// Copyright 2015, VIXL authors // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of ARM Limited nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "jit/arm64/vixl/Assembler-vixl.h" #include #include "jit/arm64/vixl/MacroAssembler-vixl.h" namespace vixl { // CPURegList utilities. CPURegister CPURegList::PopLowestIndex() { if (IsEmpty()) { return NoCPUReg; } int index = CountTrailingZeros(list_); VIXL_ASSERT((1ULL << index) & list_); Remove(index); return CPURegister(index, size_, type_); } CPURegister CPURegList::PopHighestIndex() { VIXL_ASSERT(IsValid()); if (IsEmpty()) { return NoCPUReg; } int index = CountLeadingZeros(list_); index = kRegListSizeInBits - 1 - index; VIXL_ASSERT((1ULL << index) & list_); Remove(index); return CPURegister(index, size_, type_); } bool CPURegList::IsValid() const { if ((type_ == CPURegister::kRegister) || (type_ == CPURegister::kVRegister)) { bool is_valid = true; // Try to create a CPURegister for each element in the list. for (int i = 0; i < kRegListSizeInBits; i++) { if (((list_ >> i) & 1) != 0) { is_valid &= CPURegister(i, size_, type_).IsValid(); } } return is_valid; } else if (type_ == CPURegister::kNoRegister) { // We can't use IsEmpty here because that asserts IsValid(). return list_ == 0; } else { return false; } } void CPURegList::RemoveCalleeSaved() { if (type() == CPURegister::kRegister) { Remove(GetCalleeSaved(RegisterSizeInBits())); } else if (type() == CPURegister::kVRegister) { Remove(GetCalleeSavedV(RegisterSizeInBits())); } else { VIXL_ASSERT(type() == CPURegister::kNoRegister); VIXL_ASSERT(IsEmpty()); // The list must already be empty, so do nothing. } } CPURegList CPURegList::Union(const CPURegList& list_1, const CPURegList& list_2, const CPURegList& list_3) { return Union(list_1, Union(list_2, list_3)); } CPURegList CPURegList::Union(const CPURegList& list_1, const CPURegList& list_2, const CPURegList& list_3, const CPURegList& list_4) { return Union(Union(list_1, list_2), Union(list_3, list_4)); } CPURegList CPURegList::Intersection(const CPURegList& list_1, const CPURegList& list_2, const CPURegList& list_3) { return Intersection(list_1, Intersection(list_2, list_3)); } CPURegList CPURegList::Intersection(const CPURegList& list_1, const CPURegList& list_2, const CPURegList& list_3, const CPURegList& list_4) { return Intersection(Intersection(list_1, list_2), Intersection(list_3, list_4)); } CPURegList CPURegList::GetCalleeSaved(unsigned size) { return CPURegList(CPURegister::kRegister, size, 19, 29); } CPURegList CPURegList::GetCalleeSavedV(unsigned size) { return CPURegList(CPURegister::kVRegister, size, 8, 15); } CPURegList CPURegList::GetCallerSaved(unsigned size) { // Registers x0-x18 and lr (x30) are caller-saved. CPURegList list = CPURegList(CPURegister::kRegister, size, 0, 18); // Do not use lr directly to avoid initialisation order fiasco bugs for users. list.Combine(Register(30, kXRegSize)); return list; } CPURegList CPURegList::GetCallerSavedV(unsigned size) { // Registers d0-d7 and d16-d31 are caller-saved. CPURegList list = CPURegList(CPURegister::kVRegister, size, 0, 7); list.Combine(CPURegList(CPURegister::kVRegister, size, 16, 31)); return list; } const CPURegList kCalleeSaved = CPURegList::GetCalleeSaved(); const CPURegList kCalleeSavedV = CPURegList::GetCalleeSavedV(); const CPURegList kCallerSaved = CPURegList::GetCallerSaved(); const CPURegList kCallerSavedV = CPURegList::GetCallerSavedV(); // Registers. #define WREG(n) w##n, const Register Register::wregisters[] = { REGISTER_CODE_LIST(WREG) }; #undef WREG #define XREG(n) x##n, const Register Register::xregisters[] = { REGISTER_CODE_LIST(XREG) }; #undef XREG #define BREG(n) b##n, const VRegister VRegister::bregisters[] = { REGISTER_CODE_LIST(BREG) }; #undef BREG #define HREG(n) h##n, const VRegister VRegister::hregisters[] = { REGISTER_CODE_LIST(HREG) }; #undef HREG #define SREG(n) s##n, const VRegister VRegister::sregisters[] = { REGISTER_CODE_LIST(SREG) }; #undef SREG #define DREG(n) d##n, const VRegister VRegister::dregisters[] = { REGISTER_CODE_LIST(DREG) }; #undef DREG #define QREG(n) q##n, const VRegister VRegister::qregisters[] = { REGISTER_CODE_LIST(QREG) }; #undef QREG #define VREG(n) v##n, const VRegister VRegister::vregisters[] = { REGISTER_CODE_LIST(VREG) }; #undef VREG const Register& Register::WRegFromCode(unsigned code) { if (code == kSPRegInternalCode) { return wsp; } else { VIXL_ASSERT(code < kNumberOfRegisters); return wregisters[code]; } } const Register& Register::XRegFromCode(unsigned code) { if (code == kSPRegInternalCode) { return sp; } else { VIXL_ASSERT(code < kNumberOfRegisters); return xregisters[code]; } } const VRegister& VRegister::BRegFromCode(unsigned code) { VIXL_ASSERT(code < kNumberOfVRegisters); return bregisters[code]; } const VRegister& VRegister::HRegFromCode(unsigned code) { VIXL_ASSERT(code < kNumberOfVRegisters); return hregisters[code]; } const VRegister& VRegister::SRegFromCode(unsigned code) { VIXL_ASSERT(code < kNumberOfVRegisters); return sregisters[code]; } const VRegister& VRegister::DRegFromCode(unsigned code) { VIXL_ASSERT(code < kNumberOfVRegisters); return dregisters[code]; } const VRegister& VRegister::QRegFromCode(unsigned code) { VIXL_ASSERT(code < kNumberOfVRegisters); return qregisters[code]; } const VRegister& VRegister::VRegFromCode(unsigned code) { VIXL_ASSERT(code < kNumberOfVRegisters); return vregisters[code]; } const Register& CPURegister::W() const { VIXL_ASSERT(IsValidRegister()); return Register::WRegFromCode(code_); } const Register& CPURegister::X() const { VIXL_ASSERT(IsValidRegister()); return Register::XRegFromCode(code_); } const VRegister& CPURegister::B() const { VIXL_ASSERT(IsValidVRegister()); return VRegister::BRegFromCode(code_); } const VRegister& CPURegister::H() const { VIXL_ASSERT(IsValidVRegister()); return VRegister::HRegFromCode(code_); } const VRegister& CPURegister::S() const { VIXL_ASSERT(IsValidVRegister()); return VRegister::SRegFromCode(code_); } const VRegister& CPURegister::D() const { VIXL_ASSERT(IsValidVRegister()); return VRegister::DRegFromCode(code_); } const VRegister& CPURegister::Q() const { VIXL_ASSERT(IsValidVRegister()); return VRegister::QRegFromCode(code_); } const VRegister& CPURegister::V() const { VIXL_ASSERT(IsValidVRegister()); return VRegister::VRegFromCode(code_); } // Operand. Operand::Operand(int64_t immediate) : immediate_(immediate), reg_(NoReg), shift_(NO_SHIFT), extend_(NO_EXTEND), shift_amount_(0) {} Operand::Operand(Register reg, Shift shift, unsigned shift_amount) : reg_(reg), shift_(shift), extend_(NO_EXTEND), shift_amount_(shift_amount) { VIXL_ASSERT(shift != MSL); VIXL_ASSERT(reg.Is64Bits() || (shift_amount < kWRegSize)); VIXL_ASSERT(reg.Is32Bits() || (shift_amount < kXRegSize)); VIXL_ASSERT(!reg.IsSP()); } Operand::Operand(Register reg, Extend extend, unsigned shift_amount) : reg_(reg), shift_(NO_SHIFT), extend_(extend), shift_amount_(shift_amount) { VIXL_ASSERT(reg.IsValid()); VIXL_ASSERT(shift_amount <= 4); VIXL_ASSERT(!reg.IsSP()); // Extend modes SXTX and UXTX require a 64-bit register. VIXL_ASSERT(reg.Is64Bits() || ((extend != SXTX) && (extend != UXTX))); } bool Operand::IsImmediate() const { return reg_.Is(NoReg); } bool Operand::IsShiftedRegister() const { return reg_.IsValid() && (shift_ != NO_SHIFT); } bool Operand::IsExtendedRegister() const { return reg_.IsValid() && (extend_ != NO_EXTEND); } bool Operand::IsZero() const { if (IsImmediate()) { return immediate() == 0; } else { return reg().IsZero(); } } Operand Operand::ToExtendedRegister() const { VIXL_ASSERT(IsShiftedRegister()); VIXL_ASSERT((shift_ == LSL) && (shift_amount_ <= 4)); return Operand(reg_, reg_.Is64Bits() ? UXTX : UXTW, shift_amount_); } // MemOperand MemOperand::MemOperand(Register base, int64_t offset, AddrMode addrmode) : base_(base), regoffset_(NoReg), offset_(offset), addrmode_(addrmode) { VIXL_ASSERT(base.Is64Bits() && !base.IsZero()); } MemOperand::MemOperand(Register base, Register regoffset, Extend extend, unsigned shift_amount) : base_(base), regoffset_(regoffset), offset_(0), addrmode_(Offset), shift_(NO_SHIFT), extend_(extend), shift_amount_(shift_amount) { VIXL_ASSERT(base.Is64Bits() && !base.IsZero()); VIXL_ASSERT(!regoffset.IsSP()); VIXL_ASSERT((extend == UXTW) || (extend == SXTW) || (extend == SXTX)); // SXTX extend mode requires a 64-bit offset register. VIXL_ASSERT(regoffset.Is64Bits() || (extend != SXTX)); } MemOperand::MemOperand(Register base, Register regoffset, Shift shift, unsigned shift_amount) : base_(base), regoffset_(regoffset), offset_(0), addrmode_(Offset), shift_(shift), extend_(NO_EXTEND), shift_amount_(shift_amount) { VIXL_ASSERT(base.Is64Bits() && !base.IsZero()); VIXL_ASSERT(regoffset.Is64Bits() && !regoffset.IsSP()); VIXL_ASSERT(shift == LSL); } MemOperand::MemOperand(Register base, const Operand& offset, AddrMode addrmode) : base_(base), regoffset_(NoReg), addrmode_(addrmode) { VIXL_ASSERT(base.Is64Bits() && !base.IsZero()); if (offset.IsImmediate()) { offset_ = offset.immediate(); } else if (offset.IsShiftedRegister()) { VIXL_ASSERT((addrmode == Offset) || (addrmode == PostIndex)); regoffset_ = offset.reg(); shift_ = offset.shift(); shift_amount_ = offset.shift_amount(); extend_ = NO_EXTEND; offset_ = 0; // These assertions match those in the shifted-register constructor. VIXL_ASSERT(regoffset_.Is64Bits() && !regoffset_.IsSP()); VIXL_ASSERT(shift_ == LSL); } else { VIXL_ASSERT(offset.IsExtendedRegister()); VIXL_ASSERT(addrmode == Offset); regoffset_ = offset.reg(); extend_ = offset.extend(); shift_amount_ = offset.shift_amount(); shift_ = NO_SHIFT; offset_ = 0; // These assertions match those in the extended-register constructor. VIXL_ASSERT(!regoffset_.IsSP()); VIXL_ASSERT((extend_ == UXTW) || (extend_ == SXTW) || (extend_ == SXTX)); VIXL_ASSERT((regoffset_.Is64Bits() || (extend_ != SXTX))); } } bool MemOperand::IsImmediateOffset() const { return (addrmode_ == Offset) && regoffset_.Is(NoReg); } bool MemOperand::IsRegisterOffset() const { return (addrmode_ == Offset) && !regoffset_.Is(NoReg); } bool MemOperand::IsPreIndex() const { return addrmode_ == PreIndex; } bool MemOperand::IsPostIndex() const { return addrmode_ == PostIndex; } void MemOperand::AddOffset(int64_t offset) { VIXL_ASSERT(IsImmediateOffset()); offset_ += offset; } static CPUFeatures InitCachedCPUFeatures() { CPUFeatures cpu_features = CPUFeatures::AArch64LegacyBaseline(); // Mozilla change: always use maximally-present features. cpu_features.Combine(CPUFeatures::InferFromOS()); // Mozilla change: Compile time hard-coded value from js-config.mozbuild. #ifndef MOZ_AARCH64_JSCVT # error "MOZ_AARCH64_JSCVT must be defined." #elif MOZ_AARCH64_JSCVT >= 1 // Note, vixl backend implements the JSCVT flag as a boolean despite having 3 // extra bits reserved for forward compatibility in the ARMv8 documentation. cpu_features.Combine(CPUFeatures::kJSCVT); #endif return cpu_features; } // Assembler Assembler::Assembler(PositionIndependentCodeOption pic) : pic_(pic) { // Mozilla change: query cpu features once and cache result. static CPUFeatures cached_cpu_features = InitCachedCPUFeatures(); cpu_features_ = cached_cpu_features; } // Code generation. void Assembler::br(const Register& xn) { VIXL_ASSERT(xn.Is64Bits()); Emit(BR | Rn(xn)); } void Assembler::blr(const Register& xn) { VIXL_ASSERT(xn.Is64Bits()); Emit(BLR | Rn(xn)); } void Assembler::ret(const Register& xn) { VIXL_ASSERT(xn.Is64Bits()); Emit(RET | Rn(xn)); } void Assembler::NEONTable(const VRegister& vd, const VRegister& vn, const VRegister& vm, NEONTableOp op) { VIXL_ASSERT(vd.Is16B() || vd.Is8B()); VIXL_ASSERT(vn.Is16B()); VIXL_ASSERT(AreSameFormat(vd, vm)); Emit(op | (vd.IsQ() ? NEON_Q : 0) | Rm(vm) | Rn(vn) | Rd(vd)); } void Assembler::tbl(const VRegister& vd, const VRegister& vn, const VRegister& vm) { NEONTable(vd, vn, vm, NEON_TBL_1v); } void Assembler::tbl(const VRegister& vd, const VRegister& vn, const VRegister& vn2, const VRegister& vm) { USE(vn2); VIXL_ASSERT(AreSameFormat(vn, vn2)); VIXL_ASSERT(vn2.code() == ((vn.code() + 1) % kNumberOfVRegisters)); NEONTable(vd, vn, vm, NEON_TBL_2v); } void Assembler::tbl(const VRegister& vd, const VRegister& vn, const VRegister& vn2, const VRegister& vn3, const VRegister& vm) { USE(vn2, vn3); VIXL_ASSERT(AreSameFormat(vn, vn2, vn3)); VIXL_ASSERT(vn2.code() == ((vn.code() + 1) % kNumberOfVRegisters)); VIXL_ASSERT(vn3.code() == ((vn.code() + 2) % kNumberOfVRegisters)); NEONTable(vd, vn, vm, NEON_TBL_3v); } void Assembler::tbl(const VRegister& vd, const VRegister& vn, const VRegister& vn2, const VRegister& vn3, const VRegister& vn4, const VRegister& vm) { USE(vn2, vn3, vn4); VIXL_ASSERT(AreSameFormat(vn, vn2, vn3, vn4)); VIXL_ASSERT(vn2.code() == ((vn.code() + 1) % kNumberOfVRegisters)); VIXL_ASSERT(vn3.code() == ((vn.code() + 2) % kNumberOfVRegisters)); VIXL_ASSERT(vn4.code() == ((vn.code() + 3) % kNumberOfVRegisters)); NEONTable(vd, vn, vm, NEON_TBL_4v); } void Assembler::tbx(const VRegister& vd, const VRegister& vn, const VRegister& vm) { NEONTable(vd, vn, vm, NEON_TBX_1v); } void Assembler::tbx(const VRegister& vd, const VRegister& vn, const VRegister& vn2, const VRegister& vm) { USE(vn2); VIXL_ASSERT(AreSameFormat(vn, vn2)); VIXL_ASSERT(vn2.code() == ((vn.code() + 1) % kNumberOfVRegisters)); NEONTable(vd, vn, vm, NEON_TBX_2v); } void Assembler::tbx(const VRegister& vd, const VRegister& vn, const VRegister& vn2, const VRegister& vn3, const VRegister& vm) { USE(vn2, vn3); VIXL_ASSERT(AreSameFormat(vn, vn2, vn3)); VIXL_ASSERT(vn2.code() == ((vn.code() + 1) % kNumberOfVRegisters)); VIXL_ASSERT(vn3.code() == ((vn.code() + 2) % kNumberOfVRegisters)); NEONTable(vd, vn, vm, NEON_TBX_3v); } void Assembler::tbx(const VRegister& vd, const VRegister& vn, const VRegister& vn2, const VRegister& vn3, const VRegister& vn4, const VRegister& vm) { USE(vn2, vn3, vn4); VIXL_ASSERT(AreSameFormat(vn, vn2, vn3, vn4)); VIXL_ASSERT(vn2.code() == ((vn.code() + 1) % kNumberOfVRegisters)); VIXL_ASSERT(vn3.code() == ((vn.code() + 2) % kNumberOfVRegisters)); VIXL_ASSERT(vn4.code() == ((vn.code() + 3) % kNumberOfVRegisters)); NEONTable(vd, vn, vm, NEON_TBX_4v); } void Assembler::add(const Register& rd, const Register& rn, const Operand& operand) { AddSub(rd, rn, operand, LeaveFlags, ADD); } void Assembler::adds(const Register& rd, const Register& rn, const Operand& operand) { AddSub(rd, rn, operand, SetFlags, ADD); } void Assembler::cmn(const Register& rn, const Operand& operand) { Register zr = AppropriateZeroRegFor(rn); adds(zr, rn, operand); } void Assembler::sub(const Register& rd, const Register& rn, const Operand& operand) { AddSub(rd, rn, operand, LeaveFlags, SUB); } void Assembler::subs(const Register& rd, const Register& rn, const Operand& operand) { AddSub(rd, rn, operand, SetFlags, SUB); } void Assembler::cmp(const Register& rn, const Operand& operand) { Register zr = AppropriateZeroRegFor(rn); subs(zr, rn, operand); } void Assembler::neg(const Register& rd, const Operand& operand) { Register zr = AppropriateZeroRegFor(rd); sub(rd, zr, operand); } void Assembler::negs(const Register& rd, const Operand& operand) { Register zr = AppropriateZeroRegFor(rd); subs(rd, zr, operand); } void Assembler::adc(const Register& rd, const Register& rn, const Operand& operand) { AddSubWithCarry(rd, rn, operand, LeaveFlags, ADC); } void Assembler::adcs(const Register& rd, const Register& rn, const Operand& operand) { AddSubWithCarry(rd, rn, operand, SetFlags, ADC); } void Assembler::sbc(const Register& rd, const Register& rn, const Operand& operand) { AddSubWithCarry(rd, rn, operand, LeaveFlags, SBC); } void Assembler::sbcs(const Register& rd, const Register& rn, const Operand& operand) { AddSubWithCarry(rd, rn, operand, SetFlags, SBC); } void Assembler::ngc(const Register& rd, const Operand& operand) { Register zr = AppropriateZeroRegFor(rd); sbc(rd, zr, operand); } void Assembler::ngcs(const Register& rd, const Operand& operand) { Register zr = AppropriateZeroRegFor(rd); sbcs(rd, zr, operand); } // Logical instructions. void Assembler::and_(const Register& rd, const Register& rn, const Operand& operand) { Logical(rd, rn, operand, AND); } void Assembler::bic(const Register& rd, const Register& rn, const Operand& operand) { Logical(rd, rn, operand, BIC); } void Assembler::bics(const Register& rd, const Register& rn, const Operand& operand) { Logical(rd, rn, operand, BICS); } void Assembler::orr(const Register& rd, const Register& rn, const Operand& operand) { Logical(rd, rn, operand, ORR); } void Assembler::orn(const Register& rd, const Register& rn, const Operand& operand) { Logical(rd, rn, operand, ORN); } void Assembler::eor(const Register& rd, const Register& rn, const Operand& operand) { Logical(rd, rn, operand, EOR); } void Assembler::eon(const Register& rd, const