftInt64x2(Imm32 count, FloatRegister src,
                                      FloatRegister dest) {
  Shl(Simd2D(dest), Simd2D(src), count.value);
}

// Right shift by variable scalar

void MacroAssembler::rightShiftInt8x16(FloatRegister lhs, Register rhs,
                                       FloatRegister dest) {
  MacroAssemblerCompat::rightShiftInt8x16(lhs, rhs, dest,
                                          /* isUnsigned */ false);
}

void MacroAssembler::rightShiftInt8x16(Imm32 count, FloatRegister src,
                                       FloatRegister dest) {
  Sshr(Simd16B(dest), Simd16B(src), count.value);
}

void MacroAssembler::unsignedRightShiftInt8x16(FloatRegister lhs, Register rhs,
                                               FloatRegister dest) {
  MacroAssemblerCompat::rightShiftInt8x16(lhs, rhs, dest,
                                          /* isUnsigned */ true);
}

void MacroAssembler::unsignedRightShiftInt8x16(Imm32 count, FloatRegister src,
                                               FloatRegister dest) {
  Ushr(Simd16B(dest), Simd16B(src), count.value);
}

void MacroAssembler::rightShiftInt16x8(FloatRegister lhs, Register rhs,
                                       FloatRegister dest) {
  MacroAssemblerCompat::rightShiftInt16x8(lhs, rhs, dest,
                                          /* isUnsigned */ false);
}

void MacroAssembler::rightShiftInt16x8(Imm32 count, FloatRegister src,
                                       FloatRegister dest) {
  Sshr(Simd8H(dest), Simd8H(src), count.value);
}

void MacroAssembler::unsignedRightShiftInt16x8(FloatRegister lhs, Register rhs,
                                               FloatRegister dest) {
  MacroAssemblerCompat::rightShiftInt16x8(lhs, rhs, dest,
                                          /* isUnsigned */ true);
}

void MacroAssembler::unsignedRightShiftInt16x8(Imm32 count, FloatRegister src,
                                               FloatRegister dest) {
  Ushr(Simd8H(dest), Simd8H(src), count.value);
}

void MacroAssembler::rightShiftInt32x4(FloatRegister lhs, Register rhs,
                                       FloatRegister dest) {
  MacroAssemblerCompat::rightShiftInt32x4(lhs, rhs, dest,
                                          /* isUnsigned */ false);
}

void MacroAssembler::rightShiftInt32x4(Imm32 count, FloatRegister src,
                                       FloatRegister dest) {
  Sshr(Simd4S(dest), Simd4S(src), count.value);
}

void MacroAssembler::unsignedRightShiftInt32x4(FloatRegister lhs, Register rhs,
                                               FloatRegister dest) {
  MacroAssemblerCompat::rightShiftInt32x4(lhs, rhs, dest,
                                          /* isUnsigned */ true);
}

void MacroAssembler::unsignedRightShiftInt32x4(Imm32 count, FloatRegister src,
                                               FloatRegister dest) {
  Ushr(Simd4S(dest), Simd4S(src), count.value);
}

void MacroAssembler::rightShiftInt64x2(FloatRegister lhs, Register rhs,
                                       FloatRegister dest) {
  MacroAssemblerCompat::rightShiftInt64x2(lhs, rhs, dest,
                                          /* isUnsigned */ false);
}

void MacroAssembler::rightShiftInt64x2(Imm32 count, FloatRegister src,
                                       FloatRegister dest) {
  Sshr(Simd2D(dest), Simd2D(src), count.value);
}

void MacroAssembler::unsignedRightShiftInt64x2(FloatRegister lhs, Register rhs,
                                               FloatRegister dest) {
  MacroAssemblerCompat::rightShiftInt64x2(lhs, rhs, dest,
                                          /* isUnsigned */ true);
}

void MacroAssembler::unsignedRightShiftInt64x2(Imm32 count, FloatRegister src,
                                               FloatRegister dest) {
  Ushr(Simd2D(dest), Simd2D(src), count.value);
}

// Bitwise and, or, xor, not

void MacroAssembler::bitwiseAndSimd128(FloatRegister rhs,
                                       FloatRegister lhsDest) {
  And(Simd16B(lhsDest), Simd16B(lhsDest), Simd16B(rhs));
}

void MacroAssembler::bitwiseAndSimd128(FloatRegister lhs, FloatRegister rhs,
                                       FloatRegister dest) {
  And(Simd16B(dest), Simd16B(lhs), Simd16B(rhs));
}

void MacroAssembler::bitwiseOrSimd128(FloatRegister rhs,
                                      FloatRegister lhsDest) {
  Orr(Simd16B(lhsDest), Simd16B(lhsDest), Simd16B(rhs));
}

void MacroAssembler::bitwiseOrSimd128(FloatRegister lhs, FloatRegister rhs,
                                      FloatRegister dest) {
  Orr(Simd16B(dest), Simd16B(lhs), Simd16B(rhs));
}

void MacroAssembler::bitwiseXorSimd128(FloatRegister rhs,
                                       FloatRegister lhsDest) {
  Eor(Simd16B(lhsDest), Simd16B(lhsDest), Simd16B(rhs));
}

void MacroAssembler::bitwiseXorSimd128(FloatRegister lhs, FloatRegister rhs,
                                       FloatRegister dest) {
  Eor(Simd16B(dest), Simd16B(lhs), Simd16B(rhs));
}

void MacroAssembler::bitwiseNotSimd128(FloatRegister src, FloatRegister dest) {
  Not(Simd16B(dest), Simd16B(src));
}

void MacroAssembler::bitwiseAndNotSimd128(FloatRegister lhs, FloatRegister rhs,
                                          FloatRegister dest) {
  Bic(Simd16B(dest), Simd16B(lhs), Simd16B(rhs));
}