Register& rn, const Operand& operand) { Logical(rd, rn, operand, EON); } void Assembler::lslv(const Register& rd, const Register& rn, const Register& rm) { VIXL_ASSERT(rd.size() == rn.size()); VIXL_ASSERT(rd.size() == rm.size()); Emit(SF(rd) | LSLV | Rm(rm) | Rn(rn) | Rd(rd)); } void Assembler::lsrv(const Register& rd, const Register& rn, const Register& rm) { VIXL_ASSERT(rd.size() == rn.size()); VIXL_ASSERT(rd.size() == rm.size()); Emit(SF(rd) | LSRV | Rm(rm) | Rn(rn) | Rd(rd)); } void Assembler::asrv(const Register& rd, const Register& rn, const Register& rm) { VIXL_ASSERT(rd.size() == rn.size()); VIXL_ASSERT(rd.size() == rm.size()); Emit(SF(rd) | ASRV | Rm(rm) | Rn(rn) | Rd(rd)); } void Assembler::rorv(const Register& rd, const Register& rn, const Register& rm) { VIXL_ASSERT(rd.size() == rn.size()); VIXL_ASSERT(rd.size() == rm.size()); Emit(SF(rd) | RORV | Rm(rm) | Rn(rn) | Rd(rd)); } // Bitfield operations. void Assembler::bfm(const Register& rd, const Register& rn, unsigned immr, unsigned imms) { VIXL_ASSERT(rd.size() == rn.size()); Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset); Emit(SF(rd) | BFM | N | ImmR(immr, rd.size()) | ImmS(imms, rn.size()) | Rn(rn) | Rd(rd)); } void Assembler::sbfm(const Register& rd, const Register& rn, unsigned immr, unsigned imms) { VIXL_ASSERT(rd.Is64Bits() || rn.Is32Bits()); Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset); Emit(SF(rd) | SBFM | N | ImmR(immr, rd.size()) | ImmS(imms, rn.size()) | Rn(rn) | Rd(rd)); } void Assembler::ubfm(const Register& rd, const Register& rn, unsigned immr, unsigned imms) { VIXL_ASSERT(rd.size() == rn.size()); Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset); Emit(SF(rd) | UBFM | N | ImmR(immr, rd.size()) | ImmS(imms, rn.size()) | Rn(rn) | Rd(rd)); } void Assembler::extr(const Register& rd, const Register& rn, const Register& rm, unsigned lsb) { VIXL_ASSERT(rd.size() == rn.size()); VIXL_ASSERT(rd.size() == rm.size()); Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset); Emit(SF(rd) | EXTR | N | Rm(rm) | ImmS(lsb, rn.size()) | Rn(rn) | Rd(rd)); } void Assembler::csel(const Register& rd, const Register& rn, const Register& rm, Condition cond) { ConditionalSelect(rd, rn, rm, cond, CSEL); } void Assembler::csinc(const Register& rd, const Register& rn, const Register& rm, Condition cond) { ConditionalSelect(rd, rn, rm, cond, CSINC); } void Assembler::csinv(const Register& rd, const Register& rn, const Register& rm, Condition cond) { ConditionalSelect(rd, rn, rm, cond, CSINV); } void Assembler::csneg(const Register& rd, const Register& rn, const Register& rm, Condition cond) { ConditionalSelect(rd, rn, rm, cond, CSNEG); } void Assembler::cset(const Register &rd, Condition cond) { VIXL_ASSERT((cond != al) && (cond != nv)); Register zr = AppropriateZeroRegFor(rd); csinc(rd, zr, zr, InvertCondition(cond)); } void Assembler::csetm(const Register &rd, Condition cond) { VIXL_ASSERT((cond != al) && (cond != nv)); Register zr = AppropriateZeroRegFor(rd); csinv(rd, zr, zr, InvertCondition(cond)); } void Assembler::cinc(const Register &rd, const Register &rn, Condition cond) { VIXL_ASSERT((cond != al) && (cond != nv)); csinc(rd, rn, rn, InvertCondition(cond)); } void Assembler::cinv(const Register &rd, const Register &rn, Condition cond) { VIXL_ASSERT((cond != al) && (cond != nv)); csinv(rd, rn, rn, InvertCondition(cond)); } void Assembler::cneg(const Register &rd, const Register &rn, Condition cond) { VIXL_ASSERT((cond != al) && (cond != nv)); csneg(rd, rn, rn, InvertCondition(cond)); } void Assembler::ConditionalSelect(const Register& rd, const Register& rn, const Register& rm, Condition cond, ConditionalSelectOp op) { VIXL_ASSERT(rd.size() == rn.size()); VIXL_ASSERT(rd.size() == rm.size()); Emit(SF(rd) | op | Rm(rm) | Cond(cond) | Rn(rn) | Rd(rd)); } void Assembler::ccmn(const Register& rn, const Operand& operand, StatusFlags nzcv, Condition cond) { ConditionalCompare(rn, operand, nzcv, cond, CCMN); } void Assembler::ccmp(const Register& rn, const Operand& operand, StatusFlags nzcv, Condition cond) { ConditionalCompare(rn, operand, nzcv, cond, CCMP); } void Assembler::DataProcessing3Source(const Register& rd, const Register& rn, const Register& rm, const Register& ra, DataProcessing3SourceOp op) { Emit(SF(rd) | op | Rm(rm) | Ra(ra) | Rn(rn) | Rd(rd)); } void Assembler::crc32b(const Register& rd, const Register& rn, const Register& rm) { VIXL_ASSERT(rd.Is32Bits() && rn.Is32Bits() && rm.Is32Bits()); Emit(SF(rm) | Rm(rm) | CRC32B | Rn(rn) | Rd(rd)); } void Assembler::crc32h(const Register& rd, const Register& rn, const Register& rm) { VIXL_ASSERT(rd.Is32Bits() && rn.Is32Bits() && rm.Is32Bits()); Emit(SF(rm) | Rm(rm) | CRC32H | Rn(rn) | Rd(rd)); } void Assembler::crc32w(const Register& rd, const Register& rn, const Register& rm) { VIXL_ASSERT(rd.Is32Bits() && rn.Is32Bits() && rm.Is32Bits()); Emit(SF(rm) | Rm(rm) | CRC32W | Rn(rn) | Rd(rd)); } void Assembler::crc32x(const Register& rd, const Register& rn, const Register& rm) { VIXL_ASSERT(rd.Is32Bits() && rn.Is32Bits() && rm.Is64Bits()); Emit(SF(rm) | Rm(rm) | CRC32X | Rn(rn) | Rd(rd)); } void Assembler::crc32cb(const Register& rd, const Register& rn, const Register& rm) { VIXL_ASSERT(rd.Is32Bits() && rn.Is32Bits() && rm.Is32Bits()); Emit(SF(rm) | Rm(rm) | CRC32CB | Rn(rn) | Rd(rd)); } void Assembler::crc32ch(const Register& rd, const Register& rn, const Register& rm) { VIXL_ASSERT(rd.Is32Bits() && rn.Is32Bits() && rm.Is32Bits()); Emit(SF(rm) | Rm(rm) | CRC32CH | Rn(rn) | Rd(rd)); } void Assembler::crc32cw(const Register& rd, const Register& rn, const Register& rm) { VIXL_ASSERT(rd.Is32Bits() && rn.Is32Bits() && rm.Is32Bits()); Emit(SF(rm) | Rm(rm) | CRC32CW | Rn(rn) | Rd(rd)); } void Assembler::crc32cx(const Register& rd, const Register& rn, const Register& rm) { VIXL_ASSERT(rd.Is32Bits() && rn.Is32Bits() && rm.Is64Bits()); Emit(SF(rm) | Rm(rm) | CRC32CX | Rn(rn) | Rd(rd)); } void Assembler::mul(const Register& rd, const Register& rn, const Register& rm) { VIXL_ASSERT(AreSameSizeAndType(rd, rn, rm)); DataProcessing3Source(rd, rn, rm, AppropriateZeroRegFor(rd), MADD); } void Assembler::madd(const Register& rd, const Register& rn, const Register& rm, const Register& ra) { DataProcessing3Source(rd, rn, rm, ra, MADD); } void Assembler::mneg(const Register& rd, const Register& rn, const Register& rm) { VIXL_ASSERT(AreSameSizeAndType(rd, rn, rm)); DataProcessing3Source(rd, rn, rm, AppropriateZeroRegFor(rd), MSUB); } void Assembler::msub(const Register& rd, const Register& rn, const Register& rm, const Register& ra) { DataProcessing3Source(rd, rn, rm, ra, MSUB); } void Assembler::umaddl(const Register& rd, const Register& rn, const Register& rm, const Register& ra) { VIXL_ASSERT(rd.Is64Bits() && ra.Is64Bits()); VIXL_ASSERT(rn.Is32Bits() && rm.Is32Bits()); DataProcessing3Source(rd, rn, rm, ra, UMADDL_x); } void Assembler::smaddl(const Register& rd, const Register& rn, const Register& rm, const Register& ra) { VIXL_ASSERT(rd.Is64Bits() && ra.Is64Bits()); VIXL_ASSERT(rn.Is32Bits() && rm.Is32Bits()); DataProcessing3Source(rd, rn, rm, ra, SMADDL_x); } void Assembler::umsubl(const Register& rd, const Register& rn, const Register& rm, const Register& ra) { VIXL_ASSERT(rd.Is64Bits() && ra.Is64Bits()); VIXL_ASSERT(rn.Is32Bits() && rm.Is32Bits()); DataProcessing3Source(rd, rn, rm, ra, UMSUBL_x); } void Assembler::smsubl(const Register& rd, const Register& rn, const Register& rm, const Register& ra) { VIXL_ASSERT(rd.Is64Bits() && ra.Is64Bits()); VIXL_ASSERT(rn.Is32Bits() && rm.Is32Bits()); DataProcessing3Source(rd, rn, rm, ra, SMSUBL_x); } void Assembler::smull(const Register& rd, const Register& rn, const Register& rm) { VIXL_ASSERT(rd.Is64Bits()); VIXL_ASSERT(rn.Is32Bits() && rm.Is32Bits()); DataProcessing3Source(rd, rn, rm, xzr, SMADDL_x); } void Assembler::sdiv(const Register& rd, const Register& rn, const Register& rm) { VIXL_ASSERT(rd.size() == rn.size()); VIXL_ASSERT(rd.size() == rm.size()); Emit(SF(rd) | SDIV | Rm(rm) | Rn(rn) | Rd(rd)); } void Assembler::smulh(const Register& xd, const Register& xn, const Register& xm) { VIXL_ASSERT(xd.Is64Bits() && xn.Is64Bits() && xm.Is64Bits()); DataProcessing3Source(xd, xn, xm, xzr, SMULH_x); } void Assembler::umulh(const Register& xd, const Register& xn, const Register& xm) { VIXL_ASSERT(xd.Is64Bits() && xn.Is64Bits() && xm.Is64Bits()); DataProcessing3Source(xd, xn, xm, xzr, UMULH_x); } void Assembler::udiv(const Register& rd, const Register& rn, const Register& rm) { VIXL_ASSERT(rd.size() == rn.size()); VIXL_ASSERT(rd.size() == rm.size()); Emit(SF(rd) | UDIV | Rm(rm) | Rn(rn) | Rd(rd)); } void Assembler::rbit(const Register& rd, const Register& rn) { DataProcessing1Source(rd, rn, RBIT); } void Assembler::rev16(const Register& rd, const Register& rn) { DataProcessing1Source(rd, rn, REV16); } void Assembler::rev32(const Register& rd, const Register& rn) { VIXL_ASSERT(rd.Is64Bits()); DataProcessing1Source(rd, rn, REV); } void Assembler::rev(const Register& rd, const Register& rn) { DataProcessing1Source(rd, rn, rd.Is64Bits() ? REV_x : REV_w); } void Assembler::clz(const Register& rd, const Register& rn) { DataProcessing1Source(rd, rn, CLZ); } void Assembler::cls(const Register& rd, const Register& rn) { DataProcessing1Source(rd, rn, CLS); } void Assembler::ldp(const CPURegister& rt, const CPURegister& rt2, const MemOperand& src) { LoadStorePair(rt, rt2, src, LoadPairOpFor(rt, rt2)); } void Assembler::stp(const CPURegister& rt, const CPURegister& rt2, const MemOperand& dst) { LoadStorePair(rt, rt2, dst, StorePairOpFor(rt, rt2)); } void Assembler::ldpsw(const Register& rt, const Register& rt2, const MemOperand& src) { VIXL_ASSERT(rt.Is64Bits()); LoadStorePair(rt, rt2, src, LDPSW_x); } void Assembler::LoadStorePair(const CPURegister& rt, const CPURegister& rt2, const MemOperand& addr, LoadStorePairOp op) { // 'rt' and 'rt2' can only be aliased for stores. VIXL_ASSERT(((op & LoadStorePairLBit) == 0) || !rt.Is(rt2)); VIXL_ASSERT(AreSameSizeAndType(rt, rt2)); VIXL_ASSERT(IsImmLSPair(addr.offset(), CalcLSPairDataSize(op))); int offset = static_cast(addr.offset()); Instr memop = op | Rt(rt) | Rt2(rt2) | RnSP(addr.base()) | ImmLSPair(offset, CalcLSPairDataSize(op)); Instr addrmodeop; if (addr.IsImmediateOffset()) { addrmodeop = LoadStorePairOffsetFixed; } else { VIXL_ASSERT(addr.offset() != 0); if (addr.IsPreIndex()) { addrmodeop = LoadStorePairPreIndexFixed; } else { VIXL_ASSERT(addr.IsPostIndex()); addrmodeop = LoadStorePairPostIndexFixed; } } Emit(addrmodeop | memop); } void Assembler::ldnp(const CPURegister& rt, const CPURegister& rt2, const MemOperand& src) { LoadStorePairNonTemporal(rt, rt2, src, LoadPairNonTemporalOpFor(rt, rt2)); } void Assembler::stnp(const CPURegister& rt, const CPURegister& rt2, const MemOperand& dst) { LoadStorePairNonTemporal(rt, rt2, dst, StorePairNonTemporalOpFor(rt, rt2)); } void Assembler::LoadStorePairNonTemporal(const CPURegister& rt, const CPURegister& rt2, const MemOperand& addr, LoadStorePairNonTemporalOp op) { VIXL_ASSERT(!rt.Is(rt2)); VIXL_ASSERT(AreSameSizeAndType(rt, rt2)); VIXL_ASSERT(addr.IsImmediateOffset()); unsigned size = CalcLSPairDataSize( static_cast(op & LoadStorePairMask)); VIXL_ASSERT(IsImmLSPair(addr.offset(), size)); int offset = static_cast(addr.offset()); Emit(op | Rt(rt) | Rt2(rt2) | RnSP(addr.base()) | ImmLSPair(offset, size)); } // Memory instructions. void Assembler::ldrb(const Register& rt, const MemOperand& src, LoadStoreScalingOption option) { VIXL_ASSERT(option != RequireUnscaledOffset); VIXL_ASSERT(option != PreferUnscaledOffset); LoadStore(rt, src, LDRB_w, option); } void Assembler::strb(const Register& rt, const MemOperand& dst, LoadStoreScalingOption option) { VIXL_ASSERT(option != RequireUnscaledOffset); VIXL_ASSERT(option != PreferUnscaledOffset); LoadStore(rt, dst, STRB_w, option); } void Assembler::ldrsb(const Register& rt, const MemOperand& src, LoadStoreScalingOption option) { VIXL_ASSERT(option != RequireUnscaledOffset); VIXL_ASSERT(option != PreferUnscaledOffset); LoadStore(rt, src, rt.Is64Bits() ? LDRSB_x : LDRSB_w, option); } void Assembler::ldrh(const Register& rt, const MemOperand& src, LoadStoreScalingOption option) { VIXL_ASSERT(option != RequireUnscaledOffset); VIXL_ASSERT(option != PreferUnscaledOffset); LoadStore(rt, src, LDRH_w, option); } void Assembler::strh(const Register& rt, const MemOperand& dst, LoadStoreScalingOption option) { VIXL_ASSERT(option != RequireUnscaledOffset); VIXL_ASSERT(option != PreferUnscaledOffset); LoadStore(rt, dst, STRH_w, option); } void Assembler::ldrsh(const Register& rt, const MemOperand& src, LoadStoreScalingOption option) { VIXL_ASSERT(option != RequireUnscaledOffset); VIXL_ASSERT(option != PreferUnscaledOffset); LoadStore(rt, src, rt.Is64Bits() ? LDRSH_x : LDRSH_w, option); } void Assembler::ldr(const CPURegister& rt, const MemOperand& src, LoadStoreScalingOption option) { VIXL_ASSERT(option != RequireUnscaledOffset); VIXL_ASSERT(option != PreferUnscaledOffset); LoadStore(rt, src, LoadOpFor(rt), option); } void Assembler::str(const CPURegister& rt, const MemOperand& dst, LoadStoreScalingOption option) { VIXL_ASSERT(option != RequireUnscaledOffset); VIXL_ASSERT(option != PreferUnscaledOffset); LoadStore(rt, dst, StoreOpFor(rt), option); } void Assembler::ldrsw(const Register& rt, const MemOperand& src, LoadStoreScalingOption option) { VIXL_ASSERT(rt.Is64Bits()); VIXL_ASSERT(option != RequireUnscaledOffset); VIXL_ASSERT(option != PreferUnscaledOffset); LoadStore(rt, src, LDRSW_x, option); } void Assembler::ldurb(const Register& rt, const MemOperand& src, LoadStoreScalingOption option) { VIXL_ASSERT(option != RequireScaledOffset); VIXL_ASSERT(option != PreferScaledOffset); LoadStore(rt, src, LDRB_w, option); } void Assembler::sturb(const Register& rt, const MemOperand& dst, LoadStoreScalingOption option) { VIXL_ASSERT(option != RequireScaledOffset); VIXL_ASSERT(option != PreferScaledOffset); LoadStore(rt, dst, STRB_w, option); } void Assembler::ldursb(const Register& rt, const MemOperand& src, LoadStoreScalingOption option) { VIXL_ASSERT(option != RequireScaledOffset); VIXL_ASSERT(option != PreferScaledOffset); LoadStore(rt, src, rt.Is64Bits() ? LDRSB_x : LDRSB_w, option); } void Assembler::ldurh(const Register& rt, const MemOperand& src, LoadStoreScalingOption option) { VIXL_ASSERT(option != RequireScaledOffset); VIXL_ASSERT(option != PreferScaledOffset); LoadStore(rt, src, LDRH_w, option); } void Assembler::sturh(const Register& rt, const MemOperand& dst, LoadStoreScalingOption option) { VIXL_ASSERT(option != RequireScaledOffset); VIXL_ASSERT(option != PreferScaledOffset); LoadStore(rt, dst, STRH_w, option); } void Assembler::ldursh(const Register& rt, const MemOperand& src, LoadStoreScalingOption option) { VIXL_ASSERT(option != RequireScaledOffset); VIXL_ASSERT(option != PreferScaledOffset); LoadStore(rt, src, rt.Is64Bits() ? LDRSH_x : LDRSH_w, option); } void Assembler::ldur(const CPURegister& rt, const MemOperand& src, LoadStoreScalingOption option) { VIXL_ASSERT(option != RequireScaledOffset); VIXL_ASSERT(option != PreferScaledOffset); LoadStore(rt, src, LoadOpFor(rt), option); } void Assembler::stur(const CPURegister& rt, const MemOperand& dst, LoadStoreScalingOption option) { VIXL_ASSERT(option != RequireScaledOffset); VIXL_ASSERT(option != PreferScaledOffset); LoadStore(rt, dst, StoreOpFor(rt), option); } void Assembler::ldursw(const Register& rt, const MemOperand& src, LoadStoreScalingOption option) { VIXL_ASSERT(rt.Is64Bits()); VIXL_ASSERT(option != RequireScaledOffset); VIXL_ASSERT(option != PreferScaledOffset); LoadStore(rt, src, LDRSW_x, option); } void Assembler::ldrsw(const Register& rt, int imm19) { Emit(LDRSW_x_lit | ImmLLiteral(imm19) | Rt(rt)); } void Assembler::ldr(const CPURegister& rt, int imm19) { LoadLiteralOp op = LoadLiteralOpFor(rt); Emit(op | ImmLLiteral(imm19) | Rt(rt)); } // clang-format off #define COMPARE_AND_SWAP_W_X_LIST(V) \ V(cas, CAS) \ V(casa, CASA) \ V(casl, CASL) \ V(casal, CASAL) // clang-format on #define DEFINE_ASM_FUNC(FN, OP) \ void Assembler::FN(const Register& rs, const Register& rt, \ const MemOperand& src) { \ VIXL_ASSERT(src.IsImmediateOffset() && (src.offset() == 0)); \ LoadStoreExclusive op = rt.Is64Bits() ? OP##_x : OP##_w; \ Emit(op | Rs(rs) | Rt(rt) | Rt2_mask | RnSP(src.base())); \ } COMPARE_AND_SWAP_W_X_LIST(DEFINE_ASM_FUNC) #undef DEFINE_ASM_FUNC // clang-format off #define COMPARE_AND_SWAP_W_LIST(V) \ V(casb, CASB) \ V(casab, CASAB) \ V(caslb, CASLB) \ V(casalb, CASALB) \ V(cash, CASH) \ V(casah, CASAH) \ V(caslh, CASLH) \ V(casalh, CASALH) // clang-format on #define DEFINE_ASM_FUNC(FN, OP) \ void Assembler::FN(const Register& rs, const Register& rt, \ const MemOperand& src) { \ VIXL_ASSERT(src.IsImmediateOffset() && (src.offset() == 