// Bitwise AND with complement: dest = ~lhs & rhs, note this is not what Wasm
// wants but what the x86 hardware offers.  Hence the name.  Since arm64 has
// dest = lhs & ~rhs we just swap operands.

void MacroAssembler::bitwiseNotAndSimd128(FloatRegister rhs,
                                          FloatRegister lhsDest) {
  Bic(Simd16B(lhsDest), Simd16B(rhs), Simd16B(lhsDest));
}

// Bitwise select

void MacroAssembler::bitwiseSelectSimd128(FloatRegister onTrue,
                                          FloatRegister onFalse,
                                          FloatRegister maskDest) {
  Bsl(Simd16B(maskDest), Simd16B(onTrue), Simd16B(onFalse));
}

// Population count

void MacroAssembler::popcntInt8x16(FloatRegister src, FloatRegister dest) {
  Cnt(Simd16B(dest), Simd16B(src));
}

// Any lane true, ie, any bit set

void MacroAssembler::anyTrueSimd128(FloatRegister src, Register dest_) {
  ScratchSimd128Scope scratch_(*this);
  ARMFPRegister scratch(Simd1D(scratch_));
  ARMRegister dest(dest_, 64);
  Addp(scratch, Simd2D(src));
  Umov(dest, scratch, 0);
  Cmp(dest, Operand(0));
  Cset(dest, Assembler::NonZero);
}

// All lanes true

void MacroAssembler::allTrueInt8x16(FloatRegister src, Register dest_) {
  ScratchSimd128Scope scratch(*this);
  ARMRegister dest(dest_, 64);
  Cmeq(Simd16B(scratch), Simd16B(src), 0);
  Addp(Simd1D(scratch), Simd2D(scratch));
  Umov(dest, Simd1D(scratch), 0);
  Cmp(dest, Operand(0));
  Cset(dest, Assembler::Zero);
}

void MacroAssembler::allTrueInt16x8(FloatRegister src, Register dest_) {
  ScratchSimd128Scope scratch(*this);
  ARMRegister dest(dest_, 64);
  Cmeq(Simd8H(scratch), Simd8H(src), 0);
  Addp(Simd1D(scratch), Simd2D(scratch));
  Umov(dest, Simd1D(scratch), 0);
  Cmp(dest, Operand(0));
  Cset(dest, Assembler::Zero);
}

void MacroAssembler::allTrueInt32x4(FloatRegister src, Register dest_) {
  ScratchSimd128Scope scratch(*this);
  ARMRegister dest(dest_, 64);
  Cmeq(Simd4S(scratch), Simd4S(src), 0);
  Addp(Simd1D(scratch), Simd2D(scratch));
  Umov(dest, Simd1D(scratch), 0);
  Cmp(dest, Operand(0));
  Cset(dest, Assembler::Zero);
}

void MacroAssembler::allTrueInt64x2(FloatRegister src, Register dest_) {
  ScratchSimd128Scope scratch(*this);
  ARMRegister dest(dest_, 64);
  Cmeq(Simd2D(scratch), Simd2D(src), 0);
  Addp(Simd1D(scratch), Simd2D(scratch));
  Umov(dest, Simd1D(scratch), 0);
  Cmp(dest, Operand(0));
  Cset(dest, Assembler::Zero);
}

// Bitmask, ie extract and compress high bits of all lanes
//
// There's no direct support for this on the chip.  These implementations come
// from the writeup that added the instruction to the SIMD instruction set.
// Generally, shifting and masking is used to isolate the sign bit of each
// element in the right position, then a horizontal add creates the result.  For
// 8-bit elements an intermediate step is needed to assemble the bits of the
// upper and lower 8 bytes into 8 halfwords.

void MacroAssembler::bitmaskInt8x16(FloatRegister src, Register dest,
                                    FloatRegister temp) {
  ScratchSimd128Scope scratch(*this);
  int8_t values[] = {1, 2, 4, 8, 16, 32, 64, -128,
                     1, 2, 4, 8, 16, 32, 64, -128};
  loadConstantSimd128(SimdConstant::CreateX16(values), temp);
  Sshr(Simd16B(scratch), Simd16B(src), 7);
  And(Simd16B(scratch), Simd16B(scratch), Simd16B(temp));
  Ext(Simd16B(temp), Simd16B(scratch), Simd16B(scratch), 8);
  Zip1(Simd16B(temp), Simd16B(scratch), Simd16B(temp));
  Addv(ARMFPRegister(temp, 16), Simd8H(temp));
  Mov(ARMRegister(dest, 32), Simd8H(temp), 0);
}

void MacroAssembler::bitmaskInt16x8(FloatRegister src, Register dest,
                                    FloatRegister temp) {
  ScratchSimd128Scope scratch(*this);
  int16_t values[] = {1, 2, 4, 8, 16, 32, 64, 128};
  loadConstantSimd128(SimdConstant::CreateX8(values), temp);
  Sshr(Simd8H(scratch), Simd8H(src), 15);
  And(Simd16B(scratch), Simd16B(scratch), Simd16B(temp));
  Addv(ARMFPRegister(scratch, 16), Simd8H(scratch));
  Mov(ARMRegister(dest, 32), Simd8H(scratch), 0);
}

void MacroAssembler::bitmaskInt32x4(FloatRegister src, Register dest,
                                    FloatRegister temp) {
  ScratchSimd128Scope scratch(*this);
  int32_t values[] = {1, 2, 4, 8};
  loadConstantSimd128(SimdConstant::CreateX4(values), temp);
  Sshr(Simd4S(scratch), Simd4S(src), 31);
  And(Simd16B(scratch), Simd16B(scratch), Simd16B(temp));
  Addv(ARMFPRegister(scratch, 32), Simd4S(scratch));
  Mov(ARMRegister(dest, 32), Simd4S(scratch), 0);
}

void MacroAssembler::bitmaskInt64x2(FloatRegister src, Register dest,
                                    FloatRegister temp) {
  Sqxtn(Simd2S(temp), Simd2D(src));
  Ushr(Simd2S(temp), Simd2S(temp), 31);
  Usra(ARMFPRegister(temp, 64), ARMFPRegister(temp, 64), 31);
  Fmov(ARMRegister(dest, 32), ARMFPRegister(temp, 32));
}