0)); \ Emit(OP | Rs(rs) | Rt(rt) | Rt2_mask | RnSP(src.base())); \ } COMPARE_AND_SWAP_W_LIST(DEFINE_ASM_FUNC) #undef DEFINE_ASM_FUNC // clang-format off #define COMPARE_AND_SWAP_PAIR_LIST(V) \ V(casp, CASP) \ V(caspa, CASPA) \ V(caspl, CASPL) \ V(caspal, CASPAL) // clang-format on #define DEFINE_ASM_FUNC(FN, OP) \ void Assembler::FN(const Register& rs, const Register& rs1, \ const Register& rt, const Register& rt1, \ const MemOperand& src) { \ USE(rs1, rt1); \ VIXL_ASSERT(src.IsImmediateOffset() && (src.offset() == 0)); \ VIXL_ASSERT(AreEven(rs, rt)); \ VIXL_ASSERT(AreConsecutive(rs, rs1)); \ VIXL_ASSERT(AreConsecutive(rt, rt1)); \ LoadStoreExclusive op = rt.Is64Bits() ? OP##_x : OP##_w; \ Emit(op | Rs(rs) | Rt(rt) | Rt2_mask | RnSP(src.base())); \ } COMPARE_AND_SWAP_PAIR_LIST(DEFINE_ASM_FUNC) #undef DEFINE_ASM_FUNC void Assembler::prfm(PrefetchOperation op, int imm19) { Emit(PRFM_lit | ImmPrefetchOperation(op) | ImmLLiteral(imm19)); } // Exclusive-access instructions. void Assembler::stxrb(const Register& rs, const Register& rt, const MemOperand& dst) { VIXL_ASSERT(dst.IsImmediateOffset() && (dst.offset() == 0)); Emit(STXRB_w | Rs(rs) | Rt(rt) | Rt2_mask | RnSP(dst.base())); } void Assembler::stxrh(const Register& rs, const Register& rt, const MemOperand& dst) { VIXL_ASSERT(dst.IsImmediateOffset() && (dst.offset() == 0)); Emit(STXRH_w | Rs(rs) | Rt(rt) | Rt2_mask | RnSP(dst.base())); } void Assembler::stxr(const Register& rs, const Register& rt, const MemOperand& dst) { VIXL_ASSERT(dst.IsImmediateOffset() && (dst.offset() == 0)); LoadStoreExclusive op = rt.Is64Bits() ? STXR_x : STXR_w; Emit(op | Rs(rs) | Rt(rt) | Rt2_mask | RnSP(dst.base())); } void Assembler::ldxrb(const Register& rt, const MemOperand& src) { VIXL_ASSERT(src.IsImmediateOffset() && (src.offset() == 0)); Emit(LDXRB_w | Rs_mask | Rt(rt) | Rt2_mask | RnSP(src.base())); } void Assembler::ldxrh(const Register& rt, const MemOperand& src) { VIXL_ASSERT(src.IsImmediateOffset() && (src.offset() == 0)); Emit(LDXRH_w | Rs_mask | Rt(rt) | Rt2_mask | RnSP(src.base())); } void Assembler::ldxr(const Register& rt, const MemOperand& src) { VIXL_ASSERT(src.IsImmediateOffset() && (src.offset() == 0)); LoadStoreExclusive op = rt.Is64Bits() ? LDXR_x : LDXR_w; Emit(op | Rs_mask | Rt(rt) | Rt2_mask | RnSP(src.base())); } void Assembler::stxp(const Register& rs, const Register& rt, const Register& rt2, const MemOperand& dst) { VIXL_ASSERT(rt.size() == rt2.size()); VIXL_ASSERT(dst.IsImmediateOffset() && (dst.offset() == 0)); LoadStoreExclusive op = rt.Is64Bits() ? STXP_x : STXP_w; Emit(op | Rs(rs) | Rt(rt) | Rt2(rt2) | RnSP(dst.base())); } void Assembler::ldxp(const Register& rt, const Register& rt2, const MemOperand& src) { VIXL_ASSERT(rt.size() == rt2.size()); VIXL_ASSERT(src.IsImmediateOffset() && (src.offset() == 0)); LoadStoreExclusive op = rt.Is64Bits() ? LDXP_x : LDXP_w; Emit(op | Rs_mask | Rt(rt) | Rt2(rt2) | RnSP(src.base())); } void Assembler::stlxrb(const Register& rs, const Register& rt, const MemOperand& dst) { VIXL_ASSERT(dst.IsImmediateOffset() && (dst.offset() == 0)); Emit(STLXRB_w | Rs(rs) | Rt(rt) | Rt2_mask | RnSP(dst.base())); } void Assembler::stlxrh(const Register& rs, const Register& rt, const MemOperand& dst) { VIXL_ASSERT(dst.IsImmediateOffset() && (dst.offset() == 0)); Emit(STLXRH_w | Rs(rs) | Rt(rt) | Rt2_mask | RnSP(dst.base())); } void Assembler::stlxr(const Register& rs, const Register& rt, const MemOperand& dst) { VIXL_ASSERT(dst.IsImmediateOffset() && (dst.offset() == 0)); LoadStoreExclusive op = rt.Is64Bits() ? STLXR_x : STLXR_w; Emit(op | Rs(rs) | Rt(rt) | Rt2_mask | RnSP(dst.base())); } void Assembler::ldaxrb(const Register& rt, const MemOperand& src) { VIXL_ASSERT(src.IsImmediateOffset() && (src.offset() == 0)); Emit(LDAXRB_w | Rs_mask | Rt(rt) | Rt2_mask | RnSP(src.base())); } void Assembler::ldaxrh(const Register& rt, const MemOperand& src) { VIXL_ASSERT(src.IsImmediateOffset() && (src.offset() == 0)); Emit(LDAXRH_w | Rs_mask | Rt(rt) | Rt2_mask | RnSP(src.base())); } void Assembler::ldaxr(const Register& rt, const MemOperand& src) { VIXL_ASSERT(src.IsImmediateOffset() && (src.offset() == 0)); LoadStoreExclusive op = rt.Is64Bits() ? LDAXR_x : LDAXR_w; Emit(op | Rs_mask | Rt(rt) | Rt2_mask | RnSP(src.base())); } void Assembler::stlxp(const Register& rs, const Register& rt, const Register& rt2, const MemOperand& dst) { VIXL_ASSERT(rt.size() == rt2.size()); VIXL_ASSERT(dst.IsImmediateOffset() && (dst.offset() == 0)); LoadStoreExclusive op = rt.Is64Bits() ? STLXP_x : STLXP_w; Emit(op | Rs(rs) | Rt(rt) | Rt2(rt2) | RnSP(dst.base())); } void Assembler::ldaxp(const Register& rt, const Register& rt2, const MemOperand& src) { VIXL_ASSERT(rt.size() == rt2.size()); VIXL_ASSERT(src.IsImmediateOffset() && (src.offset() == 0)); LoadStoreExclusive op = rt.Is64Bits() ? LDAXP_x : LDAXP_w; Emit(op | Rs_mask | Rt(rt) | Rt2(rt2) | RnSP(src.base())); } void Assembler::stlrb(const Register& rt, const MemOperand& dst) { VIXL_ASSERT(dst.IsImmediateOffset() && (dst.offset() == 0)); Emit(STLRB_w | Rs_mask | Rt(rt) | Rt2_mask | RnSP(dst.base())); } void Assembler::stlrh(const Register& rt, const MemOperand& dst) { VIXL_ASSERT(dst.IsImmediateOffset() && (dst.offset() == 0)); Emit(STLRH_w | Rs_mask | Rt(rt) | Rt2_mask | RnSP(dst.base())); } void Assembler::stlr(const Register& rt, const MemOperand& dst) { VIXL_ASSERT(dst.IsImmediateOffset() && (dst.offset() == 0)); LoadStoreExclusive op = rt.Is64Bits() ? STLR_x : STLR_w; Emit(op | Rs_mask | Rt(rt) | Rt2_mask | RnSP(dst.base())); } void Assembler::ldarb(const Register& rt, const MemOperand& src) { VIXL_ASSERT(src.IsImmediateOffset() && (src.offset() == 0)); Emit(LDARB_w | Rs_mask | Rt(rt) | Rt2_mask | RnSP(src.base())); } void Assembler::ldarh(const Register& rt, const MemOperand& src) { VIXL_ASSERT(src.IsImmediateOffset() && (src.offset() == 0)); Emit(LDARH_w | Rs_mask | Rt(rt) | Rt2_mask | RnSP(src.base())); } void Assembler::ldar(const Register& rt, const MemOperand& src) { VIXL_ASSERT(src.IsImmediateOffset() && (src.offset() == 0)); LoadStoreExclusive op = rt.Is64Bits() ? LDAR_x : LDAR_w; Emit(op | Rs_mask | Rt(rt) | Rt2_mask | RnSP(src.base())); } // These macros generate all the variations of the atomic memory operations, // e.g. ldadd, ldadda, ldaddb, staddl, etc. // For a full list of the methods with comments, see the assembler header file. // clang-format off #define ATOMIC_MEMORY_SIMPLE_OPERATION_LIST(V, DEF) \ V(DEF, add, LDADD) \ V(DEF, clr, LDCLR) \ V(DEF, eor, LDEOR) \ V(DEF, set, LDSET) \ V(DEF, smax, LDSMAX) \ V(DEF, smin, LDSMIN) \ V(DEF, umax, LDUMAX) \ V(DEF, umin, LDUMIN) #define ATOMIC_MEMORY_STORE_MODES(V, NAME, OP) \ V(NAME, OP##_x, OP##_w) \ V(NAME##l, OP##L_x, OP##L_w) \ V(NAME##b, OP##B, OP##B) \ V(NAME##lb, OP##LB, OP##LB) \ V(NAME##h, OP##H, OP##H) \ V(NAME##lh, OP##LH, OP##LH) #define ATOMIC_MEMORY_LOAD_MODES(V, NAME, OP) \ ATOMIC_MEMORY_STORE_MODES(V, NAME, OP) \ V(NAME##a, OP##A_x, OP##A_w) \ V(NAME##al, OP##AL_x, OP##AL_w) \ V(NAME##ab, OP##AB, OP##AB) \ V(NAME##alb, OP##ALB, OP##ALB) \ V(NAME##ah, OP##AH, OP##AH) \ V(NAME##alh, OP##ALH, OP##ALH) // clang-format on #define DEFINE_ASM_LOAD_FUNC(FN, OP_X, OP_W) \ void Assembler::ld##FN(const Register& rs, const Register& rt, \ const MemOperand& src) { \ VIXL_ASSERT(CPUHas(CPUFeatures::kAtomics)); \ VIXL_ASSERT(src.IsImmediateOffset() && (src.offset() == 0)); \ AtomicMemoryOp op = rt.Is64Bits() ? OP_X : OP_W; \ Emit(op | Rs(rs) | Rt(rt) | RnSP(src.base())); \ } #define DEFINE_ASM_STORE_FUNC(FN, OP_X, OP_W) \ void Assembler::st##FN(const Register& rs, const MemOperand& src) { \ VIXL_ASSERT(CPUHas(CPUFeatures::kAtomics)); \ ld##FN(rs, AppropriateZeroRegFor(rs), src); \ } ATOMIC_MEMORY_SIMPLE_OPERATION_LIST(ATOMIC_MEMORY_LOAD_MODES, DEFINE_ASM_LOAD_FUNC) ATOMIC_MEMORY_SIMPLE_OPERATION_LIST(ATOMIC_MEMORY_STORE_MODES, DEFINE_ASM_STORE_FUNC) #define DEFINE_ASM_SWP_FUNC(FN, OP_X, OP_W) \ void Assembler::FN(const Register& rs, const Register& rt, \ const MemOperand& src) { \ VIXL_ASSERT(CPUHas(CPUFeatures::kAtomics)); \ VIXL_ASSERT(src.IsImmediateOffset() && (src.offset() == 0)); \ AtomicMemoryOp op = rt.Is64Bits() ? OP_X : OP_W; \ Emit(op | Rs(rs) | Rt(rt) | RnSP(src.base())); \ } ATOMIC_MEMORY_LOAD_MODES(DEFINE_ASM_SWP_FUNC, swp, SWP) #undef DEFINE_ASM_LOAD_FUNC #undef DEFINE_ASM_STORE_FUNC #undef DEFINE_ASM_SWP_FUNC void Assembler::prfm(PrefetchOperation op, const MemOperand& address, LoadStoreScalingOption option) { VIXL_ASSERT(option != RequireUnscaledOffset); VIXL_ASSERT(option != PreferUnscaledOffset); Prefetch(op, address, option); } void Assembler::prfum(PrefetchOperation op, const MemOperand& address, LoadStoreScalingOption option) { VIXL_ASSERT(option != RequireScaledOffset); VIXL_ASSERT(option != PreferScaledOffset); Prefetch(op, address, option); } void Assembler::sys(int op1, int crn, int crm, int op2, const Register& rt) { Emit(SYS | ImmSysOp1(op1) | CRn(crn) | CRm(crm) | ImmSysOp2(op2) | Rt(rt)); } void Assembler::sys(int op, const Register& rt) { Emit(SYS | SysOp(op) | Rt(rt)); } void Assembler::dc(DataCacheOp op, const Register& rt) { VIXL_ASSERT((op == CVAC) || (op == CVAU) || (op == CIVAC) || (op == ZVA)); sys(op, rt); } void Assembler::ic(InstructionCacheOp op, const Register& rt) { VIXL_ASSERT(op == IVAU); sys(op, rt); } // NEON structure loads and stores. Instr Assembler::LoadStoreStructAddrModeField(const MemOperand& addr) { Instr addr_field = RnSP(addr.base()); if (addr.IsPostIndex()) { VIXL_STATIC_ASSERT(NEONLoadStoreMultiStructPostIndex == static_cast( NEONLoadStoreSingleStructPostIndex)); addr_field |= NEONLoadStoreMultiStructPostIndex; if (addr.offset() == 0) { addr_field |= RmNot31(addr.regoffset()); } else { // The immediate post index addressing mode is indicated by rm = 31. // The immediate is implied by the number of vector registers used. addr_field |= (0x1f << Rm_offset); } } else { VIXL_ASSERT(addr.IsImmediateOffset() && (addr.offset() == 0)); } return addr_field; } void Assembler::LoadStoreStructVerify(const VRegister& vt, const MemOperand& addr, Instr op) { #ifdef DEBUG // Assert that addressing mode is either offset (with immediate 0), post // index by immediate of the size of the register list, or post index by a // value in a core register. if (addr.IsImmediateOffset()) { VIXL_ASSERT(addr.offset() == 0); } else { int offset = vt.SizeInBytes(); switch (op) { case NEON_LD1_1v: case NEON_ST1_1v: offset *= 1; break; case NEONLoadStoreSingleStructLoad1: case NEONLoadStoreSingleStructStore1: case NEON_LD1R: offset = (offset / vt.lanes()) * 1; break; case NEON_LD1_2v: case NEON_ST1_2v: case NEON_LD2: case NEON_ST2: offset *= 2; break; case NEONLoadStoreSingleStructLoad2: case NEONLoadStoreSingleStructStore2: case NEON_LD2R: offset = (offset / vt.lanes()) * 2; break; case NEON_LD1_3v: case NEON_ST1_3v: case NEON_LD3: case NEON_ST3: offset *= 3; break; case NEONLoadStoreSingleStructLoad3: case NEONLoadStoreSingleStructStore3: case NEON_LD3R: offset = (offset / vt.lanes()) * 3; break; case NEON_LD1_4v: case NEON_ST1_4v: case NEON_LD4: case NEON_ST4: offset *= 4; break; case NEONLoadStoreSingleStructLoad4: case NEONLoadStoreSingleStructStore4: case NEON_LD4R: offset = (offset / vt.lanes()) * 4; break; default: VIXL_UNREACHABLE(); } VIXL_ASSERT(!addr.regoffset().Is(NoReg) || addr.offset() == offset); } #else USE(vt, addr, op); #endif } void Assembler::LoadStoreStruct(const VRegister& vt, const MemOperand& addr, NEONLoadStoreMultiStructOp op) { LoadStoreStructVerify(vt, addr, op); VIXL_ASSERT(vt.IsVector() || vt.Is1D()); Emit(op | LoadStoreStructAddrModeField(addr) | LSVFormat(vt) | Rt(vt)); } void Assembler::LoadStoreStructSingleAllLanes(const VRegister& vt, const MemOperand& addr, NEONLoadStoreSingleStructOp op) { LoadStoreStructVerify(vt, addr, op); Emit(op | LoadStoreStructAddrModeField(addr) | LSVFormat(vt) | Rt(vt)); } void Assembler::ld1(const VRegister& vt, const MemOperand& src) { LoadStoreStruct(vt, src, NEON_LD1_1v); } void Assembler::ld1(const VRegister& vt, const VRegister& vt2, const MemOperand& src) { USE(vt2); VIXL_ASSERT(AreSameFormat(vt, vt2)); VIXL_ASSERT(AreConsecutive(vt, vt2)); LoadStoreStruct(vt, src, NEON_LD1_2v); } void Assembler::ld1(const VRegister& vt, const VRegister& vt2, const VRegister& vt3, const MemOperand& src) { USE(vt2, vt3); VIXL_ASSERT(AreSameFormat(vt, vt2, vt3)); VIXL_ASSERT(AreConsecutive(vt, vt2, vt3)); LoadStoreStruct(vt, src, NEON_LD1_3v); } void Assembler::ld1(const VRegister& vt, const VRegister& vt2, const VRegister& vt3, const VRegister& vt4, const MemOperand& src) { USE(vt2, vt3, vt4); VIXL_ASSERT(AreSameFormat(vt, vt2, vt3, vt4)); VIXL_ASSERT(AreConsecutive(vt, vt2, vt3, vt4)); LoadStoreStruct(vt, src, NEON_LD1_4v); } void Assembler::ld2(const VRegister& vt, const VRegister& vt2, const MemOperand& src) { USE(vt2); VIXL_ASSERT(AreSameFormat(vt, vt2)); VIXL_ASSERT(AreConsecutive(vt, vt2)); LoadStoreStruct(vt, src, NEON_LD2); } void Assembler::ld2(const VRegister& vt, const VRegister& vt2, int lane, const MemOperand& src) { USE(vt2); VIXL_ASSERT(AreSameFormat(vt, vt2)); VIXL_ASSERT(AreConsecutive(vt, vt2)); LoadStoreStructSingle(vt, lane, src, NEONLoadStoreSingleStructLoad2); } void Assembler::ld2r(const VRegister& vt, const VRegister& vt2, const MemOperand& src) { USE(vt2); VIXL_ASSERT(AreSameFormat(vt, vt2)); VIXL_ASSERT(AreConsecutive(vt, vt2)); LoadStoreStructSingleAllLanes(vt, src, NEON_LD2R); } void Assembler::ld3(const VRegister& vt, const VRegister& vt2, const VRegister& vt3, const MemOperand& src) { USE(vt2, vt3); VIXL_ASSERT(AreSameFormat(vt, vt2, vt3)); VIXL_ASSERT(AreConsecutive(vt, vt2, vt3)); LoadStoreStruct(vt, src, NEON_LD3); } void Assembler::ld3(const VRegister& vt, const VRegister& vt2, const VRegister& vt3, int lane, const MemOperand& src) { USE(vt2, vt3); VIXL_ASSERT(AreSameFormat(vt, vt2, vt3)); VIXL_ASSERT(AreConsecutive(vt, vt2, vt3)); LoadStoreStructSingle(vt, lane, src, NEONLoadStoreSingleStructLoad3); } void Assembler::ld3r(const VRegister& vt, const VRegister& vt2, const VRegister& vt3, const MemOperand& src) { USE(vt2, vt3); VIXL_ASSERT(AreSameFormat(vt, vt2, vt3)); VIXL_ASSERT(AreConsecutive(vt, vt2, vt3)); LoadStoreStructSingleAllLanes(vt, src, NEON_LD3R); } void Assembler::ld4(const VRegister& vt, const VRegister& vt2, const VRegister& vt3, const VRegister& vt4, const MemOperand& src) { USE(vt2, vt3, vt4); VIXL_ASSERT(AreSameFormat(vt, vt2, vt3, vt4)); VIXL_ASSERT(AreConsecutive(vt, vt2, vt3, vt4)); LoadStoreStruct(vt, src, NEON_LD4); } void Assembler::ld4(const VRegister& vt, const VRegister& vt2, const VRegister& vt3, const VRegister& vt4, int lane, const MemOperand& src) { USE(vt2, vt3, vt4); VIXL_ASSERT(AreSameFormat(vt, vt2, vt3, vt4)); VIXL_ASSERT(AreConsecutive(vt, vt2, vt3, vt4)); LoadStoreStructSingle(vt, lane, src, NEONLoadStoreSingleStructLoad4); } void Assembler::ld4r(const VRegister& vt, const VRegister& vt2, const VRegister& vt3, const VRegister& vt4, const MemOperand& src) { USE(vt2, vt3, vt4); VIXL_ASSERT(AreSameFormat(vt, vt2, vt3, vt4)); VIXL_ASSERT(AreConsecutive(vt, vt2, vt3, vt4)); LoadStoreStructSingleAllLanes(vt, src, NEON_LD4R); } void Assembler::st1(const VRegister& vt, const MemOperand& src) { LoadStoreStruct(vt, src, NEON_ST1_1v); } void Assembler::st1(const VRegister& vt, const VRegister& vt2, const MemOperand& src) { USE(vt2); VIXL_ASSERT(AreSameFormat(vt, vt2)); VIXL_ASSERT(AreConsecutive(vt, vt2)); LoadStoreStruct(vt, src, NEON_ST1_2v); } void Assembler::st1(const VRegister& vt, const VRegister& vt2, const VRegister& vt3, const MemOperand& src) { USE(vt2, vt3); VIXL_ASSERT(AreSameFormat(vt, vt2, vt3)); VIXL_ASSERT(AreConsecutive(vt, vt2, vt3)); LoadStoreStruct(vt, src, NEON_ST1_3v); } void Assembler::st1(const VRegister& vt, const VRegister& vt2, const VRegister& vt3, const VRegister& vt4, const MemOperand& src) { USE(vt2, vt3, vt4); VIXL_ASSERT(AreSameFormat(vt, vt2, vt3, vt4)); VIXL_ASSERT(AreConsecutive(vt, vt2, vt3, vt4)); LoadStoreStruct(vt, src, NEON_ST1_4v); } void Assembler::st2(const VRegister& vt, const VRegister& vt2, const MemOperand& dst) { USE(vt2); VIXL_ASSERT(AreSameFormat(vt, vt2)); VIXL_ASSERT(AreConsecutive(vt, vt2)); LoadStoreStruct(vt, dst, NEON_ST2); } void Assembler::st2(const VRegister& vt, const VRegister& vt2, int lane, const MemOperand& dst) { USE(vt2); VIXL_ASSERT(AreSameFormat(vt, vt2)); VIXL_ASSERT(AreConsecutive(vt, vt2)); LoadStoreStructSingle(vt, lane, dst, NEONLoadStoreSingleStructStore2); } void Assembler::st3(const VRegister& vt, const VRegister& vt2, const VRegister& vt3, const MemOperand& dst) { USE(vt2, vt3); VIXL_ASSERT(AreSameFormat(vt, vt2, vt3)); VIXL_ASSERT(AreConsecutive(vt, vt2, vt3)); LoadStoreStruct(vt, dst, NEON_ST3); } void Assembler::st3(const VRegister& vt, const VRegister& vt2, const