// Comparisons (integer and floating-point)

void MacroAssembler::compareInt8x16(Assembler::Condition cond,
                                    FloatRegister rhs, FloatRegister lhsDest) {
  compareSimd128Int(cond, Simd16B(lhsDest), Simd16B(lhsDest), Simd16B(rhs));
}

void MacroAssembler::compareInt8x16(Assembler::Condition cond,
                                    FloatRegister lhs, FloatRegister rhs,
                                    FloatRegister dest) {
  compareSimd128Int(cond, Simd16B(dest), Simd16B(lhs), Simd16B(rhs));
}

void MacroAssembler::compareInt16x8(Assembler::Condition cond,
                                    FloatRegister rhs, FloatRegister lhsDest) {
  compareSimd128Int(cond, Simd8H(lhsDest), Simd8H(lhsDest), Simd8H(rhs));
}

void MacroAssembler::compareInt16x8(Assembler::Condition cond,
                                    FloatRegister lhs, FloatRegister rhs,
                                    FloatRegister dest) {
  compareSimd128Int(cond, Simd8H(dest), Simd8H(lhs), Simd8H(rhs));
}

void MacroAssembler::compareInt32x4(Assembler::Condition cond,
                                    FloatRegister rhs, FloatRegister lhsDest) {
  compareSimd128Int(cond, Simd4S(lhsDest), Simd4S(lhsDest), Simd4S(rhs));
}

void MacroAssembler::compareInt32x4(Assembler::Condition cond,
                                    FloatRegister lhs, FloatRegister rhs,
                                    FloatRegister dest) {
  compareSimd128Int(cond, Simd4S(dest), Simd4S(lhs), Simd4S(rhs));
}

void MacroAssembler::compareInt64x2(Assembler::Condition cond,
                                    FloatRegister rhs, FloatRegister lhsDest) {
  compareSimd128Int(cond, Simd2D(lhsDest), Simd2D(lhsDest), Simd2D(rhs));
}

void MacroAssembler::compareInt64x2(Assembler::Condition cond,
                                    FloatRegister lhs, FloatRegister rhs,
                                    FloatRegister dest) {
  compareSimd128Int(cond, Simd2D(dest), Simd2D(lhs), Simd2D(rhs));
}

void MacroAssembler::compareFloat32x4(Assembler::Condition cond,
                                      FloatRegister rhs,
                                      FloatRegister lhsDest) {
  compareSimd128Float(cond, Simd4S(lhsDest), Simd4S(lhsDest), Simd4S(rhs));
}

void MacroAssembler::compareFloat32x4(Assembler::Condition cond,
                                      FloatRegister lhs, FloatRegister rhs,
                                      FloatRegister dest) {
  compareSimd128Float(cond, Simd4S(dest), Simd4S(lhs), Simd4S(rhs));
}

void MacroAssembler::compareFloat64x2(Assembler::Condition cond,
                                      FloatRegister rhs,
                                      FloatRegister lhsDest) {
  compareSimd128Float(cond, Simd2D(lhsDest), Simd2D(lhsDest), Simd2D(rhs));
}

void MacroAssembler::compareFloat64x2(Assembler::Condition cond,
                                      FloatRegister lhs, FloatRegister rhs,
                                      FloatRegister dest) {
  compareSimd128Float(cond, Simd2D(dest), Simd2D(lhs), Simd2D(rhs));
}

// Load

FaultingCodeOffset MacroAssembler::loadUnalignedSimd128(const Address& src,
                                                        FloatRegister dest) {
  return Ldr(ARMFPRegister(dest, 128), toMemOperand(src));
}

FaultingCodeOffset MacroAssembler::loadUnalignedSimd128(
    const BaseIndex& address, FloatRegister dest) {
  return doBaseIndex(ARMFPRegister(dest, 128), address, vixl::LDR_q);
}

// Store

FaultingCodeOffset MacroAssembler::storeUnalignedSimd128(FloatRegister src,
                                                         const Address& dest) {
  return Str(ARMFPRegister(src, 128), toMemOperand(dest));
}

FaultingCodeOffset MacroAssembler::storeUnalignedSimd128(
    FloatRegister src, const BaseIndex& dest) {
  return doBaseIndex(ARMFPRegister(src, 128), dest, vixl::STR_q);
}

// Floating point negation

void MacroAssembler::negFloat32x4(FloatRegister src, FloatRegister dest) {
  Fneg(Simd4S(dest), Simd4S(src));
}

void MacroAssembler::negFloat64x2(FloatRegister src, FloatRegister dest) {
  Fneg(Simd2D(dest), Simd2D(src));
}

// Floating point absolute value

void MacroAssembler::absFloat32x4(FloatRegister src, FloatRegister dest) {
  Fabs(Simd4S(dest), Simd4S(src));
}

void MacroAssembler::absFloat64x2(FloatRegister src, FloatRegister dest) {
  Fabs(Simd2D(dest), Simd2D(src));
}

// NaN-propagating minimum

void MacroAssembler::minFloat32x4(FloatRegister lhs, FloatRegister rhs,
                                  FloatRegister dest) {
  Fmin(Simd4S(dest), Simd4S(lhs), Simd4S(rhs));
}

void MacroAssembler::minFloat32x4(FloatRegister rhs, FloatRegister lhsDest) {
  Fmin(Simd4S(lhsDest), Simd4S(lhsDest), Simd4S(rhs));
}

void MacroAssembler::minFloat64x2(FloatRegister rhs, FloatRegister lhsDest) {
  Fmin(Simd2D(lhsDest), Simd2D(lhsDest), Simd2D(rhs));
}

void MacroAssembler::minFloat64x2(FloatRegister lhs, FloatRegister rhs,
                                  FloatRegister dest) {
  Fmin(Simd2D(dest), Simd2D(lhs), Simd2D(rhs));
}

// NaN-propagating maximum

void MacroAssembler::maxFloat32x4(FloatRegister lhs, FloatRegister rhs,
                                  FloatRegister dest) {
  Fmax(Simd4S(dest), Simd4S(lhs), Simd4S(rhs));
}

void MacroAssembler::maxFloat32x4(FloatRegister rhs, FloatRegister lhsDest) {
  Fmax(Simd4S(lhsDest), Simd4S(lhsDest), Simd4S(rhs));
}

void MacroAssembler::maxFloat64x2(FloatRegister lhs, FloatRegister rhs,
                                  FloatRegister dest) {
  Fmax(Simd2D(dest), Simd2D(lhs), Simd2D(rhs));
}

void MacroAssembler::maxFloat64x2(FloatRegister rhs, FloatRegister lhsDest) {
  Fmax(Simd2D(lhsDest), Simd2D(lhsDest), Simd2D(rhs));
}

// Floating add

void MacroAssembler::addFloat32x4(FloatRegister lhs, FloatRegister rhs,
                                  FloatRegister dest) {
  Fadd(Simd4S(dest), Simd4S(lhs), Simd4S(rhs));
}

void MacroAssembler::addFloat64x2(FloatRegister lhs, FloatRegister rhs,
                                  FloatRegister dest) {
  Fadd(Simd2D(dest), Simd2D(lhs), Simd2D(rhs));
}

// Floating subtract

void MacroAssembler::subFloat32x4(FloatRegister lhs, FloatRegister rhs,
                                  FloatRegister dest) {
  Fsub(Simd4S(dest), Simd4S(lhs), Simd4S(rhs));
}

void MacroAssembler::subFloat64x2(FloatRegister lhs, FloatRegister rhs,
                                  FloatRegister dest) {
  Fsub(Simd2D(dest), Simd2D(lhs), Simd2D(rhs));
}

// Floating division

void MacroAssembler::divFloat32x4(FloatRegister lhs, FloatRegister rhs,
                                  FloatRegister dest) {
  Fdiv(Simd4S(dest), Simd4S(lhs), Simd4S(rhs));
}

void MacroAssembler::divFloat64x2(FloatRegister lhs, FloatRegister rhs,
                                  FloatRegister dest) {
  Fdiv(Simd2D(dest), Simd2D(lhs), Simd2D(rhs));
}

// Floating Multiply

void MacroAssembler::mulFloat32x4(FloatRegister lhs, FloatRegister rhs,
                                  FloatRegister dest) {
  Fmul(Simd4S(dest), Simd4S(lhs), Simd4S(rhs));
}

void MacroAssembler::mulFloat64x2(FloatRegister lhs, FloatRegister rhs,
                                  FloatRegister dest) {
  Fmul(Simd2D(dest), Simd2D(lhs), Simd2D(rhs));
}

// Pairwise add

void MacroAssembler::extAddPairwiseInt8x16(FloatRegister src,
                                           FloatRegister dest) {
  Saddlp(Simd8H(dest), Simd16B(src));
}

void MacroAssembler::unsignedExtAddPairwiseInt8x16(FloatRegister src,
                                                   FloatRegister dest) {
  Uaddlp(Simd8H(dest), Simd16B(src));
}

void MacroAssembler::extAddPairwiseInt16x8(FloatRegister src,
                                           FloatRegister dest) {
  Saddlp(Simd4S(dest), Simd8H(src));
}

void MacroAssembler::unsignedExtAddPairwiseInt16x8(FloatRegister src,
                                                   FloatRegister dest) {
  Uaddlp(Simd4S(dest), Simd8H(src));
}

// Floating square root

void MacroAssembler::sqrtFloat32x4(FloatRegister src, FloatRegister dest) {
  Fsqrt(Simd4S(dest), Simd4S(src));
}

void MacroAssembler::sqrtFloat64x2(FloatRegister src, FloatRegister dest) {
  Fsqrt(Simd2D(dest), Simd2D(src));
}

// Integer to floating point with rounding

void MacroAssembler::convertInt32x4ToFloat32x4(FloatRegister src,
                                               FloatRegister dest) {
  Scvtf(Simd4S(dest), Simd4S(src));
}

void MacroAssembler::unsignedConvertInt32x4ToFloat32x4(FloatRegister src,
                                                       FloatRegister dest) {
  Ucvtf(Simd4S(dest), Simd4S(src));
}

void MacroAssembler::convertInt32x4ToFloat64x2(FloatRegister src,
                                               FloatRegister dest) {
  Sshll(Simd2D(dest), Simd2S(src), 0);
  Scvtf(Simd2D(dest), Simd2D(dest));
}

void MacroAssembler::unsignedConvertInt32x4ToFloat64x2(FloatRegister src,
                                                       FloatRegister dest) {
  Ushll(Simd2D(dest), Simd2S(src), 0);
  Ucvtf(Simd2D(dest), Simd2D(dest));
}