VRegister& vt3, int lane, const MemOperand& dst) { USE(vt2, vt3); VIXL_ASSERT(AreSameFormat(vt, vt2, vt3)); VIXL_ASSERT(AreConsecutive(vt, vt2, vt3)); LoadStoreStructSingle(vt, lane, dst, NEONLoadStoreSingleStructStore3); } void Assembler::st4(const VRegister& vt, const VRegister& vt2, const VRegister& vt3, const VRegister& vt4, const MemOperand& dst) { USE(vt2, vt3, vt4); VIXL_ASSERT(AreSameFormat(vt, vt2, vt3, vt4)); VIXL_ASSERT(AreConsecutive(vt, vt2, vt3, vt4)); LoadStoreStruct(vt, dst, NEON_ST4); } void Assembler::st4(const VRegister& vt, const VRegister& vt2, const VRegister& vt3, const VRegister& vt4, int lane, const MemOperand& dst) { USE(vt2, vt3, vt4); VIXL_ASSERT(AreSameFormat(vt, vt2, vt3, vt4)); VIXL_ASSERT(AreConsecutive(vt, vt2, vt3, vt4)); LoadStoreStructSingle(vt, lane, dst, NEONLoadStoreSingleStructStore4); } void Assembler::LoadStoreStructSingle(const VRegister& vt, uint32_t lane, const MemOperand& addr, NEONLoadStoreSingleStructOp op) { LoadStoreStructVerify(vt, addr, op); // We support vt arguments of the form vt.VxT() or vt.T(), where x is the // number of lanes, and T is b, h, s or d. unsigned lane_size = vt.LaneSizeInBytes(); VIXL_ASSERT(lane < (kQRegSizeInBytes / lane_size)); // Lane size is encoded in the opcode field. Lane index is encoded in the Q, // S and size fields. lane *= lane_size; if (lane_size == 8) lane++; Instr size = (lane << NEONLSSize_offset) & NEONLSSize_mask; Instr s = (lane << (NEONS_offset - 2)) & NEONS_mask; Instr q = (lane << (NEONQ_offset - 3)) & NEONQ_mask; Instr instr = op; switch (lane_size) { case 1: instr |= NEONLoadStoreSingle_b; break; case 2: instr |= NEONLoadStoreSingle_h; break; case 4: instr |= NEONLoadStoreSingle_s; break; default: VIXL_ASSERT(lane_size == 8); instr |= NEONLoadStoreSingle_d; } Emit(instr | LoadStoreStructAddrModeField(addr) | q | size | s | Rt(vt)); } void Assembler::ld1(const VRegister& vt, int lane, const MemOperand& src) { LoadStoreStructSingle(vt, lane, src, NEONLoadStoreSingleStructLoad1); } void Assembler::ld1r(const VRegister& vt, const MemOperand& src) { LoadStoreStructSingleAllLanes(vt, src, NEON_LD1R); } void Assembler::st1(const VRegister& vt, int lane, const MemOperand& dst) { LoadStoreStructSingle(vt, lane, dst, NEONLoadStoreSingleStructStore1); } void Assembler::NEON3DifferentL(const VRegister& vd, const VRegister& vn, const VRegister& vm, NEON3DifferentOp vop) { VIXL_ASSERT(AreSameFormat(vn, vm)); VIXL_ASSERT((vn.Is1H() && vd.Is1S()) || (vn.Is1S() && vd.Is1D()) || (vn.Is8B() && vd.Is8H()) || (vn.Is4H() && vd.Is4S()) || (vn.Is2S() && vd.Is2D()) || (vn.Is16B() && vd.Is8H())|| (vn.Is8H() && vd.Is4S()) || (vn.Is4S() && vd.Is2D())); Instr format, op = vop; if (vd.IsScalar()) { op |= NEON_Q | NEONScalar; format = SFormat(vn); } else { format = VFormat(vn); } Emit(format | op | Rm(vm) | Rn(vn) | Rd(vd)); } void Assembler::NEON3DifferentW(const VRegister& vd, const VRegister& vn, const VRegister& vm, NEON3DifferentOp vop) { VIXL_ASSERT(AreSameFormat(vd, vn)); VIXL_ASSERT((vm.Is8B() && vd.Is8H()) || (vm.Is4H() && vd.Is4S()) || (vm.Is2S() && vd.Is2D()) || (vm.Is16B() && vd.Is8H())|| (vm.Is8H() && vd.Is4S()) || (vm.Is4S() && vd.Is2D())); Emit(VFormat(vm) | vop | Rm(vm) | Rn(vn) | Rd(vd)); } void Assembler::NEON3DifferentHN(const VRegister& vd, const VRegister& vn, const VRegister& vm, NEON3DifferentOp vop) { VIXL_ASSERT(AreSameFormat(vm, vn)); VIXL_ASSERT((vd.Is8B() && vn.Is8H()) || (vd.Is4H() && vn.Is4S()) || (vd.Is2S() && vn.Is2D()) || (vd.Is16B() && vn.Is8H())|| (vd.Is8H() && vn.Is4S()) || (vd.Is4S() && vn.Is2D())); Emit(VFormat(vd) | vop | Rm(vm) | Rn(vn) | Rd(vd)); } #define NEON_3DIFF_LONG_LIST(V) \ V(pmull, NEON_PMULL, vn.IsVector() && vn.Is8B()) \ V(pmull2, NEON_PMULL2, vn.IsVector() && vn.Is16B()) \ V(saddl, NEON_SADDL, vn.IsVector() && vn.IsD()) \ V(saddl2, NEON_SADDL2, vn.IsVector() && vn.IsQ()) \ V(sabal, NEON_SABAL, vn.IsVector() && vn.IsD()) \ V(sabal2, NEON_SABAL2, vn.IsVector() && vn.IsQ()) \ V(uabal, NEON_UABAL, vn.IsVector() && vn.IsD()) \ V(uabal2, NEON_UABAL2, vn.IsVector() && vn.IsQ()) \ V(sabdl, NEON_SABDL, vn.IsVector() && vn.IsD()) \ V(sabdl2, NEON_SABDL2, vn.IsVector() && vn.IsQ()) \ V(uabdl, NEON_UABDL, vn.IsVector() && vn.IsD()) \ V(uabdl2, NEON_UABDL2, vn.IsVector() && vn.IsQ()) \ V(smlal, NEON_SMLAL, vn.IsVector() && vn.IsD()) \ V(smlal2, NEON_SMLAL2, vn.IsVector() && vn.IsQ()) \ V(umlal, NEON_UMLAL, vn.IsVector() && vn.IsD()) \ V(umlal2, NEON_UMLAL2, vn.IsVector() && vn.IsQ()) \ V(smlsl, NEON_SMLSL, vn.IsVector() && vn.IsD()) \ V(smlsl2, NEON_SMLSL2, vn.IsVector() && vn.IsQ()) \ V(umlsl, NEON_UMLSL, vn.IsVector() && vn.IsD()) \ V(umlsl2, NEON_UMLSL2, vn.IsVector() && vn.IsQ()) \ V(smull, NEON_SMULL, vn.IsVector() && vn.IsD()) \ V(smull2, NEON_SMULL2, vn.IsVector() && vn.IsQ()) \ V(umull, NEON_UMULL, vn.IsVector() && vn.IsD()) \ V(umull2, NEON_UMULL2, vn.IsVector() && vn.IsQ()) \ V(ssubl, NEON_SSUBL, vn.IsVector() && vn.IsD()) \ V(ssubl2, NEON_SSUBL2, vn.IsVector() && vn.IsQ()) \ V(uaddl, NEON_UADDL, vn.IsVector() && vn.IsD()) \ V(uaddl2, NEON_UADDL2, vn.IsVector() && vn.IsQ()) \ V(usubl, NEON_USUBL, vn.IsVector() && vn.IsD()) \ V(usubl2, NEON_USUBL2, vn.IsVector() && vn.IsQ()) \ V(sqdmlal, NEON_SQDMLAL, vn.Is1H() || vn.Is1S() || vn.Is4H() || vn.Is2S()) \ V(sqdmlal2, NEON_SQDMLAL2, vn.Is1H() || vn.Is1S() || vn.Is8H() || vn.Is4S()) \ V(sqdmlsl, NEON_SQDMLSL, vn.Is1H() || vn.Is1S() || vn.Is4H() || vn.Is2S()) \ V(sqdmlsl2, NEON_SQDMLSL2, vn.Is1H() || vn.Is1S() || vn.Is8H() || vn.Is4S()) \ V(sqdmull, NEON_SQDMULL, vn.Is1H() || vn.Is1S() || vn.Is4H() || vn.Is2S()) \ V(sqdmull2, NEON_SQDMULL2, vn.Is1H() || vn.Is1S() || vn.Is8H() || vn.Is4S()) \ #define DEFINE_ASM_FUNC(FN, OP, AS) \ void Assembler::FN(const VRegister& vd, \ const VRegister& vn, \ const VRegister& vm) { \ VIXL_ASSERT(AS); \ NEON3DifferentL(vd, vn, vm, OP); \ } NEON_3DIFF_LONG_LIST(DEFINE_ASM_FUNC) #undef DEFINE_ASM_FUNC #define NEON_3DIFF_HN_LIST(V) \ V(addhn, NEON_ADDHN, vd.IsD()) \ V(addhn2, NEON_ADDHN2, vd.IsQ()) \ V(raddhn, NEON_RADDHN, vd.IsD()) \ V(raddhn2, NEON_RADDHN2, vd.IsQ()) \ V(subhn, NEON_SUBHN, vd.IsD()) \ V(subhn2, NEON_SUBHN2, vd.IsQ()) \ V(rsubhn, NEON_RSUBHN, vd.IsD()) \ V(rsubhn2, NEON_RSUBHN2, vd.IsQ()) #define DEFINE_ASM_FUNC(FN, OP, AS) \ void Assembler::FN(const VRegister& vd, \ const VRegister& vn, \ const VRegister& vm) { \ VIXL_ASSERT(AS); \ NEON3DifferentHN(vd, vn, vm, OP); \ } NEON_3DIFF_HN_LIST(DEFINE_ASM_FUNC) #undef DEFINE_ASM_FUNC void Assembler::uaddw(const VRegister& vd, const VRegister& vn, const VRegister& vm) { VIXL_ASSERT(vm.IsD()); NEON3DifferentW(vd, vn, vm, NEON_UADDW); } void Assembler::uaddw2(const VRegister& vd, const VRegister& vn, const VRegister& vm) { VIXL_ASSERT(vm.IsQ()); NEON3DifferentW(vd, vn, vm, NEON_UADDW2); } void Assembler::saddw(const VRegister& vd, const VRegister& vn, const VRegister& vm) { VIXL_ASSERT(vm.IsD()); NEON3DifferentW(vd, vn, vm, NEON_SADDW); } void Assembler::saddw2(const VRegister& vd, const VRegister& vn, const VRegister& vm) { VIXL_ASSERT(vm.IsQ()); NEON3DifferentW(vd, vn, vm, NEON_SADDW2); } void Assembler::usubw(const VRegister& vd, const VRegister& vn, const VRegister& vm) { VIXL_ASSERT(vm.IsD()); NEON3DifferentW(vd, vn, vm, NEON_USUBW); } void Assembler::usubw2(const VRegister& vd, const VRegister& vn, const VRegister& vm) { VIXL_ASSERT(vm.IsQ()); NEON3DifferentW(vd, vn, vm, NEON_USUBW2); } void Assembler::ssubw(const VRegister& vd, const VRegister& vn, const VRegister& vm) { VIXL_ASSERT(vm.IsD()); NEON3DifferentW(vd, vn, vm, NEON_SSUBW); } void Assembler::ssubw2(const VRegister& vd, const VRegister& vn, const VRegister& vm) { VIXL_ASSERT(vm.IsQ()); NEON3DifferentW(vd, vn, vm, NEON_SSUBW2); } void Assembler::mov(const Register& rd, const Register& rm) { // Moves involving the stack pointer are encoded as add immediate with // second operand of zero. Otherwise, orr with first operand zr is // used. if (rd.IsSP() || rm.IsSP()) { add(rd, rm, 0); } else { orr(rd, AppropriateZeroRegFor(rd), rm); } } void Assembler::mvn(const Register& rd, const Operand& operand) { orn(rd, AppropriateZeroRegFor(rd), operand); } void Assembler::mrs(const Register& rt, SystemRegister sysreg) { VIXL_ASSERT(rt.Is64Bits()); Emit(MRS | ImmSystemRegister(sysreg) | Rt(rt)); } void Assembler::msr(SystemRegister sysreg, const Register& rt) { VIXL_ASSERT(rt.Is64Bits()); Emit(MSR | Rt(rt) | ImmSystemRegister(sysreg)); } void Assembler::clrex(int imm4) { Emit(CLREX | CRm(imm4)); } void Assembler::dmb(BarrierDomain domain, BarrierType type) { Emit(DMB | ImmBarrierDomain(domain) | ImmBarrierType(type)); } void Assembler::dsb(BarrierDomain domain, BarrierType type) { Emit(DSB | ImmBarrierDomain(domain) | ImmBarrierType(type)); } void Assembler::isb() { Emit(ISB | ImmBarrierDomain(FullSystem) | ImmBarrierType(BarrierAll)); } void Assembler::fmov(const VRegister& vd, double imm) { if (vd.IsScalar()) { VIXL_ASSERT(vd.Is1D()); Emit(FMOV_d_imm | Rd(vd) | ImmFP64(imm)); } else { VIXL_ASSERT(vd.Is2D()); Instr op = NEONModifiedImmediate_MOVI | NEONModifiedImmediateOpBit; Instr q = NEON_Q; uint32_t encoded_imm = FP64ToImm8(imm); Emit(q | op | ImmNEONabcdefgh(encoded_imm) | NEONCmode(0xf) | Rd(vd)); } } void Assembler::fmov(const VRegister& vd, float imm) { if (vd.IsScalar()) { VIXL_ASSERT(vd.Is1S()); Emit(FMOV_s_imm | Rd(vd) | ImmFP32(imm)); } else { VIXL_ASSERT(vd.Is2S() || vd.Is4S()); Instr op = NEONModifiedImmediate_MOVI; Instr q = vd.Is4S() ? NEON_Q : 0; uint32_t encoded_imm = FP32ToImm8(imm); Emit(q | op | ImmNEONabcdefgh(encoded_imm) | NEONCmode(0xf) | Rd(vd)); } } void Assembler::fmov(const Register& rd, const VRegister& vn) { VIXL_ASSERT(vn.Is1S() || vn.Is1D()); VIXL_ASSERT(rd.size() == vn.size()); FPIntegerConvertOp op = rd.Is32Bits() ? FMOV_ws : FMOV_xd; Emit(op | Rd(rd) | Rn(vn)); } void Assembler::fmov(const VRegister& vd, const Register& rn) { VIXL_ASSERT(vd.Is1S() || vd.Is1D()); VIXL_ASSERT(vd.size() == rn.size()); FPIntegerConvertOp op = vd.Is32Bits() ? FMOV_sw : FMOV_dx; Emit(op | Rd(vd) | Rn(rn)); } void Assembler::fmov(const VRegister& vd, const VRegister& vn) { VIXL_ASSERT(vd.Is1S() || vd.Is1D()); VIXL_ASSERT(vd.IsSameFormat(vn)); Emit(FPType(vd) | FMOV | Rd(vd) | Rn(vn)); } void Assembler::fmov(const VRegister& vd, int index, const Register& rn) { VIXL_ASSERT((index == 1) && vd.Is1D() && rn.IsX()); USE(index); Emit(FMOV_d1_x | Rd(vd) | Rn(rn)); } void Assembler::fmov(const Register& rd, const VRegister& vn, int index) { VIXL_ASSERT((index == 1) && vn.Is1D() && rd.IsX()); USE(index); Emit(FMOV_x_d1 | Rd(rd) | Rn(vn)); } void Assembler::fmadd(const VRegister& vd, const VRegister& vn, const VRegister& vm, const VRegister& va) { FPDataProcessing3Source(vd, vn, vm, va, vd.Is1S() ? FMADD_s : FMADD_d); } void Assembler::fmsub(const VRegister& vd, const VRegister& vn, const VRegister& vm, const VRegister& va) { FPDataProcessing3Source(vd, vn, vm, va, vd.Is1S() ? FMSUB_s : FMSUB_d); } void Assembler::fnmadd(const VRegister& vd, const VRegister& vn, const VRegister& vm, const VRegister& va) { FPDataProcessing3Source(vd, vn, vm, va, vd.Is1S() ? FNMADD_s : FNMADD_d); } void Assembler::fnmsub(const VRegister& vd, const VRegister& vn, const VRegister& vm, const VRegister& va) { FPDataProcessing3Source(vd, vn, vm, va, vd.Is1S() ? FNMSUB_s : FNMSUB_d); } void Assembler::fnmul(const VRegister& vd, const VRegister& vn, const VRegister& vm) { VIXL_ASSERT(AreSameSizeAndType(vd, vn, vm)); Instr op = vd.Is1S() ? FNMUL_s : FNMUL_d; Emit(FPType(vd) | op | Rm(vm) | Rn(vn) | Rd(vd)); } void Assembler::FPCompareMacro(const VRegister& vn, double value, FPTrapFlags trap) { USE(value); // Although the fcmp{e} instructions can strictly only take an immediate // value of +0.0, we don't need to check for -0.0 because the sign of 0.0 // doesn't affect the result of the comparison. VIXL_ASSERT(value == 0.0); VIXL_ASSERT(vn.Is1S() || vn.Is1D()); Instr op = (trap == EnableTrap) ? FCMPE_zero : FCMP_zero; Emit(FPType(vn) | op | Rn(vn)); } void Assembler::FPCompareMacro(const VRegister& vn, const VRegister& vm, FPTrapFlags trap) { VIXL_ASSERT(vn.Is1S() || vn.Is1D()); VIXL_ASSERT(vn.IsSameSizeAndType(vm)); Instr op = (trap == EnableTrap) ? FCMPE : FCMP; Emit(FPType(vn) | op | Rm(vm) | Rn(vn)); } void Assembler::fcmp(const VRegister& vn, const VRegister& vm) { FPCompareMacro(vn, vm, DisableTrap); } void Assembler::fcmpe(const VRegister& vn, const VRegister& vm) { FPCompareMacro(vn, vm, EnableTrap); } void Assembler::fcmp(const VRegister& vn, double value) { FPCompareMacro(vn, value, DisableTrap); } void Assembler::fcmpe(const VRegister& vn, double value) { FPCompareMacro(vn, value, EnableTrap); } void Assembler::FPCCompareMacro(const VRegister& vn, const VRegister& vm, StatusFlags nzcv, Condition cond, FPTrapFlags trap) { VIXL_ASSERT(vn.Is1S() || vn.Is1D()); VIXL_ASSERT(vn.IsSameSizeAndType(vm)); Instr op = (trap == EnableTrap) ? FCCMPE : FCCMP; Emit(FPType(vn) | op | Rm(vm) | Cond(cond) | Rn(vn) | Nzcv(nzcv)); } void Assembler::fccmp(const VRegister& vn, const VRegister& vm, StatusFlags nzcv, Condition cond) { FPCCompareMacro(vn, vm, nzcv, cond, DisableTrap); } void Assembler::fccmpe(const VRegister& vn, const VRegister& vm, StatusFlags nzcv, Condition cond) { FPCCompareMacro(vn, vm, nzcv, cond, EnableTrap); } void Assembler::fcsel(const VRegister& vd, const VRegister& vn, const VRegister& vm, Condition cond) { VIXL_ASSERT(vd.Is1S() || vd.Is1D()); VIXL_ASSERT(AreSameFormat(vd, vn, vm)); Emit(FPType(vd) | FCSEL | Rm(vm) | Cond(cond) | Rn(vn) | Rd(vd)); } void Assembler::fjcvtzs(const Register& rd, const VRegister& vn) { VIXL_ASSERT(CPUHas(CPUFeatures::kFP, CPUFeatures::kJSCVT)); VIXL_ASSERT(rd.IsW() && vn.Is1D()); Emit(FJCVTZS | Rn(vn) | Rd(rd)); } void Assembler::NEONFPConvertToInt(const Register& rd, const VRegister& vn, Instr op) { Emit(SF(rd) | FPType(vn) | op | Rn(vn) | Rd(rd)); } void Assembler::NEONFPConvertToInt(const VRegister& vd, const VRegister& vn, Instr op) { if (vn.IsScalar()) { VIXL_ASSERT((vd.Is1S() && vn.Is1S()) || (vd.Is1D() && vn.Is1D())); op |= NEON_Q | NEONScalar; } Emit(FPFormat(vn) | op | Rn(vn) | Rd(vd)); } void Assembler::fcvt(const VRegister& vd, const VRegister& vn) { FPDataProcessing1SourceOp op; if (vd.Is1D()) { VIXL_ASSERT(vn.Is1S() || vn.Is1H()); op = vn.Is1S() ? FCVT_ds : FCVT_dh; } else if (vd.Is1S()) { VIXL_ASSERT(vn.Is1D() || vn.Is1H()); op = vn.Is1D() ? FCVT_sd : FCVT_sh; } else { VIXL_ASSERT(vd.Is1H()); VIXL_ASSERT(vn.Is1D() || vn.Is1S()); op = vn.Is1D() ? FCVT_hd : FCVT_hs; } FPDataProcessing1Source(vd, vn, op); } void Assembler::fcvtl(const VRegister& vd, const VRegister& vn) { VIXL_ASSERT((vd.Is4S() && vn.Is4H()) || (vd.Is2D() && vn.Is2S())); Instr format = vd.Is2D() ? (1 << NEONSize_offset) : 0; Emit(format | NEON_FCVTL | Rn(vn) | Rd(vd)); } void Assembler::fcvtl2(const VRegister& vd, const VRegister& vn) { VIXL_ASSERT((vd.Is4S() && vn.Is8H()) || (vd.Is2D() && vn.Is4S())); Instr format = vd.Is2D() ? (1 << NEONSize_offset) : 0; Emit(NEON_Q | format | NEON_FCVTL | Rn(vn) | Rd(vd)); } void Assembler::fcvtn(const VRegister& vd, const VRegister& vn) { VIXL_ASSERT((vn.Is4S() && vd.Is4H()) || (vn.Is2D() && vd.Is2S())); Instr format = vn.Is2D() ? (1 << NEONSize_offset) : 0; Emit(format | NEON_FCVTN | Rn(vn) | Rd(vd)); } void Assembler::fcvtn2(const VRegister& vd, const VRegister& vn) { VIXL_ASSERT((vn.Is4S() && vd.Is8H()) || (vn.Is2D() && vd.Is4S())); Instr format = vn.Is2D() ? (1 << NEONSize_offset) : 0; Emit(NEON_Q | format | NEON_FCVTN | Rn(vn) | Rd(vd)); } void Assembler::fcvtxn(const VRegister& vd, const VRegister& vn) { Instr format = 1 << NEONSize_offset; if (vd.IsScalar()) { VIXL_ASSERT(vd.Is1S() && vn.Is1D()); Emit(format | NEON_FCVTXN_scalar | Rn(vn) | Rd(vd)); } else { VIXL_ASSERT(vd.Is2S() && vn.Is2D()); Emit(format | NEON_FCVTXN | Rn(vn) | Rd(vd)); } } void Assembler::fcvtxn2(const VRegister& vd, const VRegister& vn) { VIXL_ASSERT(vd.Is4S() && vn.Is2D()); Instr format = 1 << NEONSize_offset; Emit(NEON_Q | format | NEON_FCVTXN | Rn(vn) | Rd(vd)); } #define NEON_FP2REGMISC_FCVT_LIST(V) \ V(fcvtnu, NEON_FCVTNU, FCVTNU) \ V(fcvtns, NEON_FCVTNS, FCVTNS) \ V(fcvtpu, NEON_FCVTPU, FCVTPU) \ V(fcvtps, NEON_FCVTPS, FCVTPS) \ V(fcvtmu, NEON_FCVTMU, FCVTMU) \ V(fcvtms, NEON_FCVTMS, FCVTMS) \ V(fcvtau, NEON_FCVTAU, FCVTAU) \ V(fcvtas, NEON_FCVTAS, FCVTAS) #define DEFINE_ASM_FUNCS(FN, VEC_OP, SCA_OP) \ void Assembler::FN(const Register& rd, \ const VRegister& vn) { \ NEONFPConvertToInt(rd, vn, SCA_OP); \ } \ void Assembler::FN(const VRegister& vd, \ const VRegister& vn) { \ NEONFPConvertToInt(vd, vn, VEC_OP); \ } NEON_FP2REGMISC_FCVT_LIST(DEFINE_ASM_FUNCS) #undef DEFINE_ASM_FUNCS void Assembler::fcvtzs(const Register& rd, const VRegister& vn, int fbits) { VIXL_ASSERT(vn.Is1S() || vn.Is1D()); VIXL_ASSERT((fbits >= 0) && (fbits <= rd.SizeInBits())); if (fbits == 0) { Emit(SF(rd) | FPType(vn) | FCVTZS | Rn(vn) | Rd(rd)); } else { Emit(SF(rd) | FPType(vn) | FCVTZS_fixed | FPScale(64 - fbits) | Rn(vn) | Rd(rd)); } } void Assembler::fcvtzs(const VRegister& vd, const VRegister& vn, int fbits) { VIXL_ASSERT(fbits >= 0); if (fbits == 0) { NEONFP2RegMisc(vd, vn, NEON_FCVTZS); } else { VIXL_ASSERT(vd.Is1D() || vd.Is1S() || vd.Is2D() || vd.Is2S() || vd.Is4S()); NEONShiftRightImmediate(vd, vn, fbits, NEON_FCVTZS_imm); } } void Assembler::fcvtzu(const Register& rd, const VRegister& vn, int fbits) { VIXL_ASSERT(vn.Is1S() || vn.Is1D()); VIXL_ASSERT((fbits >= 0) && (fbits <= rd.SizeInBits())); if (fbits == 0) { Emit(SF(rd) | FPType(vn) | FCVTZU | Rn(vn) | Rd(rd)); } else { Emit(SF(rd) | FPType(vn) | FCVTZU_fixed | FPScale(64 - fbits) | Rn(vn) | Rd(rd)); } } void Assembler::fcvtzu(const VRegister& vd, const VRegister& vn, int fbits) { VIXL_ASSERT(fbits >= 0); if (fbits == 0) { NEONFP2RegMisc(vd, vn, NEON_FCVTZU); } else { VIXL_ASSERT(vd.Is1D() || vd.Is1S() || vd.Is2D() || vd.Is2S() || vd.Is4S()); NEONShiftRightImmediate(vd, vn, fbits, NEON_FCVTZU_imm); } } void Assembler::ucvtf(const VRegister& vd, const VRegister& vn, int fbits) { VIXL_ASSERT(fbits >= 0); if (fbits == 0) { NEONFP2RegMisc(vd, vn, NEON_UCVTF); } else { VIXL_ASSERT(vd.Is1D() || vd.Is1S() || vd.Is2D() || vd.Is2S() || vd.Is4S()); NEONShiftRightImmediate(vd, vn, fbits, NEON_UCVTF_imm); } } void Assembler::scvtf(const VRegister& vd, const VRegister& vn, int fbits) { VIXL_ASSERT(fbits >= 0); if (fbits == 0) { NEONFP2RegMisc(vd, vn, NEON_SCVTF); } else { VIXL_ASSERT(vd.Is1D() || vd.Is1S() || vd.Is2D() || vd.Is2S() || vd.Is4S()); NEONShiftRightImmediate(vd, vn, fbits, NEON_SCVTF_imm); } } void Assembler::scvtf(const VRegister& vd, const Register& rn, int fbits) { VIXL_ASSERT(vd.Is1S() || vd.Is1D()); VIXL_ASSERT(fbits >= 0); if (fbits == 0) { Emit(SF(rn) | FPType(vd) | SCVTF | Rn(rn) | Rd(vd)); } else { Emit(SF(rn) | FPType(vd) | SCVTF_fixed | FPScale(64 - fbits) | Rn(rn) | Rd(vd)); } } void Assembler::ucvtf(const VRegister& vd, const Register& rn, int fbits) { VIXL_ASSERT(vd.Is1S() || vd.Is1D()); VIXL_ASSERT(fbits >= 0); if (fbits == 0) { Emit(SF(rn) | FPType(vd) | UCVTF | Rn(rn) | Rd(vd)); } else { Emit(SF(rn) | FPType(vd) | UCVTF_fixed | FPScale(64 - fbits) | Rn(rn) | Rd(vd)); } } void Assembler::NEON3Same(const VRegister& vd, const VRegister& vn, const VRegister& vm, NEON3SameOp vop) { VIXL_ASSERT(AreSameFormat(vd, vn, vm)); VIXL_ASSERT(vd.IsVector() || !vd.IsQ()); Instr format, op = vop; if (vd.IsScalar()) { op |= NEON_Q | NEONScalar; format = SFormat(vd); } else { format = VFormat(vd); } Emit(format | op | Rm(vm) | Rn(vn) | Rd(vd)); } void Assembler::NEONFP3Same(const VRegister& vd, const VRegister& vn, const VRegister& vm, Instr op) { VIXL_ASSERT(AreSameFormat(vd, vn, vm)); Emit(FPFormat(vd) | op | Rm(vm) | Rn(vn) | Rd(vd)); } #define NEON_FP2REGMISC_LIST(V) \ V(fabs, NEON_FABS, FABS) \ V(fneg, NEON_FNEG, FNEG) \ V(fsqrt, NEON_FSQRT, FSQRT) \ V(frintn, NEON_FRINTN, FRINTN) \ V(frinta, NEON_FRINTA, FRINTA) \ V(frintp, NEON_FRINTP, FRINTP) \ V(frintm, NEON_FRINTM, FRINTM) \ V(frintx, NEON_FRINTX, FRINTX) \ V(frintz, NEON_FRINTZ, FRINTZ) \ V(frinti, NEON_FRINTI, FRINTI) \ V(frsqrte, NEON_FRSQRTE, NEON_FRSQRTE_scalar) \ V(frecpe, NEON_FRECPE, NEON_FRECPE_scalar ) #define DEFINE_ASM_FUNC(FN, VEC_OP, SCA_OP) \ void Assembler::FN(const VRegister& vd, \ const VRegister& vn) { \ Instr op; \ if (vd.IsScalar()) { \ VIXL_ASSERT(vd.Is1S() || vd.Is1D()); \ op = SCA_OP; \ } else { \ VIXL_ASSERT(vd.Is2S() || vd.Is2D() || vd.Is4S()); \ op = VEC_OP; \ } \ NEONFP2RegMisc(vd, vn, op); \ } NEON_FP2REGMISC_LIST(DEFINE_ASM_FUNC) #undef DEFINE_ASM_FUNC void Assembler::NEONFP2RegMisc(const VRegister& vd, const VRegister& vn, Instr op) { VIXL_ASSERT(AreSameFormat(vd, vn)); Emit(FPFormat(vd) | op | Rn(vn) | Rd(vd)); } void Assembler::NEON2RegMisc(const VRegister& vd, const VRegister& vn, NEON2RegMiscOp vop, int value) { VIXL_ASSERT(AreSameFormat(vd, vn)); VIXL_ASSERT(value == 0); USE(value); Instr format, op = vop; if (vd.IsScalar()) { op |= NEON_Q | NEONScalar; format = SFormat(vd); } else { format = VFormat(vd); } Emit(format | op | Rn(vn) | Rd(vd)); } void Assembler::cmeq(const VRegister& vd, const VRegister& vn, int value) { VIXL_ASSERT(vd.IsVector() || vd.Is1D()); NEON2RegMisc(vd, vn, NEON_CMEQ_zero, value); } void Assembler::cmge(const VRegister& vd, const VRegister& vn, int value) { VIXL_ASSERT(vd.IsVector() || vd.Is1D()); NEON2RegMisc(vd, vn, NEON_CMGE_zero, value); } void Assembler::cmgt(const VRegister& vd, const VRegister& vn, int value) { VIXL_ASSERT(vd.IsVector() || vd.Is1D()); NEON2RegMisc(vd, vn, NEON_CMGT_zero, value); } void Assembler::cmle(const VRegister& vd, const VRegister& vn, int value) { VIXL_ASSERT(vd.IsVector() || vd.Is1D()); NEON2RegMisc(vd, vn, NEON_CMLE_zero, value); } void Assembler::cmlt(const VRegister& vd, const VRegister& vn, int value) { VIXL_ASSERT(vd.IsVector() || vd.Is1D()); NEON2RegMisc(vd, vn, NEON_CMLT_zero, value); } void Assembler::shll(const VRegister& vd, const VRegister& vn, int shift) { VIXL_ASSERT((vd.Is8H() && vn.Is8B() && shift == 8) || (vd.Is4S() && vn.Is4H() && shift == 16) || (vd.Is2D() && vn.Is2S() && shift == 32)); USE(shift); Emit(VFormat(vn) | NEON_SHLL | Rn(vn) | Rd(vd)); } void Assembler::shll2(const VRegister& vd, const VRegister& vn, int shift) { USE(shift); VIXL_ASSERT((vd.Is8H() && vn.Is16B() && shift == 8) || (vd.Is4S() && vn.Is8H() && shift == 16) || (vd.Is2D() && vn.Is4S() && shift == 32)); Emit(VFormat(vn) | NEON_SHLL | Rn(vn) | Rd(vd)); } void Assembler::NEONFP2RegMisc(const VRegister& vd, const VRegister& vn, NEON2RegMiscOp vop, double value) { VIXL_ASSERT(AreSameFormat(vd, vn)); VIXL_ASSERT(value == 0.0); USE(value); Instr op = vop; if (vd.IsScalar()) { VIXL_ASSERT(vd.Is1S() || vd.Is1D()); op |= NEON_Q | NEONScalar; } else { VIXL_ASSERT(vd.Is2S() || vd.Is2D() || vd.Is4S()); } Emit(FPFormat(vd) | op | Rn(vn) | Rd(vd)); } void Assembler::fcmeq(const VRegister& vd, const VRegister& vn, double value) { NEONFP2RegMisc(vd, vn, NEON_FCMEQ_zero, value); } void Assembler::fcmge(const VRegister& vd, const VRegister& vn, double value) { NEONFP2RegMisc(vd, vn, NEON_FCMGE_zero, value); } void Assembler::fcmgt(const VRegister& vd, const VRegister& vn, double value) { NEONFP2RegMisc(vd, vn, NEON_FCMGT_zero, value); } void Assembler::fcmle(const VRegister& vd, const VRegister& vn, double value) { NEONFP2RegMisc(vd, vn, NEON_FCMLE_zero, value); } void Assembler::fcmlt(const VRegister& vd, const VRegister& vn, double value) { NEONFP2RegMisc(vd, vn, NEON_FCMLT_zero, value); } void Assembler::frecpx(const VRegister& vd, const VRegister& vn) { VIXL_ASSERT(vd.IsScalar()); VIXL_ASSERT(AreSameFormat(vd, vn)); VIXL_ASSERT(vd.Is1S() || vd.Is1D()); Emit(FPFormat(vd) | NEON_FRECPX_scalar | Rn(vn) | Rd(vd)); } #define NEON_3SAME_LIST(V) \ V(add, NEON_ADD, vd.IsVector() || vd.Is1D()) \ V(addp, NEON_ADDP, vd.IsVector() || vd.Is1D()) \ V(sub, NEON_SUB, vd.IsVector() || vd.Is1D()) \ V(cmeq, NEON_CMEQ, vd.IsVector() || vd.Is1D()) \ V(cmge, NEON_CMGE, vd.IsVector() || vd.Is1D()) \ V(cmgt, NEON_CMGT, vd.IsVector() || vd.Is1D()) \ V(cmhi, NEON_CMHI, vd.IsVector() || vd.Is1D()) \ V(cmhs, NEON_CMHS, vd.IsVector() || vd.Is1D()) \ V(cmtst, NEON_CMTST, vd.IsVector() || vd.Is1D()) \ V(sshl, NEON_SSHL, vd.IsVector() || vd.Is1D()) \ V(ushl, NEON_USHL, vd.IsVector() || vd.Is1D()) \ V(srshl, NEON_SRSHL, vd.IsVector() || vd.Is1D()) \ V(urshl, NEON_URSHL, vd.IsVector() || vd.Is1D()) \ V(sqdmulh, NEON_SQDMULH, vd.IsLaneSizeH() || vd.IsLaneSizeS()) \ V(sqrdmulh, NEON_SQRDMULH, vd.IsLaneSizeH() || vd.IsLaneSizeS()) \ V(shadd, NEON_SHADD, vd.IsVector() && !vd.IsLaneSizeD()) \ V(uhadd, NEON_UHADD, vd.IsVector() && !vd.IsLaneSizeD()) \ V(srhadd, NEON_SRHADD, vd.IsVector() && !vd.IsLaneSizeD()) \ V(urhadd, NEON_URHADD, vd.IsVector() && !vd.IsLaneSizeD()) \ V(shsub, NEON_SHSUB, vd.IsVector() && !vd.IsLaneSizeD()) \ V(uhsub, NEON_UHSUB, vd.IsVector() && !vd.IsLaneSizeD()) \ V(smax, NEON_SMAX, vd.IsVector() && !vd.IsLaneSizeD()) \ V(smaxp, NEON_SMAXP, vd.IsVector() && !vd.IsLaneSizeD()) \ V(smin, NEON_SMIN, vd.IsVector() && !vd.IsLaneSizeD()) \ V(sminp, NEON_SMINP, vd.IsVector() && !vd.IsLaneSizeD()) \ V(umax, NEON_UMAX, vd.IsVector() && !vd.IsLaneSizeD()) \ V(umaxp, NEON_UMAXP, vd.IsVector() && !vd.IsLaneSizeD()) \ V(umin, NEON_UMIN, vd.IsVector() && !vd.IsLaneSizeD()) \ V(uminp, NEON_UMINP, vd.IsVector() && !vd.IsLaneSizeD()) \ V(saba, NEON_SABA, vd.IsVector() && !vd.IsLaneSizeD()) \ V(sabd, NEON_SABD, vd.IsVector() && !vd.IsLaneSizeD()) \ V(uaba, NEON_UABA, vd.IsVector() && !vd.IsLaneSizeD()) \ V(uabd, NEON_UABD, vd.IsVector() && !vd.IsLaneSizeD()) \ V(mla, NEON_MLA, vd.IsVector() && !vd.IsLaneSizeD()) \ V(mls, NEON_MLS, vd.IsVector() && !vd.IsLaneSizeD()) \ V(mul, NEON_MUL, vd.IsVector() && !vd.IsLaneSizeD()) \ V(and_, NEON_AND, vd.Is8B() || vd.Is16B()) \ V(orr, NEON_ORR, vd.Is8B() || vd.Is16B()) \ V(orn, NEON_ORN, vd.Is8B() || vd.Is16B()) \ V(eor, NEON_EOR, vd.Is8B() || vd.Is16B()) \ V(bic, NEON_BIC, vd.Is8B() || vd.Is16B()) \ V(bit, NEON_BIT, vd.Is8B() || vd.Is16B()) \ V(bif, NEON_BIF, vd.Is8B() || vd.Is16B()) \ V(bsl, NEON_BSL, vd.Is8B() || vd.Is16B()) \ V(pmul, NEON_PMUL, vd.Is8B() || vd.Is16B()) \ V(uqadd, NEON_UQADD, true) \ V(sqadd, NEON_SQADD, true) \ V(uqsub, NEON_UQSUB, true) \ V(sqsub, NEON_SQSUB, true) \ V(sqshl, NEON_SQSHL, true) \ V(uqshl, NEON_UQSHL, true) \ V(sqrshl, NEON_SQRSHL, true) \ V(uqrshl, NEON_UQRSHL, true) #define DEFINE_ASM_FUNC(FN, OP, AS) \ void Assembler::FN(const VRegister& vd, \ const VRegister& vn, \ const VRegister& vm) { \ VIXL_ASSERT(AS); \ NEON3Same(vd, vn, vm, OP); \ } NEON_3SAME_LIST(DEFINE_ASM_FUNC) #undef DEFINE_ASM_FUNC #define NEON_FP3SAME_OP_LIST(V) \ V(fadd, NEON_FADD, FADD) \ V(fsub, NEON_FSUB, FSUB) \ V(fmul, NEON_FMUL, FMUL) \ V(fdiv, NEON_FDIV, FDIV) \ V(fmax, NEON_FMAX, FMAX) \ V(fmaxnm, NEON_FMAXNM, FMAXNM) \ V(fmin, NEON_FMIN, FMIN) \ V(fminnm, NEON_FMINNM, FMINNM) \ V(fmulx, NEON_FMULX, NEON_FMULX_scalar) \ V(frecps, NEON_FRECPS, NEON_FRECPS_scalar) \ V(frsqrts, NEON_FRSQRTS, NEON_FRSQRTS_scalar) \ V(fabd, NEON_FABD, NEON_FABD_scalar) \ V(fmla, NEON_FMLA, 0) \ V(fmls, NEON_FMLS, 0) \ V(facge, NEON_FACGE, NEON_FACGE_scalar) \ V(facgt, NEON_FACGT, NEON_FACGT_scalar) \ V(fcmeq, NEON_FCMEQ, NEON_FCMEQ_scalar) \ V(fcmge, NEON_FCMGE, NEON_FCMGE_scalar) \ V(fcmgt, NEON_FCMGT, NEON_FCMGT_scalar) \ V(faddp, NEON_FADDP, 0) \ V(fmaxp, NEON_FMAXP, 0) \ V(fminp, NEON_FMINP, 0) \ V(fmaxnmp, NEON_FMAXNMP, 0) \ V(fminnmp, NEON_FMINNMP, 0) #define DEFINE_ASM_FUNC(FN, VEC_OP, SCA_OP) \ void Assembler::FN(const VRegister& vd, \ const VRegister& vn, \ const VRegister& vm) { \ Instr op; \ if ((SCA_OP != 0) && vd.IsScalar()) { \ VIXL_ASSERT(vd.Is1S() || vd.Is1D()); \ op = SCA_OP; \ } else { \ VIXL_ASSERT(vd.IsVector()); \ VIXL_ASSERT(vd.Is2S() || vd.Is2D() || vd.Is4S()); \ op = VEC_OP; \ } \ NEONFP3Same(vd, vn, vm, op); \ } NEON_FP3SAME_OP_LIST(DEFINE_ASM_FUNC) #undef DEFINE_ASM_FUNC void Assembler::addp(const VRegister& vd, const VRegister& vn) { VIXL_ASSERT((vd.Is1D() && vn.Is2D())); Emit(SFormat(vd) | NEON_ADDP_scalar | Rn(vn) | Rd(vd)); } void Assembler::faddp(const VRegister& vd, const VRegister& vn) { VIXL_ASSERT((vd.Is1S() && vn.Is2S()) || (vd.Is1D() && vn.Is2D())); Emit(FPFormat(vd) | NEON_FADDP_scalar | Rn(vn) | Rd(vd)); } void Assembler::fmaxp(const VRegister& vd, const VRegister& vn) { VIXL_ASSERT((vd.Is1S() && vn.Is2S()) || (vd.Is1D() && vn.Is2D())); Emit(FPFormat(vd) | NEON_FMAXP_scalar | Rn(vn) | Rd(vd)); } void Assembler::fminp(const VRegister& vd, const VRegister& vn) { VIXL_ASSERT((vd.Is1S() && vn.Is2S()) || (vd.Is1D() && vn.Is2D())); Emit(FPFormat(vd) | NEON_FMINP_scalar | Rn(vn) | Rd(vd)); } void Assembler::fmaxnmp(const VRegister& vd, const VRegister& vn) { VIXL_ASSERT((vd.Is1S() && vn.Is2S()) || (vd.Is1D() && vn.Is2D())); Emit(FPFormat(vd) | NEON_FMAXNMP_scalar | Rn(vn) | Rd(vd)); } void Assembler::fminnmp(const VRegister& vd, const VRegister& vn) { VIXL_ASSERT((vd.Is1S() && vn.Is2S()) || (vd.Is1D() && vn.Is2D())); Emit(FPFormat(vd) | NEON_FMINNMP_scalar | Rn(vn) | Rd(vd)); } void Assembler::orr(const VRegister& vd, const int imm8, const int left_shift) { NEONModifiedImmShiftLsl(vd, imm8, left_shift, NEONModifiedImmediate_ORR); } void Assembler::mov(const VRegister& vd, const VRegister& vn) { VIXL_ASSERT(AreSameFormat(vd, vn)); if (vd.IsD()) { orr(vd.V8B(), vn.V8B(), vn.V8B()); } else { VIXL_ASSERT(vd.IsQ()); orr(vd.V16B(), vn.V16B(), vn.V16B()); } } void Assembler::bic(const VRegister& vd, const int imm8, const int left_shift) { NEONModifiedImmShiftLsl(vd, imm8, left_shift, NEONModifiedImmediate_BIC); } void Assembler::movi(const VRegister& vd, const uint64_t imm, Shift shift, const int shift_amount) { VIXL_ASSERT((shift == LSL) || (shift == MSL)); if (vd.Is2D() || vd.Is1D()) { VIXL_ASSERT(shift_amount == 0); int imm8 = 0; for (int i = 0; i < 8; ++i) { int byte = (imm >> (i * 8)) & 0xff; VIXL_ASSERT((byte == 0) || (byte == 0xff)); if (byte == 0xff) { imm8 |= (1 << i); } } int q = vd.Is2D() ? NEON_Q : 0; Emit(q | NEONModImmOp(1) | NEONModifiedImmediate_MOVI | ImmNEONabcdefgh(imm8) | NEONCmode(0xe) | Rd(vd)); } else if (shift == LSL) { VIXL_ASSERT(IsUint8(imm)); NEONModifiedImmShiftLsl(vd, static_cast(imm), shift_amount, NEONModifiedImmediate_MOVI); } else { VIXL_ASSERT(IsUint8(imm)); NEONModifiedImmShiftMsl(vd, static_cast(imm), shift_amount, NEONModifiedImmediate_MOVI); } } void Assembler::mvn(const VRegister& vd, const VRegister& vn) { VIXL_ASSERT(AreSameFormat(vd, vn)); if (vd.IsD()) { not_(vd.V8B(), vn.V8B()); } else { VIXL_ASSERT(vd.IsQ()); not_(vd.V16B(), vn.V16B()); } } void Assembler::mvni(const VRegister& vd, const int imm8, Shift shift, const int shift_amount) { VIXL_ASSERT((shift == LSL) || (shift == MSL)); if (shift == LSL) { NEONModifiedImmShiftLsl(vd, imm8, shift_amount, NEONModifiedImmediate_MVNI); } else { NEONModifiedImmShiftMsl(vd, imm8, shift_amount, NEONModifiedImmediate_MVNI); } } void Assembler::NEONFPByElement(const VRegister& vd, const VRegister& vn, const VRegister& vm, int vm_index, NEONByIndexedElementOp vop) { VIXL_ASSERT(AreSameFormat(vd, vn)); VIXL_ASSERT((vd.Is2S() && vm.Is1S()) || (vd.Is4S() && vm.Is1S()) || (vd.Is1S() && vm.Is1S()) || (vd.Is2D() && vm.Is1D()) || (vd.Is1D() && vm.Is1D())); VIXL_ASSERT((vm.Is1S() && (vm_index < 4)) || (vm.Is1D() && (vm_index < 2))); Instr op = vop; int index_num_bits = vm.Is1S() ? 2 : 1; if (vd.IsScalar()) { op |= NEON_Q | NEONScalar; } Emit(FPFormat(vd) | op | ImmNEONHLM(vm_index, index_num_bits) | Rm(vm) | Rn(vn) | Rd(vd)); } void Assembler::NEONByElement(const VRegister& vd, const VRegister& vn, const VRegister& vm, int vm_index, NEONByIndexedElementOp vop) { VIXL_ASSERT(AreSameFormat(vd, vn)); VIXL_ASSERT((vd.Is4H() && vm.Is1H()) || (vd.Is8H() && vm.Is1H()) || (vd.Is1H() && vm.Is1H()) || (vd.Is2S() && vm.Is1S()) || (vd.Is4S() && vm.Is1S()) || (vd.Is1S() && vm.Is1S())); VIXL_ASSERT((vm.Is1H() && (vm.code() < 16) && (vm_index < 8)) || (vm.Is1S() && (vm_index < 4))); Instr format, op = vop; int index_num_bits = vm.Is1H() ? 3 : 2; if (vd.IsScalar()) { op |= NEONScalar | NEON_Q; format = SFormat(vn); } else { format = VFormat(vn); } Emit(format | op | ImmNEONHLM(vm_index, index_num_bits) | Rm(vm) | Rn(vn) | Rd(vd)); } void Assembler::NEONByElementL(const VRegister& vd, const VRegister& vn, const VRegister& vm, int vm_index, NEONByIndexedElementOp vop) { VIXL_ASSERT((vd.Is4S() && vn.Is4H() && vm.Is1H()) || (vd.Is4S() && vn.Is8H() && vm.Is1H()) || (vd.Is1S() && vn.Is1H() && vm.Is1H()) || (vd.Is2D() && vn.Is2S() && vm.Is1S()) || (vd.Is2D() && vn.Is4S() && vm.Is1S()) || (vd.Is1D() && vn.Is1S() && vm.Is1S())); VIXL_ASSERT((vm.Is1H() && (vm.code() < 16) && (vm_index < 8)) || (vm.Is1S() && (vm_index < 4))); Instr format, op = vop; int index_num_bits = vm.Is1H() ? 