// Floating point to integer with saturation

void MacroAssembler::truncSatFloat32x4ToInt32x4(FloatRegister src,
                                                FloatRegister dest) {
  Fcvtzs(Simd4S(dest), Simd4S(src));
}

void MacroAssembler::unsignedTruncSatFloat32x4ToInt32x4(FloatRegister src,
                                                        FloatRegister dest) {
  Fcvtzu(Simd4S(dest), Simd4S(src));
}

void MacroAssembler::truncSatFloat64x2ToInt32x4(FloatRegister src,
                                                FloatRegister dest,
                                                FloatRegister temp) {
  Fcvtzs(Simd2D(dest), Simd2D(src));
  Sqxtn(Simd2S(dest), Simd2D(dest));
}

void MacroAssembler::unsignedTruncSatFloat64x2ToInt32x4(FloatRegister src,
                                                        FloatRegister dest,
                                                        FloatRegister temp) {
  Fcvtzu(Simd2D(dest), Simd2D(src));
  Uqxtn(Simd2S(dest), Simd2D(dest));
}

void MacroAssembler::truncFloat32x4ToInt32x4Relaxed(FloatRegister src,
                                                    FloatRegister dest) {
  Fcvtzs(Simd4S(dest), Simd4S(src));
}

void MacroAssembler::unsignedTruncFloat32x4ToInt32x4Relaxed(
    FloatRegister src, FloatRegister dest) {
  Fcvtzu(Simd4S(dest), Simd4S(src));
}

void MacroAssembler::truncFloat64x2ToInt32x4Relaxed(FloatRegister src,
                                                    FloatRegister dest) {
  Fcvtzs(Simd2D(dest), Simd2D(src));
  Sqxtn(Simd2S(dest), Simd2D(dest));
}

void MacroAssembler::unsignedTruncFloat64x2ToInt32x4Relaxed(
    FloatRegister src, FloatRegister dest) {
  Fcvtzu(Simd2D(dest), Simd2D(src));
  Uqxtn(Simd2S(dest), Simd2D(dest));
}

// Floating point narrowing

void MacroAssembler::convertFloat64x2ToFloat32x4(FloatRegister src,
                                                 FloatRegister dest) {
  Fcvtn(Simd2S(dest), Simd2D(src));
}

// Floating point widening

void MacroAssembler::convertFloat32x4ToFloat64x2(FloatRegister src,
                                                 FloatRegister dest) {
  Fcvtl(Simd2D(dest), Simd2S(src));
}

// Integer to integer narrowing

void MacroAssembler::narrowInt16x8(FloatRegister lhs, FloatRegister rhs,
                                   FloatRegister dest) {
  ScratchSimd128Scope scratch(*this);
  if (rhs == dest) {
    Mov(scratch, SimdReg(rhs));
    rhs = scratch;
  }
  Sqxtn(Simd8B(dest), Simd8H(lhs));
  Sqxtn2(Simd16B(dest), Simd8H(rhs));
}

void MacroAssembler::unsignedNarrowInt16x8(FloatRegister lhs, FloatRegister rhs,
                                           FloatRegister dest) {
  ScratchSimd128Scope scratch(*this);
  if (rhs == dest) {
    Mov(scratch, SimdReg(rhs));
    rhs = scratch;
  }
  Sqxtun(Simd8B(dest), Simd8H(lhs));
  Sqxtun2(Simd16B(dest), Simd8H(rhs));
}

void MacroAssembler::narrowInt32x4(FloatRegister lhs, FloatRegister rhs,
                                   FloatRegister dest) {
  ScratchSimd128Scope scratch(*this);
  if (rhs == dest) {
    Mov(scratch, SimdReg(rhs));
    rhs = scratch;
  }
  Sqxtn(Simd4H(dest), Simd4S(lhs));
  Sqxtn2(Simd8H(dest), Simd4S(rhs));
}

void MacroAssembler::unsignedNarrowInt32x4(FloatRegister lhs, FloatRegister rhs,
                                           FloatRegister dest) {
  ScratchSimd128Scope scratch(*this);
  if (rhs == dest) {
    Mov(scratch, SimdReg(rhs));
    rhs = scratch;
  }
  Sqxtun(Simd4H(dest), Simd4S(lhs));
  Sqxtun2(Simd8H(dest), Simd4S(rhs));
}

// Integer to integer widening

void MacroAssembler::widenLowInt8x16(FloatRegister src, FloatRegister dest) {
  Sshll(Simd8H(dest), Simd8B(src), 0);
}

void MacroAssembler::widenHighInt8x16(FloatRegister src, FloatRegister dest) {
  Sshll2(Simd8H(dest), Simd16B(src), 0);
}

void MacroAssembler::unsignedWidenLowInt8x16(FloatRegister src,
                                             FloatRegister dest) {
  Ushll(Simd8H(dest), Simd8B(src), 0);
}

void MacroAssembler::unsignedWidenHighInt8x16(FloatRegister src,
                                              FloatRegister dest) {
  Ushll2(Simd8H(dest), Simd16B(src), 0);
}

void MacroAssembler::widenLowInt16x8(FloatRegister src, FloatRegister dest) {
  Sshll(Simd4S(dest), Simd4H(src), 0);
}

void MacroAssembler::widenHighInt16x8(FloatRegister src, FloatRegister dest) {
  Sshll2(Simd4S(dest), Simd8H(src), 0);
}

void MacroAssembler::unsignedWidenLowInt16x8(FloatRegister src,
                                             FloatRegister dest) {
  Ushll(Simd4S(dest), Simd4H(src), 0);
}

void MacroAssembler::unsignedWidenHighInt16x8(FloatRegister src,
                                              FloatRegister dest) {
  Ushll2(Simd4S(dest), Simd8H(src), 0);
}

void MacroAssembler::widenLowInt32x4(FloatRegister src, FloatRegister dest) {
  Sshll(Simd2D(dest), Simd2S(src), 0);
}

void MacroAssembler::unsignedWidenLowInt32x4(FloatRegister src,
                                             FloatRegister dest) {
  Ushll(Simd2D(dest), Simd2S(src), 0);
}

void MacroAssembler::widenHighInt32x4(FloatRegister src, FloatRegister dest) {
  Sshll2(Simd2D(dest), Simd4S(src), 0);
}

void MacroAssembler::unsignedWidenHighInt32x4(FloatRegister src,
                                              FloatRegister dest) {
  Ushll2(Simd2D(dest), Simd4S(src), 0);
}