3 : 2; if (vd.IsScalar()) { op |= NEONScalar | NEON_Q; format = SFormat(vn); } else { format = VFormat(vn); } Emit(format | op | ImmNEONHLM(vm_index, index_num_bits) | Rm(vm) | Rn(vn) | Rd(vd)); } #define NEON_BYELEMENT_LIST(V) \ V(mul, NEON_MUL_byelement, vn.IsVector()) \ V(mla, NEON_MLA_byelement, vn.IsVector()) \ V(mls, NEON_MLS_byelement, vn.IsVector()) \ V(sqdmulh, NEON_SQDMULH_byelement, true) \ V(sqrdmulh, NEON_SQRDMULH_byelement, true) #define DEFINE_ASM_FUNC(FN, OP, AS) \ void Assembler::FN(const VRegister& vd, \ const VRegister& vn, \ const VRegister& vm, \ int vm_index) { \ VIXL_ASSERT(AS); \ NEONByElement(vd, vn, vm, vm_index, OP); \ } NEON_BYELEMENT_LIST(DEFINE_ASM_FUNC) #undef DEFINE_ASM_FUNC #define NEON_FPBYELEMENT_LIST(V) \ V(fmul, NEON_FMUL_byelement) \ V(fmla, NEON_FMLA_byelement) \ V(fmls, NEON_FMLS_byelement) \ V(fmulx, NEON_FMULX_byelement) #define DEFINE_ASM_FUNC(FN, OP) \ void Assembler::FN(const VRegister& vd, \ const VRegister& vn, \ const VRegister& vm, \ int vm_index) { \ NEONFPByElement(vd, vn, vm, vm_index, OP); \ } NEON_FPBYELEMENT_LIST(DEFINE_ASM_FUNC) #undef DEFINE_ASM_FUNC #define NEON_BYELEMENT_LONG_LIST(V) \ V(sqdmull, NEON_SQDMULL_byelement, vn.IsScalar() || vn.IsD()) \ V(sqdmull2, NEON_SQDMULL_byelement, vn.IsVector() && vn.IsQ()) \ V(sqdmlal, NEON_SQDMLAL_byelement, vn.IsScalar() || vn.IsD()) \ V(sqdmlal2, NEON_SQDMLAL_byelement, vn.IsVector() && vn.IsQ()) \ V(sqdmlsl, NEON_SQDMLSL_byelement, vn.IsScalar() || vn.IsD()) \ V(sqdmlsl2, NEON_SQDMLSL_byelement, vn.IsVector() && vn.IsQ()) \ V(smull, NEON_SMULL_byelement, vn.IsVector() && vn.IsD()) \ V(smull2, NEON_SMULL_byelement, vn.IsVector() && vn.IsQ()) \ V(umull, NEON_UMULL_byelement, vn.IsVector() && vn.IsD()) \ V(umull2, NEON_UMULL_byelement, vn.IsVector() && vn.IsQ()) \ V(smlal, NEON_SMLAL_byelement, vn.IsVector() && vn.IsD()) \ V(smlal2, NEON_SMLAL_byelement, vn.IsVector() && vn.IsQ()) \ V(umlal, NEON_UMLAL_byelement, vn.IsVector() && vn.IsD()) \ V(umlal2, NEON_UMLAL_byelement, vn.IsVector() && vn.IsQ()) \ V(smlsl, NEON_SMLSL_byelement, vn.IsVector() && vn.IsD()) \ V(smlsl2, NEON_SMLSL_byelement, vn.IsVector() && vn.IsQ()) \ V(umlsl, NEON_UMLSL_byelement, vn.IsVector() && vn.IsD()) \ V(umlsl2, NEON_UMLSL_byelement, vn.IsVector() && vn.IsQ()) #define DEFINE_ASM_FUNC(FN, OP, AS) \ void Assembler::FN(const VRegister& vd, \ const VRegister& vn, \ const VRegister& vm, \ int vm_index) { \ VIXL_ASSERT(AS); \ NEONByElementL(vd, vn, vm, vm_index, OP); \ } NEON_BYELEMENT_LONG_LIST(DEFINE_ASM_FUNC) #undef DEFINE_ASM_FUNC void Assembler::suqadd(const VRegister& vd, const VRegister& vn) { NEON2RegMisc(vd, vn, NEON_SUQADD); } void Assembler::usqadd(const VRegister& vd, const VRegister& vn) { NEON2RegMisc(vd, vn, NEON_USQADD); } void Assembler::abs(const VRegister& vd, const VRegister& vn) { VIXL_ASSERT(vd.IsVector() || vd.Is1D()); NEON2RegMisc(vd, vn, NEON_ABS); } void Assembler::sqabs(const VRegister& vd, const VRegister& vn) { NEON2RegMisc(vd, vn, NEON_SQABS); } void Assembler::neg(const VRegister& vd, const VRegister& vn) { VIXL_ASSERT(vd.IsVector() || vd.Is1D()); NEON2RegMisc(vd, vn, NEON_NEG); } void Assembler::sqneg(const VRegister& vd, const VRegister& vn) { NEON2RegMisc(vd, vn, NEON_SQNEG); } void Assembler::NEONXtn(const VRegister& vd, const VRegister& vn, NEON2RegMiscOp vop) { Instr format, op = vop; if (vd.IsScalar()) { VIXL_ASSERT((vd.Is1B() && vn.Is1H()) || (vd.Is1H() && vn.Is1S()) || (vd.Is1S() && vn.Is1D())); op |= NEON_Q | NEONScalar; format = SFormat(vd); } else { VIXL_ASSERT((vd.Is8B() && vn.Is8H()) || (vd.Is4H() && vn.Is4S()) || (vd.Is2S() && vn.Is2D()) || (vd.Is16B() && vn.Is8H()) || (vd.Is8H() && vn.Is4S()) || (vd.Is4S() && vn.Is2D())); format = VFormat(vd); } Emit(format | op | Rn(vn) | Rd(vd)); } void Assembler::xtn(const VRegister& vd, const VRegister& vn) { VIXL_ASSERT(vd.IsVector() && vd.IsD()); NEONXtn(vd, vn, NEON_XTN); } void Assembler::xtn2(const VRegister& vd, const VRegister& vn) { VIXL_ASSERT(vd.IsVector() && vd.IsQ()); NEONXtn(vd, vn, NEON_XTN); } void Assembler::sqxtn(const VRegister& vd, const VRegister& vn) { VIXL_ASSERT(vd.IsScalar() || vd.IsD()); NEONXtn(vd, vn, NEON_SQXTN); } void Assembler::sqxtn2(const VRegister& vd, const VRegister& vn) { VIXL_ASSERT(vd.IsVector() && vd.IsQ()); NEONXtn(vd, vn, NEON_SQXTN); } void Assembler::sqxtun(const VRegister& vd, const VRegister& vn) { VIXL_ASSERT(vd.IsScalar() || vd.IsD()); NEONXtn(vd, vn, NEON_SQXTUN); } void Assembler::sqxtun2(const VRegister& vd, const VRegister& vn) { VIXL_ASSERT(vd.IsVector() && vd.IsQ()); NEONXtn(vd, vn, NEON_SQXTUN); } void Assembler::uqxtn(const VRegister& vd, const VRegister& vn) { VIXL_ASSERT(vd.IsScalar() || vd.IsD()); NEONXtn(vd, vn, NEON_UQXTN); } void Assembler::uqxtn2(const VRegister& vd, const VRegister& vn) { VIXL_ASSERT(vd.IsVector() && vd.IsQ()); NEONXtn(vd, vn, NEON_UQXTN); } // NEON NOT and RBIT are distinguised by bit 22, the bottom bit of "size". void Assembler::not_(const VRegister& vd, const VRegister& vn) { VIXL_ASSERT(AreSameFormat(vd, vn)); VIXL_ASSERT(vd.Is8B() || vd.Is16B()); Emit(VFormat(vd) | NEON_RBIT_NOT | Rn(vn) | Rd(vd)); } void Assembler::rbit(const VRegister& vd, const VRegister& vn) { VIXL_ASSERT(AreSameFormat(vd, vn)); VIXL_ASSERT(vd.Is8B() || vd.Is16B()); Emit(VFormat(vn) | (1 << NEONSize_offset) | NEON_RBIT_NOT | Rn(vn) | Rd(vd)); } void Assembler::ext(const VRegister& vd, const VRegister& vn, const VRegister& vm, int index) { VIXL_ASSERT(AreSameFormat(vd, vn, vm)); VIXL_ASSERT(vd.Is8B() || vd.Is16B()); VIXL_ASSERT((0 <= index) && (index < vd.lanes())); Emit(VFormat(vd) | NEON_EXT | Rm(vm) | ImmNEONExt(index) | Rn(vn) | Rd(vd)); } void Assembler::dup(const VRegister& vd, const VRegister& vn, int vn_index) { Instr q, scalar; // We support vn arguments of the form vn.VxT() or vn.T(), where x is the // number of lanes, and T is b, h, s or d. int lane_size = vn.LaneSizeInBytes(); NEONFormatField format; switch (lane_size) { case 1: format = NEON_16B; break; case 2: format = NEON_8H; break; case 4: format = NEON_4S; break; default: VIXL_ASSERT(lane_size == 8); format = NEON_2D; break; } if (vd.IsScalar()) { q = NEON_Q; scalar = NEONScalar; } else { VIXL_ASSERT(!vd.Is1D()); q = vd.IsD() ? 0 : NEON_Q; scalar = 0; } Emit(q | scalar | NEON_DUP_ELEMENT | ImmNEON5(format, vn_index) | Rn(vn) | Rd(vd)); } void Assembler::mov(const VRegister& vd, const VRegister& vn, int vn_index) { VIXL_ASSERT(vn.IsScalar()); dup(vd, vn, vn_index); } void Assembler::dup(const VRegister& vd, const Register& rn) { VIXL_ASSERT(!vd.Is1D()); VIXL_ASSERT(vd.Is2D() == rn.IsX()); int q = vd.IsD() ? 0 : NEON_Q; Emit(q | NEON_DUP_GENERAL | ImmNEON5(VFormat(vd), 0) | Rn(rn) | Rd(vd)); } void Assembler::ins(const VRegister& vd, int vd_index, const VRegister& vn, int vn_index) { VIXL_ASSERT(AreSameFormat(vd, vn)); // We support vd arguments of the form vd.VxT() or vd.T(), where x is the // number of lanes, and T is b, h, s or d. int lane_size = vd.LaneSizeInBytes(); NEONFormatField format; switch (lane_size) { case 1: format = NEON_16B; break; case 2: format = NEON_8H; break; case 4: format = NEON_4S; break; default: VIXL_ASSERT(lane_size == 8); format = NEON_2D; break; } VIXL_ASSERT((0 <= vd_index) && (vd_index < LaneCountFromFormat(static_cast(format)))); VIXL_ASSERT((0 <= vn_index) && (vn_index < LaneCountFromFormat(static_cast(format)))); Emit(NEON_INS_ELEMENT | ImmNEON5(format, vd_index) | ImmNEON4(format, vn_index) | Rn(vn) | Rd(vd)); } void Assembler::mov(const VRegister& vd, int vd_index, const VRegister& vn, int vn_index) { ins(vd, vd_index, vn, vn_index); } void Assembler::ins(const VRegister& vd, int vd_index, const Register& rn) { // We support vd arguments of the form vd.VxT() or vd.T(), where x is the // number of lanes, and T is b, h, s or d. int lane_size = vd.LaneSizeInBytes(); NEONFormatField format; switch (lane_size) { case 1: format = NEON_16B; VIXL_ASSERT(rn.IsW()); break; case 2: format = NEON_8H; VIXL_ASSERT(rn.IsW()); break; case 4: format = NEON_4S; VIXL_ASSERT(rn.IsW()); break; default: VIXL_ASSERT(lane_size == 8); VIXL_ASSERT(rn.IsX()); format = NEON_2D; break; } VIXL_ASSERT((0 <= vd_index) && (vd_index < LaneCountFromFormat(static_cast(format)))); Emit(NEON_INS_GENERAL | ImmNEON5(format, vd_index) | Rn(rn) | Rd(vd)); } void Assembler::mov(const VRegister& vd, int vd_index, const Register& rn) { ins(vd, vd_index, rn); } void Assembler::umov(const Register& rd, const VRegister& vn, int vn_index) { // We support vd arguments of the form vd.VxT() or vd.T(), where x is the // number of lanes, and T is b, h, s or d. int lane_size = vn.LaneSizeInBytes(); NEONFormatField format; Instr q = 0; switch (lane_size) { case 1: format = NEON_16B; VIXL_ASSERT(rd.IsW()); break; case 2: format = NEON_8H; VIXL_ASSERT(rd.IsW()); break; case 4: format = NEON_4S; VIXL_ASSERT(rd.IsW()); break; default: VIXL_ASSERT(lane_size == 8); VIXL_ASSERT(rd.IsX()); format = NEON_2D; q = NEON_Q; break; } VIXL_ASSERT((0 <= vn_index) && (vn_index < LaneCountFromFormat(static_cast(format)))); Emit(q | NEON_UMOV | ImmNEON5(format, vn_index) | Rn(vn) | Rd(rd)); } void Assembler::mov(const Register& rd, const VRegister& vn, int vn_index) { VIXL_ASSERT(vn.SizeInBytes() >= 4); umov(rd, vn, vn_index); } void Assembler::smov(const Register& rd, const VRegister& vn, int vn_index) { // We support vd arguments of the form vd.VxT() or vd.T(), where x is the // number of lanes, and T is b, h, s. int lane_size = vn.LaneSizeInBytes(); NEONFormatField format; Instr q = 0; VIXL_ASSERT(lane_size != 8); switch (lane_size) { case 1: format = NEON_16B; break; case 2: format = NEON_8H; break; default: VIXL_ASSERT(lane_size == 4); VIXL_ASSERT(rd.IsX()); format = NEON_4S; break; } q = rd.IsW() ? 0 : NEON_Q; VIXL_ASSERT((0 <= vn_index) && (vn_index < LaneCountFromFormat(static_cast(format)))); Emit(q | NEON_SMOV | ImmNEON5(format, vn_index) | Rn(vn) | Rd(rd)); } void Assembler::cls(const VRegister& vd, const VRegister& vn) { VIXL_ASSERT(AreSameFormat(vd, vn)); VIXL_ASSERT(!vd.Is1D() && !vd.Is2D()); Emit(VFormat(vn) | NEON_CLS | Rn(vn) | Rd(vd)); } void Assembler::clz(const VRegister& vd, const VRegister& vn) { VIXL_ASSERT(AreSameFormat(vd, vn)); VIXL_ASSERT(!vd.Is1D() && !vd.Is2D()); Emit(VFormat(vn) | NEON_CLZ | Rn(vn) | Rd(vd)); } void Assembler::cnt(const VRegister& vd, const VRegister& vn) { VIXL_ASSERT(AreSameFormat(vd, vn)); VIXL_ASSERT(vd.Is8B() || vd.Is16B()); Emit(VFormat(vn) | NEON_CNT | Rn(vn) | Rd(vd)); } void Assembler::rev16(const VRegister& vd, const VRegister& vn) { VIXL_ASSERT(AreSameFormat(vd, vn)); VIXL_ASSERT(vd.Is8B() || vd.Is16B()); Emit(VFormat(vn) | NEON_REV16 | Rn(vn) | Rd(vd)); } void Assembler::rev32(const VRegister& vd, const VRegister& vn) { VIXL_ASSERT(AreSameFormat(vd, vn)); VIXL_ASSERT(vd.Is8B() || vd.Is16B() || vd.Is4H() || vd.Is8H()); Emit(VFormat(vn) | NEON_REV32 | Rn(vn) | Rd(vd)); } void Assembler::rev64(const VRegister& vd, const VRegister& vn) { VIXL_ASSERT(AreSameFormat(vd, vn)); VIXL_ASSERT(!vd.Is1D() && !vd.Is2D()); Emit(VFormat(vn) | NEON_REV64 | Rn(vn) | Rd(vd)); } void Assembler::ursqrte(const VRegister& vd, const VRegister& vn) { VIXL_ASSERT(AreSameFormat(vd, vn)); VIXL_ASSERT(vd.Is2S() || vd.Is4S()); Emit(VFormat(vn) | NEON_URSQRTE | Rn(vn) | Rd(vd)); } void Assembler::urecpe(const VRegister& vd, const VRegister& vn) { VIXL_ASSERT(AreSameFormat(vd, vn)); VIXL_ASSERT(vd.Is2S() || vd.Is4S()); Emit(VFormat(vn) | NEON_URECPE | Rn(vn) | Rd(vd)); } void Assembler::NEONAddlp(const VRegister& vd, const VRegister& vn, NEON2RegMiscOp op) { VIXL_ASSERT((op == NEON_SADDLP) || (op == NEON_UADDLP) || (op == NEON_SADALP) || (op == NEON_UADALP)); VIXL_ASSERT((vn.Is8B() && vd.Is4H()) || (vn.Is4H() && vd.Is2S()) || (vn.Is2S() && vd.Is1D()) || (vn.Is16B() && vd.Is8H())|| (vn.Is8H() && vd.Is4S()) || (vn.Is4S() && vd.Is2D())); Emit(VFormat(vn) | op | Rn(vn) | Rd(vd)); } void Assembler::saddlp(const VRegister& vd, const VRegister& vn) { NEONAddlp(vd, vn, NEON_SADDLP); } void Assembler::uaddlp(const VRegister& vd, const VRegister& vn) { NEONAddlp(vd, vn, NEON_UADDLP); } void Assembler::sadalp(const VRegister& vd, const VRegister& vn) { NEONAddlp(vd, vn, NEON_SADALP); } void Assembler::uadalp(const VRegister& vd, const VRegister& vn) { NEONAddlp(vd, vn, NEON_UADALP); } void Assembler::NEONAcrossLanesL(const VRegister& vd, const VRegister& vn, NEONAcrossLanesOp op) { VIXL_ASSERT((vn.Is8B() && vd.Is1H()) || (vn.Is16B() && vd.Is1H()) || (vn.Is4H() && vd.Is1S()) || (vn.Is8H() && vd.Is1S()) || (vn.Is4S() && vd.Is1D())); Emit(VFormat(vn) | op | Rn(vn) | Rd(vd)); } void Assembler::saddlv(const VRegister& vd, const VRegister& vn) { NEONAcrossLanesL(vd, vn, NEON_SADDLV); } void Assembler::uaddlv(const VRegister& vd, const VRegister& vn) { NEONAcrossLanesL(vd, vn, NEON_UADDLV); } void Assembler::NEONAcrossLanes(const VRegister& vd, const VRegister& vn, NEONAcrossLanesOp op) { VIXL_ASSERT((vn.Is8B() && vd.Is1B()) || (vn.Is16B() && vd.Is1B()) || (vn.Is4H() && vd.Is1H()) || (vn.Is8H() && vd.Is1H()) || (vn.Is4S() && vd.Is1S())); if ((op & NEONAcrossLanesFPFMask) == NEONAcrossLanesFPFixed) { Emit(FPFormat(vn) | op | Rn(vn) | Rd(vd)); } else { Emit(VFormat(vn) | op | Rn(vn) | Rd(vd)); } } #define NEON_ACROSSLANES_LIST(V) \ V(fmaxv, NEON_FMAXV, vd.Is1S()) \ V(fminv, NEON_FMINV, vd.Is1S()) \ V(fmaxnmv, NEON_FMAXNMV, vd.Is1S()) \ V(fminnmv, NEON_FMINNMV, vd.Is1S()) \ V(addv, NEON_ADDV, true) \ V(smaxv, NEON_SMAXV, true) \ V(sminv, NEON_SMINV, true) \ V(umaxv, NEON_UMAXV, true) \ V(uminv, NEON_UMINV, true) #define DEFINE_ASM_FUNC(FN, OP, AS) \ void Assembler::FN(const VRegister& vd, \ const VRegister& vn) { \ VIXL_ASSERT(AS); \ NEONAcrossLanes(vd, vn, OP); \ } NEON_ACROSSLANES_LIST(DEFINE_ASM_FUNC) #undef DEFINE_ASM_FUNC void Assembler::NEONPerm(const VRegister& vd, const VRegister& vn, const VRegister& vm, NEONPermOp op) { VIXL_ASSERT(AreSameFormat(vd, vn, vm)); VIXL_ASSERT(!vd.Is1D()); Emit(VFormat(vd) | op | Rm(vm) | Rn(vn) | Rd(vd)); } void Assembler::trn1(const VRegister& vd, const VRegister& vn, const VRegister& vm) { NEONPerm(vd, vn, vm, NEON_TRN1); } void Assembler::trn2(const VRegister& vd, const VRegister& vn, const VRegister& vm) { NEONPerm(vd, vn, vm, NEON_TRN2); } void Assembler::uzp1(const VRegister& vd, const VRegister& vn, const VRegister& vm) { NEONPerm(vd, vn, vm, NEON_UZP1); } void Assembler::uzp2(const VRegister& vd, const VRegister& vn, const VRegister& vm) { NEONPerm(vd, vn, vm, NEON_UZP2); } void Assembler::zip1(const VRegister& vd, const VRegister& vn, const VRegister& vm) { NEONPerm(vd, vn, vm, NEON_ZIP1); } void Assembler::zip2(const VRegister& vd, const VRegister& vn, const VRegister& vm) { NEONPerm(vd, vn, vm, NEON_ZIP2); } void Assembler::NEONShiftImmediate(const VRegister& vd, const VRegister& vn, NEONShiftImmediateOp op, int immh_immb) { VIXL_ASSERT(AreSameFormat(vd, vn)); Instr q, scalar; if (vn.IsScalar()) { q = NEON_Q; scalar = NEONScalar; } else { q = vd.IsD() ? 0 : NEON_Q; scalar = 0; } Emit(q | op | scalar | immh_immb | Rn(vn) | Rd(vd)); } void Assembler::NEONShiftLeftImmediate(const VRegister& vd, const VRegister& vn, int shift, NEONShiftImmediateOp op) { int laneSizeInBits = vn.LaneSizeInBits(); VIXL_ASSERT((shift >= 0) && (shift < laneSizeInBits)); NEONShiftImmediate(vd, vn, op, (laneSizeInBits + shift) << 16); } void Assembler::NEONShiftRightImmediate(const VRegister& vd, const VRegister& vn, int shift, NEONShiftImmediateOp op) { int laneSizeInBits = vn.LaneSizeInBits(); VIXL_ASSERT((shift >= 1) && (shift <= laneSizeInBits)); NEONShiftImmediate(vd, vn, op, ((2 * laneSizeInBits) - shift) << 16); } void Assembler::NEONShiftImmediateL(const VRegister& vd, const VRegister& vn, int shift, NEONShiftImmediateOp op) { int laneSizeInBits = vn.LaneSizeInBits(); VIXL_ASSERT((shift >= 0) && (shift < laneSizeInBits)); int immh_immb = (laneSizeInBits + shift) << 16; VIXL_ASSERT((vn.Is8B() && vd.Is8H()) || (vn.Is4H() && vd.Is4S()) || (vn.Is2S() && vd.Is2D()) || (vn.Is16B() && vd.Is8H())|| (vn.Is8H() && vd.Is4S()) || (vn.Is4S() && vd.Is2D())); Instr q; q = vn.IsD() ? 0 : NEON_Q; Emit(q | op | immh_immb | Rn(vn) | Rd(vd)); } void Assembler::NEONShiftImmediateN(const VRegister& vd, const VRegister& vn, int shift, NEONShiftImmediateOp op) { Instr q, scalar; int laneSizeInBits = vd.LaneSizeInBits(); VIXL_ASSERT((shift >= 1) && (shift <= laneSizeInBits)); int immh_immb = (2 * laneSizeInBits - shift) << 16; if (vn.IsScalar()) { VIXL_ASSERT((vd.Is1B() && vn.Is1H()) || (vd.Is1H() && vn.Is1S()) || (vd.Is1S() && vn.Is1D())); q = NEON_Q; scalar = NEONScalar; } else { VIXL_ASSERT((vd.Is8B() && vn.Is8H()) || (vd.Is4H() && vn.Is4S()) || (vd.Is2S() && vn.Is2D()) || (vd.Is16B() && vn.Is8H())|| (vd.Is8H() && vn.Is4S()) || (vd.Is4S() && vn.Is2D())); scalar = 0; q = vd.IsD() ? 