// Compare-based minimum/maximum (experimental as of August, 2020)
// https://github.com/WebAssembly/simd/pull/122

void MacroAssembler::pseudoMinFloat32x4(FloatRegister rhsOrRhsDest,
                                        FloatRegister lhsOrLhsDest) {
  // Shut up the linter by using the same names as in the declaration, then
  // aliasing here.
  FloatRegister rhs = rhsOrRhsDest;
  FloatRegister lhsDest = lhsOrLhsDest;
  ScratchSimd128Scope scratch(*this);
  Fcmgt(Simd4S(scratch), Simd4S(lhsDest), Simd4S(rhs));
  Bsl(Simd16B(scratch), Simd16B(rhs), Simd16B(lhsDest));
  Mov(SimdReg(lhsDest), scratch);
}

void MacroAssembler::pseudoMinFloat32x4(FloatRegister lhs, FloatRegister rhs,
                                        FloatRegister dest) {
  ScratchSimd128Scope scratch(*this);
  Fcmgt(Simd4S(scratch), Simd4S(lhs), Simd4S(rhs));
  Bsl(Simd16B(scratch), Simd16B(rhs), Simd16B(lhs));
  Mov(SimdReg(dest), scratch);
}

void MacroAssembler::pseudoMinFloat64x2(FloatRegister rhsOrRhsDest,
                                        FloatRegister lhsOrLhsDest) {
  FloatRegister rhs = rhsOrRhsDest;
  FloatRegister lhsDest = lhsOrLhsDest;
  ScratchSimd128Scope scratch(*this);
  Fcmgt(Simd2D(scratch), Simd2D(lhsDest), Simd2D(rhs));
  Bsl(Simd16B(scratch), Simd16B(rhs), Simd16B(lhsDest));
  Mov(SimdReg(lhsDest), scratch);
}

void MacroAssembler::pseudoMinFloat64x2(FloatRegister lhs, FloatRegister rhs,
                                        FloatRegister dest) {
  ScratchSimd128Scope scratch(*this);
  Fcmgt(Simd2D(scratch), Simd2D(lhs), Simd2D(rhs));
  Bsl(Simd16B(scratch), Simd16B(rhs), Simd16B(lhs));
  Mov(SimdReg(dest), scratch);
}

void MacroAssembler::pseudoMaxFloat32x4(FloatRegister rhsOrRhsDest,
                                        FloatRegister lhsOrLhsDest) {
  FloatRegister rhs = rhsOrRhsDest;
  FloatRegister lhsDest = lhsOrLhsDest;
  ScratchSimd128Scope scratch(*this);
  Fcmgt(Simd4S(scratch), Simd4S(rhs), Simd4S(lhsDest));
  Bsl(Simd16B(scratch), Simd16B(rhs), Simd16B(lhsDest));
  Mov(SimdReg(lhsDest), scratch);
}

void MacroAssembler::pseudoMaxFloat32x4(FloatRegister lhs, FloatRegister rhs,
                                        FloatRegister dest) {
  ScratchSimd128Scope scratch(*this);
  Fcmgt(Simd4S(scratch), Simd4S(rhs), Simd4S(lhs));
  Bsl(Simd16B(scratch), Simd16B(rhs), Simd16B(lhs));
  Mov(SimdReg(dest), scratch);
}

void MacroAssembler::pseudoMaxFloat64x2(FloatRegister rhsOrRhsDest,
                                        FloatRegister lhsOrLhsDest) {
  FloatRegister rhs = rhsOrRhsDest;
  FloatRegister lhsDest = lhsOrLhsDest;
  ScratchSimd128Scope scratch(*this);
  Fcmgt(Simd2D(scratch), Simd2D(rhs), Simd2D(lhsDest));
  Bsl(Simd16B(scratch), Simd16B(rhs), Simd16B(lhsDest));
  Mov(SimdReg(lhsDest), scratch);
}

void MacroAssembler::pseudoMaxFloat64x2(FloatRegister lhs, FloatRegister rhs,
                                        FloatRegister dest) {
  ScratchSimd128Scope scratch(*this);
  Fcmgt(Simd2D(scratch), Simd2D(rhs), Simd2D(lhs));
  Bsl(Simd16B(scratch), Simd16B(rhs), Simd16B(lhs));
  Mov(SimdReg(dest), scratch);
}

// Widening/pairwise integer dot product (experimental as of August, 2020)
// https://github.com/WebAssembly/simd/pull/127

void MacroAssembler::widenDotInt16x8(FloatRegister lhs, FloatRegister rhs,
                                     FloatRegister dest) {
  ScratchSimd128Scope scratch(*this);
  Smull(Simd4S(scratch), Simd4H(lhs), Simd4H(rhs));
  Smull2(Simd4S(dest), Simd8H(lhs), Simd8H(rhs));
  Addp(Simd4S(dest), Simd4S(scratch), Simd4S(dest));
}

void MacroAssembler::dotInt8x16Int7x16(FloatRegister lhs, FloatRegister rhs,
                                       FloatRegister dest) {
  ScratchSimd128Scope scratch(*this);
  Smull(Simd8H(scratch), Simd8B(lhs), Simd8B(rhs));
  Smull2(Simd8H(dest), Simd16B(lhs), Simd16B(rhs));
  Addp(Simd8H(dest), Simd8H(scratch), Simd8H(dest));
}

void MacroAssembler::dotInt8x16Int7x16ThenAdd(FloatRegister lhs,
                                              FloatRegister rhs,
                                              FloatRegister dest,
                                              FloatRegister temp) {
  ScratchSimd128Scope scratch(*this);
  Smull(Simd8H(scratch), Simd8B(lhs), Simd8B(rhs));
  Smull2(Simd8H(temp), Simd16B(lhs), Simd16B(rhs));
  Addp(Simd8H(temp), Simd8H(scratch), Simd8H(temp));
  Sadalp(Simd4S(dest), Simd8H(temp));
}