0 : NEON_Q; } Emit(q | op | scalar | immh_immb | Rn(vn) | Rd(vd)); } void Assembler::shl(const VRegister& vd, const VRegister& vn, int shift) { VIXL_ASSERT(vd.IsVector() || vd.Is1D()); NEONShiftLeftImmediate(vd, vn, shift, NEON_SHL); } void Assembler::sli(const VRegister& vd, const VRegister& vn, int shift) { VIXL_ASSERT(vd.IsVector() || vd.Is1D()); NEONShiftLeftImmediate(vd, vn, shift, NEON_SLI); } void Assembler::sqshl(const VRegister& vd, const VRegister& vn, int shift) { NEONShiftLeftImmediate(vd, vn, shift, NEON_SQSHL_imm); } void Assembler::sqshlu(const VRegister& vd, const VRegister& vn, int shift) { NEONShiftLeftImmediate(vd, vn, shift, NEON_SQSHLU); } void Assembler::uqshl(const VRegister& vd, const VRegister& vn, int shift) { NEONShiftLeftImmediate(vd, vn, shift, NEON_UQSHL_imm); } void Assembler::sshll(const VRegister& vd, const VRegister& vn, int shift) { VIXL_ASSERT(vn.IsD()); NEONShiftImmediateL(vd, vn, shift, NEON_SSHLL); } void Assembler::sshll2(const VRegister& vd, const VRegister& vn, int shift) { VIXL_ASSERT(vn.IsQ()); NEONShiftImmediateL(vd, vn, shift, NEON_SSHLL); } void Assembler::sxtl(const VRegister& vd, const VRegister& vn) { sshll(vd, vn, 0); } void Assembler::sxtl2(const VRegister& vd, const VRegister& vn) { sshll2(vd, vn, 0); } void Assembler::ushll(const VRegister& vd, const VRegister& vn, int shift) { VIXL_ASSERT(vn.IsD()); NEONShiftImmediateL(vd, vn, shift, NEON_USHLL); } void Assembler::ushll2(const VRegister& vd, const VRegister& vn, int shift) { VIXL_ASSERT(vn.IsQ()); NEONShiftImmediateL(vd, vn, shift, NEON_USHLL); } void Assembler::uxtl(const VRegister& vd, const VRegister& vn) { ushll(vd, vn, 0); } void Assembler::uxtl2(const VRegister& vd, const VRegister& vn) { ushll2(vd, vn, 0); } void Assembler::sri(const VRegister& vd, const VRegister& vn, int shift) { VIXL_ASSERT(vd.IsVector() || vd.Is1D()); NEONShiftRightImmediate(vd, vn, shift, NEON_SRI); } void Assembler::sshr(const VRegister& vd, const VRegister& vn, int shift) { VIXL_ASSERT(vd.IsVector() || vd.Is1D()); NEONShiftRightImmediate(vd, vn, shift, NEON_SSHR); } void Assembler::ushr(const VRegister& vd, const VRegister& vn, int shift) { VIXL_ASSERT(vd.IsVector() || vd.Is1D()); NEONShiftRightImmediate(vd, vn, shift, NEON_USHR); } void Assembler::srshr(const VRegister& vd, const VRegister& vn, int shift) { VIXL_ASSERT(vd.IsVector() || vd.Is1D()); NEONShiftRightImmediate(vd, vn, shift, NEON_SRSHR); } void Assembler::urshr(const VRegister& vd, const VRegister& vn, int shift) { VIXL_ASSERT(vd.IsVector() || vd.Is1D()); NEONShiftRightImmediate(vd, vn, shift, NEON_URSHR); } void Assembler::ssra(const VRegister& vd, const VRegister& vn, int shift) { VIXL_ASSERT(vd.IsVector() || vd.Is1D()); NEONShiftRightImmediate(vd, vn, shift, NEON_SSRA); } void Assembler::usra(const VRegister& vd, const VRegister& vn, int shift) { VIXL_ASSERT(vd.IsVector() || vd.Is1D()); NEONShiftRightImmediate(vd, vn, shift, NEON_USRA); } void Assembler::srsra(const VRegister& vd, const VRegister& vn, int shift) { VIXL_ASSERT(vd.IsVector() || vd.Is1D()); NEONShiftRightImmediate(vd, vn, shift, NEON_SRSRA); } void Assembler::ursra(const VRegister& vd, const VRegister& vn, int shift) { VIXL_ASSERT(vd.IsVector() || vd.Is1D()); NEONShiftRightImmediate(vd, vn, shift, NEON_URSRA); } void Assembler::shrn(const VRegister& vd, const VRegister& vn, int shift) { VIXL_ASSERT(vn.IsVector() && vd.IsD()); NEONShiftImmediateN(vd, vn, shift, NEON_SHRN); } void Assembler::shrn2(const VRegister& vd, const VRegister& vn, int shift) { VIXL_ASSERT(vn.IsVector() && vd.IsQ()); NEONShiftImmediateN(vd, vn, shift, NEON_SHRN); } void Assembler::rshrn(const VRegister& vd, const VRegister& vn, int shift) { VIXL_ASSERT(vn.IsVector() && vd.IsD()); NEONShiftImmediateN(vd, vn, shift, NEON_RSHRN); } void Assembler::rshrn2(const VRegister& vd, const VRegister& vn, int shift) { VIXL_ASSERT(vn.IsVector() && vd.IsQ()); NEONShiftImmediateN(vd, vn, shift, NEON_RSHRN); } void Assembler::sqshrn(const VRegister& vd, const VRegister& vn, int shift) { VIXL_ASSERT(vd.IsD() || (vn.IsScalar() && vd.IsScalar())); NEONShiftImmediateN(vd, vn, shift, NEON_SQSHRN); } void Assembler::sqshrn2(const VRegister& vd, const VRegister& vn, int shift) { VIXL_ASSERT(vn.IsVector() && vd.IsQ()); NEONShiftImmediateN(vd, vn, shift, NEON_SQSHRN); } void Assembler::sqrshrn(const VRegister& vd, const VRegister& vn, int shift) { VIXL_ASSERT(vd.IsD() || (vn.IsScalar() && vd.IsScalar())); NEONShiftImmediateN(vd, vn, shift, NEON_SQRSHRN); } void Assembler::sqrshrn2(const VRegister& vd, const VRegister& vn, int shift) { VIXL_ASSERT(vn.IsVector() && vd.IsQ()); NEONShiftImmediateN(vd, vn, shift, NEON_SQRSHRN); } void Assembler::sqshrun(const VRegister& vd, const VRegister& vn, int shift) { VIXL_ASSERT(vd.IsD() || (vn.IsScalar() && vd.IsScalar())); NEONShiftImmediateN(vd, vn, shift, NEON_SQSHRUN); } void Assembler::sqshrun2(const VRegister& vd, const VRegister& vn, int shift) { VIXL_ASSERT(vn.IsVector() && vd.IsQ()); NEONShiftImmediateN(vd, vn, shift, NEON_SQSHRUN); } void Assembler::sqrshrun(const VRegister& vd, const VRegister& vn, int shift) { VIXL_ASSERT(vd.IsD() || (vn.IsScalar() && vd.IsScalar())); NEONShiftImmediateN(vd, vn, shift, NEON_SQRSHRUN); } void Assembler::sqrshrun2(const VRegister& vd, const VRegister& vn, int shift) { VIXL_ASSERT(vn.IsVector() && vd.IsQ()); NEONShiftImmediateN(vd, vn, shift, NEON_SQRSHRUN); } void Assembler::uqshrn(const VRegister& vd, const VRegister& vn, int shift) { VIXL_ASSERT(vd.IsD() || (vn.IsScalar() && vd.IsScalar())); NEONShiftImmediateN(vd, vn, shift, NEON_UQSHRN); } void Assembler::uqshrn2(const VRegister& vd, const VRegister& vn, int shift) { VIXL_ASSERT(vn.IsVector() && vd.IsQ()); NEONShiftImmediateN(vd, vn, shift, NEON_UQSHRN); } void Assembler::uqrshrn(const VRegister& vd, const VRegister& vn, int shift) { VIXL_ASSERT(vd.IsD() || (vn.IsScalar() && vd.IsScalar())); NEONShiftImmediateN(vd, vn, shift, NEON_UQRSHRN); } void Assembler::uqrshrn2(const VRegister& vd, const VRegister& vn, int shift) { VIXL_ASSERT(vn.IsVector() && vd.IsQ()); NEONShiftImmediateN(vd, vn, shift, NEON_UQRSHRN); } // Note: // Below, a difference in case for the same letter indicates a // negated bit. // If b is 1, then B is 0. uint32_t Assembler::FP32ToImm8(float imm) { VIXL_ASSERT(IsImmFP32(imm)); // bits: aBbb.bbbc.defg.h000.0000.0000.0000.0000 uint32_t bits = FloatToRawbits(imm); // bit7: a000.0000 uint32_t bit7 = ((bits >> 31) & 0x1) << 7; // bit6: 0b00.0000 uint32_t bit6 = ((bits >> 29) & 0x1) << 6; // bit5_to_0: 00cd.efgh uint32_t bit5_to_0 = (bits >> 19) & 0x3f; return bit7 | bit6 | bit5_to_0; } Instr Assembler::ImmFP32(float imm) { return FP32ToImm8(imm) << ImmFP_offset; } uint32_t Assembler::FP64ToImm8(double imm) { VIXL_ASSERT(IsImmFP64(imm)); // bits: aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000 // 0000.0000.0000.0000.0000.0000.0000.0000 uint64_t bits = DoubleToRawbits(imm); // bit7: a000.0000 uint64_t bit7 = ((bits >> 63) & 0x1) << 7; // bit6: 0b00.0000 uint64_t bit6 = ((bits >> 61) & 0x1) << 6; // bit5_to_0: 00cd.efgh uint64_t bit5_to_0 = (bits >> 48) & 0x3f; return static_cast(bit7 | bit6 | bit5_to_0); } Instr Assembler::ImmFP64(double imm) { return FP64ToImm8(imm) << ImmFP_offset; } // Code generation helpers. void Assembler::MoveWide(const Register& rd, uint64_t imm, int shift, MoveWideImmediateOp mov_op) { // Ignore the top 32 bits of an immediate if we're moving to a W register. if (rd.Is32Bits()) { // Check that the top 32 bits are zero (a positive 32-bit number) or top // 33 bits are one (a negative 32-bit number, sign extended to 64 bits). VIXL_ASSERT(((imm >> kWRegSize) == 0) || ((imm >> (kWRegSize - 1)) == 0x1ffffffff)); imm &= kWRegMask; } if (shift >= 0) { // Explicit shift specified. VIXL_ASSERT((shift == 0) || (shift == 16) || (shift == 32) || (shift == 48)); VIXL_ASSERT(rd.Is64Bits() || (shift == 0) || (shift == 16)); shift /= 16; } else { // Calculate a new immediate and shift combination to encode the immediate // argument. shift = 0; if ((imm & 0xffffffffffff0000) == 0) { // Nothing to do. } else if ((imm & 0xffffffff0000ffff) == 0) { imm >>= 16; shift = 1; } else if ((imm & 0xffff0000ffffffff) == 0) { VIXL_ASSERT(rd.Is64Bits()); imm >>= 32; shift = 2; } else if ((imm & 0x0000ffffffffffff) == 0) { VIXL_ASSERT(rd.Is64Bits()); imm >>= 48; shift = 3; } } VIXL_ASSERT(IsUint16(imm)); Emit(SF(rd) | MoveWideImmediateFixed | mov_op | Rd(rd) | ImmMoveWide(imm) | ShiftMoveWide(shift)); } void Assembler::AddSub(const Register& rd, const Register& rn, const Operand& operand, FlagsUpdate S, AddSubOp op) { VIXL_ASSERT(rd.size() == rn.size()); if (operand.IsImmediate()) { int64_t immediate = operand.immediate(); VIXL_ASSERT(IsImmAddSub(immediate)); Instr dest_reg = (S == SetFlags) ? Rd(rd) : RdSP(rd); Emit(SF(rd) | AddSubImmediateFixed | op | Flags(S) | ImmAddSub(static_cast(immediate)) | dest_reg | RnSP(rn)); } else if (operand.IsShiftedRegister()) { VIXL_ASSERT(operand.reg().size() == rd.size()); VIXL_ASSERT(operand.shift() != ROR); // For instructions of the form: // add/sub wsp, , [, LSL #0-3 ] // add/sub , wsp, [, LSL #0-3 ] // add/sub wsp, wsp, [, LSL #0-3 ] // adds/subs , wsp, [, LSL #0-3 ] // or their 64-bit register equivalents, convert the operand from shifted to // extended register mode, and emit an add/sub extended instruction. if (rn.IsSP() || rd.IsSP()) { VIXL_ASSERT(!(rd.IsSP() && (S == SetFlags))); DataProcExtendedRegister(rd, rn, operand.ToExtendedRegister(), S, AddSubExtendedFixed | op); } else { DataProcShiftedRegister(rd, rn, operand, S, AddSubShiftedFixed | op); } } else { VIXL_ASSERT(operand.IsExtendedRegister()); DataProcExtendedRegister(rd, rn, operand, S, AddSubExtendedFixed | op); } } void Assembler::AddSubWithCarry(const Register& rd, const Register& rn, const Operand& operand, FlagsUpdate S, AddSubWithCarryOp op) { VIXL_ASSERT(rd.size() == rn.size()); VIXL_ASSERT(rd.size() == operand.reg().size()); VIXL_ASSERT(operand.IsShiftedRegister() && (operand.shift_amount() == 0)); Emit(SF(rd) | op | Flags(S) | Rm(operand.reg()) | Rn(rn) | Rd(rd)); } void Assembler::hlt(int code) { VIXL_ASSERT(IsUint16(code)); Emit(HLT | ImmException(code)); } void Assembler::brk(int code) { VIXL_ASSERT(IsUint16(code)); Emit(BRK | ImmException(code)); } void Assembler::svc(int code) { Emit(SVC | ImmException(code)); } void Assembler::ConditionalCompare(const Register& rn, const Operand& operand, StatusFlags nzcv, Condition cond, ConditionalCompareOp op) { Instr ccmpop; if (operand.IsImmediate()) { int64_t immediate = operand.immediate(); VIXL_ASSERT(IsImmConditionalCompare(immediate)); ccmpop = ConditionalCompareImmediateFixed | op | ImmCondCmp(static_cast(immediate)); } else { VIXL_ASSERT(operand.IsShiftedRegister() && (operand.shift_amount() == 0)); ccmpop = ConditionalCompareRegisterFixed | op | Rm(operand.reg()); } Emit(SF(rn) | ccmpop | Cond(cond) | Rn(rn) | Nzcv(nzcv)); } void Assembler::DataProcessing1Source(const Register& rd, const Register& rn, DataProcessing1SourceOp op) { VIXL_ASSERT(rd.size() == rn.size()); Emit(SF(rn) | op | Rn(rn) | Rd(rd)); } void Assembler::FPDataProcessing1Source(const VRegister& vd, const VRegister& vn, FPDataProcessing1SourceOp op) { VIXL_ASSERT(vd.Is1H() || vd.Is1S() || vd.Is1D()); Emit(FPType(vn) | op | Rn(vn) | Rd(vd)); } void Assembler::FPDataProcessing3Source(const VRegister& vd, const VRegister& vn, const VRegister& vm, const VRegister& va, FPDataProcessing3SourceOp op) { VIXL_ASSERT(vd.Is1S() || vd.Is1D()); VIXL_ASSERT(AreSameSizeAndType(vd, vn, vm, va)); Emit(FPType(vd) | op | Rm(vm) | Rn(vn) | Rd(vd) | Ra(va)); } void Assembler::NEONModifiedImmShiftLsl(const VRegister& vd, const int imm8, const int left_shift, NEONModifiedImmediateOp op) { VIXL_ASSERT(vd.Is8B() || vd.Is16B() || vd.Is4H() || vd.Is8H() || vd.Is2S() || vd.Is4S()); VIXL_ASSERT((left_shift == 0) || (left_shift == 8) || (left_shift == 16) || (left_shift == 24)); VIXL_ASSERT(IsUint8(imm8)); int cmode_1, cmode_2, cmode_3; if (vd.Is8B() || vd.Is16B()) { VIXL_ASSERT(op == NEONModifiedImmediate_MOVI); cmode_1 = 1; cmode_2 = 1; cmode_3 = 1; } else { cmode_1 = (left_shift >> 3) & 1; cmode_2 = left_shift >> 4; cmode_3 = 0; if (vd.Is4H() || vd.Is8H()) { VIXL_ASSERT((left_shift == 0) || (left_shift == 8)); cmode_3 = 1; } } int cmode = (cmode_3 << 3) | (cmode_2 << 2) | (cmode_1 << 1); int q = vd.IsQ() ? NEON_Q : 0; Emit(q | op | ImmNEONabcdefgh(imm8) | NEONCmode(cmode) | Rd(vd)); } void Assembler::NEONModifiedImmShiftMsl(const VRegister& vd, const int imm8, const int shift_amount, NEONModifiedImmediateOp op) { VIXL_ASSERT(vd.Is2S() || vd.Is4S()); VIXL_ASSERT((shift_amount == 8) || (shift_amount == 16)); VIXL_ASSERT(IsUint8(imm8)); int cmode_0 = (shift_amount >> 4) & 1; int cmode = 0xc | cmode_0; int q = vd.IsQ() ? NEON_Q : 0; Emit(q | op | ImmNEONabcdefgh(imm8) | NEONCmode(cmode) | Rd(vd)); } void Assembler::EmitShift(const Register& rd, const Register& rn, Shift shift, unsigned shift_amount) { switch (shift) { case LSL: lsl(rd, rn, shift_amount); break; case LSR: lsr(rd, rn, shift_amount); break; case ASR: asr(rd, rn, shift_amount); break; case ROR: ror(rd, rn, shift_amount); break; default: VIXL_UNREACHABLE(); } } void Assembler::EmitExtendShift(const Register& rd, const Register& rn, Extend extend, unsigned left_shift) { VIXL_ASSERT(rd.size() >= rn.size()); unsigned reg_size = rd.size(); // Use the correct size of register. Register rn_ = Register(rn.code(), rd.size()); // Bits extracted are high_bit:0. unsigned high_bit = (8 << (extend & 0x3)) - 1; // Number of bits left in the result that are not introduced by the shift. unsigned non_shift_bits = (reg_size - left_shift) & (reg_size - 1); if ((non_shift_bits > high_bit) || (non_shift_bits == 0)) { switch (extend) { case UXTB: case UXTH: case UXTW: ubfm(rd, rn_, non_shift_bits, high_bit); break; case SXTB: case SXTH: case SXTW: sbfm(rd, rn_, non_shift_bits, high_bit); break; case UXTX: case SXTX: { VIXL_ASSERT(rn.size() == kXRegSize); // Nothing to extend. Just shift. lsl(rd, rn_, left_shift); break; } default: VIXL_UNREACHABLE(); } } else { // No need to extend as the extended bits would be shifted away. lsl(rd, rn_, left_shift); } } void Assembler::DataProcExtendedRegister(const Register& rd, const Register& rn, const Operand& operand, FlagsUpdate S, Instr op) { Instr dest_reg = (S == SetFlags) ? Rd(rd) : RdSP(rd); Emit(SF(rd) | op | Flags(S) | Rm(operand.reg()) | ExtendMode(operand.extend()) | ImmExtendShift(operand.shift_amount()) | dest_reg | RnSP(rn)); } Instr Assembler::LoadStoreMemOperand(const MemOperand& addr, unsigned access_size, LoadStoreScalingOption option) { Instr base = RnSP(addr.base()); int64_t offset = addr.offset(); if (addr.IsImmediateOffset()) { bool prefer_unscaled = (option == PreferUnscaledOffset) || (option == RequireUnscaledOffset); if (prefer_unscaled && IsImmLSUnscaled(offset)) { // Use the unscaled addressing mode. return base | LoadStoreUnscaledOffsetFixed | ImmLS(static_cast(offset)); } if ((option != RequireUnscaledOffset) && IsImmLSScaled(offset, access_size)) { // Use the scaled addressing mode. return base | LoadStoreUnsignedOffsetFixed | ImmLSUnsigned(static_cast(offset) >> access_size); } if ((option != RequireScaledOffset) && IsImmLSUnscaled(offset)) { // Use the unscaled addressing mode. return base | LoadStoreUnscaledOffsetFixed | ImmLS(static_cast(offset)); } } // All remaining addressing modes are register-offset, pre-indexed or // post-indexed modes. VIXL_ASSERT((option != RequireUnscaledOffset) && (option != RequireScaledOffset)); if (addr.IsRegisterOffset()) { Extend ext = addr.extend(); Shift shift = addr.shift(); unsigned shift_amount = addr.shift_amount(); // LSL is encoded in the option field as UXTX. if (shift == LSL) { ext = UXTX; } // Shifts are encoded in one bit, indicating a left shift by the memory // access size. VIXL_ASSERT((shift_amount == 0) || (shift_amount == access_size)); return base | LoadStoreRegisterOffsetFixed | Rm(addr.regoffset()) | ExtendMode(ext) | ImmShiftLS((shift_amount > 0) ? 