// Floating point rounding (experimental as of August, 2020)
// https://github.com/WebAssembly/simd/pull/232

void MacroAssembler::ceilFloat32x4(FloatRegister src, FloatRegister dest) {
  Frintp(Simd4S(dest), Simd4S(src));
}

void MacroAssembler::ceilFloat64x2(FloatRegister src, FloatRegister dest) {
  Frintp(Simd2D(dest), Simd2D(src));
}

void MacroAssembler::floorFloat32x4(FloatRegister src, FloatRegister dest) {
  Frintm(Simd4S(dest), Simd4S(src));
}

void MacroAssembler::floorFloat64x2(FloatRegister src, FloatRegister dest) {
  Frintm(Simd2D(dest), Simd2D(src));
}

void MacroAssembler::truncFloat32x4(FloatRegister src, FloatRegister dest) {
  Frintz(Simd4S(dest), Simd4S(src));
}

void MacroAssembler::truncFloat64x2(FloatRegister src, FloatRegister dest) {
  Frintz(Simd2D(dest), Simd2D(src));
}

void MacroAssembler::nearestFloat32x4(FloatRegister src, FloatRegister dest) {
  Frintn(Simd4S(dest), Simd4S(src));
}

void MacroAssembler::nearestFloat64x2(FloatRegister src, FloatRegister dest) {
  Frintn(Simd2D(dest), Simd2D(src));
}

// Floating multiply-accumulate: srcDest [+-]= src1 * src2

void MacroAssembler::fmaFloat32x4(FloatRegister src1, FloatRegister src2,
                                  FloatRegister srcDest) {
  Fmla(Simd4S(srcDest), Simd4S(src1), Simd4S(src2));
}

void MacroAssembler::fnmaFloat32x4(FloatRegister src1, FloatRegister src2,
                                   FloatRegister srcDest) {
  Fmls(Simd4S(srcDest), Simd4S(src1), Simd4S(src2));
}

void MacroAssembler::fmaFloat64x2(FloatRegister src1, FloatRegister src2,
                                  FloatRegister srcDest) {
  Fmla(Simd2D(srcDest), Simd2D(src1), Simd2D(src2));
}

void MacroAssembler::fnmaFloat64x2(FloatRegister src1, FloatRegister src2,
                                   FloatRegister srcDest) {
  Fmls(Simd2D(srcDest), Simd2D(src1), Simd2D(src2));
}

void MacroAssembler::minFloat32x4Relaxed(FloatRegister src,
                                         FloatRegister srcDest) {
  Fmin(Simd4S(srcDest), Simd4S(src), Simd4S(srcDest));
}

void MacroAssembler::minFloat32x4Relaxed(FloatRegister lhs, FloatRegister rhs,
                                         FloatRegister dest) {
  Fmin(Simd4S(dest), Simd4S(rhs), Simd4S(lhs));
}

void MacroAssembler::maxFloat32x4Relaxed(FloatRegister src,
                                         FloatRegister srcDest) {
  Fmax(Simd4S(srcDest), Simd4S(src), Simd4S(srcDest));
}

void MacroAssembler::maxFloat32x4Relaxed(FloatRegister lhs, FloatRegister rhs,
                                         FloatRegister dest) {
  Fmax(Simd4S(dest), Simd4S(rhs), Simd4S(lhs));
}

void MacroAssembler::minFloat64x2Relaxed(FloatRegister src,
                                         FloatRegister srcDest) {
  Fmin(Simd2D(srcDest), Simd2D(src), Simd2D(srcDest));
}

void MacroAssembler::minFloat64x2Relaxed(FloatRegister lhs, FloatRegister rhs,
                                         FloatRegister dest) {
  Fmin(Simd2D(dest), Simd2D(rhs), Simd2D(lhs));
}

void MacroAssembler::maxFloat64x2Relaxed(FloatRegister src,
                                         FloatRegister srcDest) {
  Fmax(Simd2D(srcDest), Simd2D(src), Simd2D(srcDest));
}

void MacroAssembler::maxFloat64x2Relaxed(FloatRegister lhs, FloatRegister rhs,
                                         FloatRegister dest) {
  Fmax(Simd2D(dest), Simd2D(rhs), Simd2D(lhs));
}

//}}} check_macroassembler_style
// ===============================================================

void MacroAssemblerCompat::addToStackPtr(Register src) {
  Add(GetStackPointer64(), GetStackPointer64(), ARMRegister(src, 64));
  // Given that required invariant SP <= PSP, this is probably pointless,
  // since it gives PSP a larger value.
  syncStackPtr();
}

void MacroAssemblerCompat::addToStackPtr(Imm32 imm) {
  Add(GetStackPointer64(), GetStackPointer64(), Operand(imm.value));
  // As above, probably pointless.
  syncStackPtr();
}

void MacroAssemblerCompat::addToStackPtr(const Address& src) {
  vixl::UseScratchRegisterScope temps(this);
  const ARMRegister scratch = temps.AcquireX();
  Ldr(scratch, toMemOperand(src));
  Add(GetStackPointer64(), GetStackPointer64(), scratch);
  // As above, probably pointless.
  syncStackPtr();
}

void MacroAssemblerCompat::addStackPtrTo(Register dest) {
  Add(ARMRegister(dest, 64), ARMRegister(dest, 64), GetStackPointer64());
}

void MacroAssemblerCompat::subFromStackPtr(Register src) {
  Sub(GetStackPointer64(), GetStackPointer64(), ARMRegister(src, 64));
  syncStackPtr();
}

void MacroAssemblerCompat::subFromStackPtr(Imm32 imm) {
  Sub(GetStackPointer64(), GetStackPointer64(), Operand(imm.value));
  syncStackPtr();
}

void MacroAssemblerCompat::subStackPtrFrom(Register dest) {
  Sub(ARMRegister(dest, 64), ARMRegister(dest, 64), GetStackPointer64());
}

void MacroAssemblerCompat::andToStackPtr(Imm32 imm) {
  if (sp.Is(GetStackPointer64())) {
    vixl::UseScratchRegisterScope temps(this);
    const ARMRegister scratch = temps.AcquireX();
    Mov(scratch, sp);
    And(sp, scratch, Operand(imm.value));
    // syncStackPtr() not needed since our SP is the real SP.
  } else {
    And(GetStackPointer64(), GetStackPointer64(), Operand(imm.value));
    syncStackPtr();
  }
}

void MacroAssemblerCompat::moveToStackPtr(Register src) {
  Mov(GetStackPointer64(), ARMRegister(src, 64));
  syncStackPtr();
}

void MacroAssemblerCompat::moveStackPtrTo(Register dest) {
  Mov(ARMRegister(dest, 64), GetStackPointer64());
}

void MacroAssemblerCompat::loadStackPtr(const Address& src) {
  if (sp.Is(GetStackPointer64())) {
    vixl::UseScratchRegisterScope temps(this);
    const ARMRegister scratch = temps.AcquireX();
    Ldr(scratch, toMemOperand(src));
    Mov(sp, scratch);
    // syncStackPtr() not needed since our SP is the real SP.
  } else {
    Ldr(GetStackPointer64(), toMemOperand(src));
    syncStackPtr();
  }
}

void MacroAssemblerCompat::storeStackPtr(const Address& dest) {
  if (sp.Is(GetStackPointer64())) {
    vixl::UseScratchRegisterScope temps(this);
    const ARMRegister scratch = temps.AcquireX();
    Mov(scratch, sp);
    Str(scratch, toMemOperand(dest));
  } else {
    Str(GetStackPointer64(), toMemOperand(dest));
  }
}

void MacroAssemblerCompat::branchTestStackPtr(Condition cond, Imm32 rhs,
                                              Label* label) {
  if (sp.Is(GetStackPointer64())) {
    vixl::UseScratchRegisterScope temps(this);
    const ARMRegister scratch = temps.AcquireX();
    Mov(scratch, sp);
    Tst(scratch, Operand(rhs.value));
  } else {
    Tst(GetStackPointer64(), Operand(rhs.value));
  }
  B(label, cond);
}

void MacroAssemblerCompat::branchStackPtr(Condition cond, Register rhs_,
                                          Label* label) {
  ARMRegister rhs(rhs_, 64);
  if (sp.Is(GetStackPointer64())) {
    vixl::UseScratchRegisterScope temps(this);
    const ARMRegister scratch = temps.AcquireX();
    Mov(scratch, sp);
    Cmp(scratch, rhs);
  } else {
    Cmp(GetStackPointer64(), rhs);
  }
  B(label, cond);
}

void MacroAssemblerCompat::branchStackPtrRhs(Condition cond, Address lhs,
                                             Label* label) {
  vixl::UseScratchRegisterScope temps(this);
  const ARMRegister scratch = temps.AcquireX();
  Ldr(scratch, toMemOperand(lhs));
  // Cmp disallows SP as the rhs, so flip the operands and invert the
  // condition.
  Cmp(GetStackPointer64(), scratch);
  B(label, Assembler::InvertCondition(cond));
}

void MacroAssemblerCompat::branchStackPtrRhs(Condition cond,
                                             AbsoluteAddress lhs,
                                             Label* label) {
  vixl::UseScratchRegisterScope temps(this);
  const ARMRegister scratch = temps.AcquireX();
  loadPtr(lhs, scratch.asUnsized());
  // Cmp disallows SP as the rhs, so flip the operands and invert the
  // condition.
  Cmp(GetStackPointer64(), scratch);
  B(label, Assembler::InvertCondition(cond));
}

// If source is a double, load into dest.
// If source is int32, convert to double and store in dest.
// Else, branch to failure.
void MacroAssemblerCompat::ensureDouble(const ValueOperand& source,
                                        FloatRegister dest, Label* failure) {
  Label isDouble, done;

  {
    ScratchTagScope tag(asMasm(), source);
    splitTagForTest(source, tag);
    asMasm().branchTestDouble(Assembler::Equal, tag, &isDouble);
    asMasm().branchTestInt32(Assembler::NotEqual, tag, failure);
  }

  convertInt32ToDouble(source.valueReg(), dest);
  jump(&done);

  bind(&isDouble);
  unboxDouble(source, dest);

  bind(&done);
}

void MacroAssemblerCompat::unboxValue(const ValueOperand& src, AnyRegister dest,
                                      JSValueType type) {
  if (dest.isFloat()) {
    Label notInt32, end;
    asMasm().branchTestInt32(Assembler::NotEqual, src, &notInt32);
    convertInt32ToDouble(src.valueReg(), dest.fpu());
    jump(&end);
    bind(&notInt32);
    unboxDouble(src, dest.fpu());
    bind(&end);
  } else {
    unboxNonDouble(src, dest.gpr(), type);
  }
}

}  // namespace jit
}  // namespace js

#endif /* jit_arm64_MacroAssembler_arm64_inl_h */