1 : 0); } if (addr.IsPreIndex() && IsImmLSUnscaled(offset)) { return base | LoadStorePreIndexFixed | ImmLS(static_cast(offset)); } if (addr.IsPostIndex() && IsImmLSUnscaled(offset)) { return base | LoadStorePostIndexFixed | ImmLS(static_cast(offset)); } // If this point is reached, the MemOperand (addr) cannot be encoded. VIXL_UNREACHABLE(); return 0; } void Assembler::LoadStore(const CPURegister& rt, const MemOperand& addr, LoadStoreOp op, LoadStoreScalingOption option) { Emit(op | Rt(rt) | LoadStoreMemOperand(addr, CalcLSDataSize(op), option)); } void Assembler::Prefetch(PrefetchOperation op, const MemOperand& addr, LoadStoreScalingOption option) { VIXL_ASSERT(addr.IsRegisterOffset() || addr.IsImmediateOffset()); Instr prfop = ImmPrefetchOperation(op); Emit(PRFM | prfop | LoadStoreMemOperand(addr, kXRegSizeInBytesLog2, option)); } bool Assembler::IsImmAddSub(int64_t immediate) { return IsUint12(immediate) || (IsUint12(immediate >> 12) && ((immediate & 0xfff) == 0)); } bool Assembler::IsImmConditionalCompare(int64_t immediate) { return IsUint5(immediate); } bool Assembler::IsImmFP32(float imm) { // Valid values will have the form: // aBbb.bbbc.defg.h000.0000.0000.0000.0000 uint32_t bits = FloatToRawbits(imm); // bits[19..0] are cleared. if ((bits & 0x7ffff) != 0) { return false; } // bits[29..25] are all set or all cleared. uint32_t b_pattern = (bits >> 16) & 0x3e00; if (b_pattern != 0 && b_pattern != 0x3e00) { return false; } // bit[30] and bit[29] are opposite. if (((bits ^ (bits << 1)) & 0x40000000) == 0) { return false; } return true; } bool Assembler::IsImmFP64(double imm) { // Valid values will have the form: // aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000 // 0000.0000.0000.0000.0000.0000.0000.0000 uint64_t bits = DoubleToRawbits(imm); // bits[47..0] are cleared. if ((bits & 0x0000ffffffffffff) != 0) { return false; } // bits[61..54] are all set or all cleared. uint32_t b_pattern = (bits >> 48) & 0x3fc0; if ((b_pattern != 0) && (b_pattern != 0x3fc0)) { return false; } // bit[62] and bit[61] are opposite. if (((bits ^ (bits << 1)) & (UINT64_C(1) << 62)) == 0) { return false; } return true; } bool Assembler::IsImmLSPair(int64_t offset, unsigned access_size) { VIXL_ASSERT(access_size <= kQRegSizeInBytesLog2); bool offset_is_size_multiple = (((offset >> access_size) << access_size) == offset); return offset_is_size_multiple && IsInt7(offset >> access_size); } bool Assembler::IsImmLSScaled(int64_t offset, unsigned access_size) { VIXL_ASSERT(access_size <= kQRegSizeInBytesLog2); bool offset_is_size_multiple = (((offset >> access_size) << access_size) == offset); return offset_is_size_multiple && IsUint12(offset >> access_size); } bool Assembler::IsImmLSUnscaled(int64_t offset) { return IsInt9(offset); } // The movn instruction can generate immediates containing an arbitrary 16-bit // value, with remaining bits set, eg. 0xffff1234, 0xffff1234ffffffff. bool Assembler::IsImmMovn(uint64_t imm, unsigned reg_size) { return IsImmMovz(~imm, reg_size); } // The movz instruction can generate immediates containing an arbitrary 16-bit // value, with remaining bits clear, eg. 0x00001234, 0x0000123400000000. bool Assembler::IsImmMovz(uint64_t imm, unsigned reg_size) { VIXL_ASSERT((reg_size == kXRegSize) || (reg_size == kWRegSize)); return CountClearHalfWords(imm, reg_size) >= ((reg_size / 16) - 1); } // Test if a given value can be encoded in the immediate field of a logical // instruction. // If it can be encoded, the function returns true, and values pointed to by n, // imm_s and imm_r are updated with immediates encoded in the format required // by the corresponding fields in the logical instruction. // If it can not be encoded, the function returns false, and the values pointed // to by n, imm_s and imm_r are undefined. bool Assembler::IsImmLogical(uint64_t value, unsigned width, unsigned* n, unsigned* imm_s, unsigned* imm_r) { VIXL_ASSERT((width == kWRegSize) || (width == kXRegSize)); bool negate = false; // Logical immediates are encoded using parameters n, imm_s and imm_r using // the following table: // // N imms immr size S R // 1 ssssss rrrrrr 64 UInt(ssssss) UInt(rrrrrr) // 0 0sssss xrrrrr 32 UInt(sssss) UInt(rrrrr) // 0 10ssss xxrrrr 16 UInt(ssss) UInt(rrrr) // 0 110sss xxxrrr 8 UInt(sss) UInt(rrr) // 0 1110ss xxxxrr 4 UInt(ss) UInt(rr) // 0 11110s xxxxxr 2 UInt(s) UInt(r) // (s bits must not be all set) // // A pattern is constructed of size bits, where the least significant S+1 bits // are set. The pattern is rotated right by R, and repeated across a 32 or // 64-bit value, depending on destination register width. // // Put another way: the basic format of a logical immediate is a single // contiguous stretch of 1 bits, repeated across the whole word at intervals // given by a power of 2. To identify them quickly, we first locate the // lowest stretch of 1 bits, then the next 1 bit above that; that combination // is different for every logical immediate, so it gives us all the // information we need to identify the only logical immediate that our input // could be, and then we simply check if that's the value we actually have. // // (The rotation parameter does give the possibility of the stretch of 1 bits // going 'round the end' of the word. To deal with that, we observe that in // any situation where that happens the bitwise NOT of the value is also a // valid logical immediate. So we simply invert the input whenever its low bit // is set, and then we know that the rotated case can't arise.) if (value & 1) { // If the low bit is 1, negate the value, and set a flag to remember that we // did (so that we can adjust the return values appropriately). negate = true; value = ~value; } if (width == kWRegSize) { // To handle 32-bit logical immediates, the very easiest thing is to repeat // the input value twice to make a 64-bit word. The correct encoding of that // as a logical immediate will also be the correct encoding of the 32-bit // value. // Avoid making the assumption that the most-significant 32 bits are zero by // shifting the value left and duplicating it. value <<= kWRegSize; value |= value >> kWRegSize; } // The basic analysis idea: imagine our input word looks like this. // // 0011111000111110001111100011111000111110001111100011111000111110 // c b a // |<--d-->| // // We find the lowest set bit (as an actual power-of-2 value, not its index) // and call it a. Then we add a to our original number, which wipes out the // bottommost stretch of set bits and replaces it with a 1 carried into the // next zero bit. Then we look for the new lowest set bit, which is in // position b, and subtract it, so now our number is just like the original // but with the lowest stretch of set bits completely gone. Now we find the // lowest set bit again, which is position c in the diagram above. Then we'll // measure the distance d between bit positions a and c (using CLZ), and that // tells us that the only valid logical immediate that could possibly be equal // to this number is the one in which a stretch of bits running from a to just // below b is replicated every d bits. uint64_t a = LowestSetBit(value); uint64_t value_plus_a = value + a; uint64_t b = LowestSetBit(value_plus_a); uint64_t value_plus_a_minus_b = value_plus_a - b; uint64_t c = LowestSetBit(value_plus_a_minus_b); int d, clz_a, out_n; uint64_t mask; if (c != 0) { // The general case, in which there is more than one stretch of set bits. // Compute the repeat distance d, and set up a bitmask covering the basic // unit of repetition (i.e. a word with the bottom d bits set). Also, in all // of these cases the N bit of the output will be zero. clz_a = CountLeadingZeros(a, kXRegSize); int clz_c = CountLeadingZeros(c, kXRegSize); d = clz_a - clz_c; mask = ((UINT64_C(1) << d) - 1); out_n = 0; } else { // Handle degenerate cases. // // If any of those 'find lowest set bit' operations didn't find a set bit at // all, then the word will have been zero thereafter, so in particular the // last lowest_set_bit operation will have returned zero. So we can test for // all the special case conditions in one go by seeing if c is zero. if (a == 0) { // The input was zero (or all 1 bits, which will come to here too after we // inverted it at the start of the function), for which we just return // false. return false; } else { // Otherwise, if c was zero but a was not, then there's just one stretch // of set bits in our word, meaning that we have the trivial case of // d == 64 and only one 'repetition'. Set up all the same variables as in // the general case above, and set the N bit in the output. clz_a = CountLeadingZeros(a, kXRegSize); d = 64; mask = ~UINT64_C(0); out_n = 1; } } // If the repeat period d is not a power of two, it can't be encoded. if (!IsPowerOf2(d)) { return false; } if (((b - a) & ~mask) != 0) { // If the bit stretch (b - a) does not fit within the mask derived from the // repeat period, then fail. return false; } // The only possible option is b - a repeated every d bits. Now we're going to // actually construct the valid logical immediate derived from that // specification, and see if it equals our original input. // // To repeat a value every d bits, we multiply it by a number of the form // (1 + 2^d + 2^(2d) + ...), i.e. 0x0001000100010001 or similar. These can // be derived using a table lookup on CLZ(d). static const uint64_t multipliers[] = { 0x0000000000000001UL, 0x0000000100000001UL, 0x0001000100010001UL, 0x0101010101010101UL, 0x1111111111111111UL, 0x5555555555555555UL, }; uint64_t multiplier = multipliers[CountLeadingZeros(d, kXRegSize) - 57]; uint64_t candidate = (b - a) * multiplier; if (value != candidate) { // The candidate pattern doesn't match our input value, so fail. return false; } // We have a match! This is a valid logical immediate, so now we have to // construct the bits and pieces of the instruction encoding that generates // it. // Count the set bits in our basic stretch. The special case of clz(0) == -1 // makes the answer come out right for stretches that reach the very top of // the word (e.g. numbers like 0xffffc00000000000). int clz_b = (b == 0) ? -1 : CountLeadingZeros(b, kXRegSize); int s = clz_a - clz_b; // Decide how many bits to rotate right by, to put the low bit of that basic // stretch in position a. int r; if (negate) { // If we inverted the input right at the start of this function, here's // where we compensate: the number of set bits becomes the number of clear // bits, and the rotation count is based on position b rather than position // a (since b is the location of the 'lowest' 1 bit after inversion). s = d - s; r = (clz_b + 1) & (d - 1); } else { r = (clz_a + 1) & (d - 1); } // Now we're done, except for having to encode the S output in such a way that // it gives both the number of set bits and the length of the repeated // segment. The s field is encoded like this: // // imms size S // ssssss 64 UInt(ssssss) // 0sssss 32 UInt(sssss) // 10ssss 16 UInt(ssss) // 110sss 8 UInt(sss) // 1110ss 4 UInt(ss) // 11110s 2 UInt(s) // // So we 'or' (-d << 1) with our computed s to form imms. if ((n != NULL) || (imm_s != NULL) || (imm_r != NULL)) { *n = out_n; *imm_s = ((-d << 1) | (s - 1)) & 0x3f; *imm_r = r; } return true; } LoadStoreOp Assembler::LoadOpFor(const CPURegister& rt) { VIXL_ASSERT(rt.IsValid()); if (rt.IsRegister()) { return rt.Is64Bits() ? LDR_x : LDR_w; } else { VIXL_ASSERT(rt.IsVRegister()); switch (rt.SizeInBits()) { case kBRegSize: return LDR_b; case kHRegSize: return LDR_h; case kSRegSize: return LDR_s; case kDRegSize: return LDR_d; default: VIXL_ASSERT(rt.IsQ()); return LDR_q; } } } LoadStoreOp Assembler::StoreOpFor(const CPURegister& rt) { VIXL_ASSERT(rt.IsValid()); if (rt.IsRegister()) { return rt.Is64Bits() ? STR_x : STR_w; } else { VIXL_ASSERT(rt.IsVRegister()); switch (rt.SizeInBits()) { case kBRegSize: return STR_b; case kHRegSize: return STR_h; case kSRegSize: return STR_s; case kDRegSize: return STR_d; default: VIXL_ASSERT(rt.IsQ()); return STR_q; } } } LoadStorePairOp Assembler::StorePairOpFor(const CPURegister& rt, const CPURegister& rt2) { VIXL_ASSERT(AreSameSizeAndType(rt, rt2)); USE(rt2); if (rt.IsRegister()) { return rt.Is64Bits() ? STP_x : STP_w; } else { VIXL_ASSERT(rt.IsVRegister()); switch (rt.SizeInBytes()) { case kSRegSizeInBytes: return STP_s; case kDRegSizeInBytes: return STP_d; default: VIXL_ASSERT(rt.IsQ()); return STP_q; } } } LoadStorePairOp Assembler::LoadPairOpFor(const CPURegister& rt, const CPURegister& rt2) { VIXL_ASSERT((STP_w | LoadStorePairLBit) == LDP_w); return static_cast(StorePairOpFor(rt, rt2) | LoadStorePairLBit); } LoadStorePairNonTemporalOp Assembler::StorePairNonTemporalOpFor( const CPURegister& rt, const CPURegister& rt2) { VIXL_ASSERT(AreSameSizeAndType(rt, rt2)); USE(rt2); if (rt.IsRegister()) { return rt.Is64Bits() ? STNP_x : STNP_w; } else { VIXL_ASSERT(rt.IsVRegister()); switch (rt.SizeInBytes()) { case kSRegSizeInBytes: return STNP_s; case kDRegSizeInBytes: return STNP_d; default: VIXL_ASSERT(rt.IsQ()); return STNP_q; } } } LoadStorePairNonTemporalOp Assembler::LoadPairNonTemporalOpFor( const CPURegister& rt, const CPURegister& rt2) { VIXL_ASSERT((STNP_w | LoadStorePairNonTemporalLBit) == LDNP_w); return static_cast( StorePairNonTemporalOpFor(rt, rt2) | LoadStorePairNonTemporalLBit); } LoadLiteralOp Assembler::LoadLiteralOpFor(const CPURegister& rt) { if (rt.IsRegister()) { return rt.IsX() ? LDR_x_lit : LDR_w_lit; } else { VIXL_ASSERT(rt.IsVRegister()); switch (rt.SizeInBytes()) { case kSRegSizeInBytes: return LDR_s_lit; case kDRegSizeInBytes: return LDR_d_lit; default: VIXL_ASSERT(rt.IsQ()); return LDR_q_lit; } } } bool Assembler::CPUHas(const CPURegister& rt) const { // Core registers are available without any particular CPU features. if (rt.IsRegister()) return true; VIXL_ASSERT(rt.IsVRegister()); // The architecture does not allow FP and NEON to be implemented separately, // but we can crudely categorise them based on register size, since FP only // uses D, S and (occasionally) H registers. if (rt.IsH() || rt.IsS() || rt.IsD()) { return CPUHas(CPUFeatures::kFP) || CPUHas(CPUFeatures::kNEON); } VIXL_ASSERT(rt.IsB() || rt.IsQ()); return CPUHas(CPUFeatures::kNEON); } bool Assembler::CPUHas(const CPURegister& rt, const CPURegister& rt2) const { // This is currently only used for loads and stores, where rt and rt2 must // have the same size and type. We could extend this to cover other cases if // necessary, but for now we can avoid checking both registers. VIXL_ASSERT(AreSameSizeAndType(rt, rt2)); USE(rt2); return CPUHas(rt); } bool Assembler::CPUHas(SystemRegister sysreg) const { switch (sysreg) { case RNDR: case RNDRRS: return CPUHas(CPUFeatures::kRNG); case FPCR: case NZCV: break; } return true; } bool AreAliased(const CPURegister& reg1, const CPURegister& reg2, const CPURegister& reg3, const CPURegister& reg4, const CPURegister& reg5, const CPURegister& reg6, const CPURegister& reg7, const CPURegister& reg8) { int number_of_valid_regs = 0; int number_of_valid_fpregs = 0; RegList unique_regs = 0; RegList unique_fpregs = 0; const CPURegister regs[] = {reg1, reg2, reg3, reg4, reg5, reg6, reg7, reg8}; for (unsigned i = 0; i < sizeof(regs) / sizeof(regs[0]); i++) { if (regs[i].IsRegister()) { number_of_valid_regs++; unique_regs |= regs[i].Bit(); } else if (regs[i].IsVRegister()) { number_of_valid_fpregs++; unique_fpregs |= regs[i].Bit(); } else { VIXL_ASSERT(!regs[i].IsValid()); } } int number_of_unique_regs = CountSetBits(unique_regs); int number_of_unique_fpregs = CountSetBits(unique_fpregs); VIXL_ASSERT(number_of_valid_regs >= number_of_unique_regs); VIXL_ASSERT(number_of_valid_fpregs >= number_of_unique_fpregs); return (number_of_valid_regs != number_of_unique_regs) || (number_of_valid_fpregs != number_of_unique_fpregs); } bool AreSameSizeAndType(const CPURegister& reg1, const CPURegister& reg2, const CPURegister& reg3, const CPURegister& reg4, const CPURegister& reg5, const CPURegister& reg6, const CPURegister& reg7, const CPURegister& reg8) { VIXL_ASSERT(reg1.IsValid()); bool match = true; match &= !reg2.IsValid() || reg2.IsSameSizeAndType(reg1); match &= !reg3.IsValid() || reg3.IsSameSizeAndType(reg1); match &= !reg4.IsValid() || reg4.IsSameSizeAndType(reg1); match &= !reg5.IsValid() || reg5.IsSameSizeAndType(reg1); match &= !reg6.IsValid() || reg6.IsSameSizeAndType(reg1); match &= !reg7.IsValid() || reg7.IsSameSizeAndType(reg1); match &= !reg8.IsValid() || reg8.IsSameSizeAndType(reg1); return match; } bool AreEven(const CPURegister& reg1, const CPURegister& reg2, const CPURegister& reg3, const CPURegister& reg4, const CPURegister& reg5, const CPURegister& reg6, const CPURegister& reg7, const CPURegister& reg8) { VIXL_ASSERT(reg1.IsValid()); bool even = (reg1.code() % 2) == 0; even &= !reg2.IsValid() || ((reg2.code() % 2) == 0); even &= !reg3.IsValid() || ((reg3.code() % 2) == 0); even &= !reg4.IsValid() || ((reg4.code() % 2) == 0); even &= !reg5.IsValid() || ((reg5.code() % 2) == 0); even &= !reg6.IsValid() || ((reg6.code() % 2) == 0); even &= !reg7.IsValid() || ((reg7.code() % 2) == 0); even &= !reg8.IsValid() || ((reg8.code() % 2) == 0); return even; } bool AreConsecutive(const CPURegister& reg1, const CPURegister& reg2, const CPURegister& reg3, const CPURegister& reg4) { VIXL_ASSERT(reg1.IsValid()); if (!reg2.IsValid()) { return true; } else if (reg2.code() != ((reg1.code() + 1) % kNumberOfRegisters)) { return false; } if (!reg3.IsValid()) { return true; } else if (reg3.code() != ((reg2.code() + 1) % kNumberOfRegisters)) { return false; } if (!reg4.IsValid()) { return true; } else if (reg4.code() != ((reg3.code() + 1) % kNumberOfRegisters)) { return false; } return true; } bool AreSameFormat(const VRegister& reg1, const VRegister& reg2, const VRegister& reg3, const VRegister& reg4) { VIXL_ASSERT(reg1.IsValid()); bool match = true; match &= !reg2.IsValid() || reg2.IsSameFormat(reg1); match &= !reg3.IsValid() || reg3.IsSameFormat(reg1); match &= !reg4.IsValid() || reg4.IsSameFormat(reg1); return match; } bool AreConsecutive(const VRegister& reg1, const VRegister& reg2, const VRegister& reg3, const VRegister& reg4) { VIXL_ASSERT(reg1.IsValid()); bool match = true; match &= !reg2.IsValid() || (reg2.code() == ((reg1.code() + 1) % kNumberOfVRegisters)); match &= !reg3.IsValid() || (reg3.code() == ((reg1.code() + 2) % kNumberOfVRegisters)); match &= !reg4.IsValid() || (reg4.code() == ((reg1.code() + 3) % kNumberOfVRegisters)); return match; } } // namespace vixl