/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- * vim: set ts=8 sts=2 et sw=2 tw=80: * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "jit/x86/Lowering-x86.h" #include "jit/Lowering.h" #include "jit/MIR.h" #include "jit/x86/Assembler-x86.h" #include "jit/shared/Lowering-shared-inl.h" using namespace js; using namespace js::jit; LBoxAllocation LIRGeneratorX86::useBoxFixed(MDefinition* mir, Register reg1, Register reg2, bool useAtStart) { MOZ_ASSERT(mir->type() == MIRType::Value); MOZ_ASSERT(reg1 != reg2); ensureDefined(mir); return LBoxAllocation(LUse(reg1, mir->virtualRegister(), useAtStart), LUse(reg2, VirtualRegisterOfPayload(mir), useAtStart)); } LAllocation LIRGeneratorX86::useByteOpRegister(MDefinition* mir) { return useFixed(mir, eax); } LAllocation LIRGeneratorX86::useByteOpRegisterAtStart(MDefinition* mir) { return useFixedAtStart(mir, eax); } LAllocation LIRGeneratorX86::useByteOpRegisterOrNonDoubleConstant( MDefinition* mir) { return useFixed(mir, eax); } LDefinition LIRGeneratorX86::tempByteOpRegister() { return tempFixed(eax); } void LIRGenerator::visitBox(MBox* box) { MDefinition* inner = box->getOperand(0); // If the box wrapped a double, it needs a new register. if (IsFloatingPointType(inner->type())) { LDefinition spectreTemp = JitOptions.spectreValueMasking ? temp() : LDefinition::BogusTemp(); defineBox(new (alloc()) LBoxFloatingPoint(useRegisterAtStart(inner), tempCopy(inner, 0), spectreTemp, inner->type()), box); return; } if (box->canEmitAtUses()) { emitAtUses(box); return; } if (inner->isConstant()) { defineBox(new (alloc()) LValue(inner->toConstant()->toJSValue()), box); return; } LBox* lir = new (alloc()) LBox(use(inner), inner->type()); // Otherwise, we should not define a new register for the payload portion // of the output, so bypass defineBox(). uint32_t vreg = getVirtualRegister(); // Note that because we're using BogusTemp(), we do not change the type of // the definition. We also do not define the first output as "TYPE", // because it has no corresponding payload at (vreg + 1). Also note that // although we copy the input's original type for the payload half of the // definition, this is only for clarity. BogusTemp() definitions are // ignored. lir->setDef(0, LDefinition(vreg, LDefinition::GENERAL)); lir->setDef(1, LDefinition::BogusTemp()); box->setVirtualRegister(vreg); add(lir); } void LIRGenerator::visitUnbox(MUnbox* unbox) { MDefinition* inner = unbox->getOperand(0); // An unbox on x86 reads in a type tag (either in memory or a register) and // a payload. Unlike most instructions consuming a box, we ask for the type // second, so that the result can re-use the first input. MOZ_ASSERT(inner->type() == MIRType::Value); ensureDefined(inner); if (IsFloatingPointType(unbox->type())) { LUnboxFloatingPoint* lir = new (alloc()) LUnboxFloatingPoint(useBox(inner), unbox->type()); if (unbox->fallible()) { assignSnapshot(lir, unbox->bailoutKind()); } define(lir, unbox); return; } // Swap the order we use the box pieces so we can re-use the payload register. LUnbox* lir = new (alloc()) LUnbox; bool reusePayloadReg = !JitOptions.spectreValueMasking || unbox->type() == MIRType::Int32 || unbox->type() == MIRType::Boolean; if (reusePayloadReg) { lir->setOperand(0, usePayloadInRegisterAtStart(inner)); lir->setOperand(1, useType(inner, LUse::ANY)); } else { lir->setOperand(0, usePayload(inner, LUse::REGISTER)); lir->setOperand(1, useType(inner, LUse::ANY)); } if (unbox->fallible()) { assignSnapshot(lir, unbox->bailoutKind()); } // Types and payloads form two separate intervals. If the type becomes dead // before the payload, it could be used as a Value without the type being // recoverable. Unbox's purpose is to eagerly kill the definition of a type // tag, so keeping both alive (for the purpose of gcmaps) is unappealing. // Instead, we create a new virtual register. if (reusePayloadReg) { defineReuseInput(lir, unbox, 0); } else { define(lir, unbox); } } void LIRGenerator::visitReturnImpl(MDefinition* opd, bool isGenerator) { MOZ_ASSERT(opd->type() == MIRType::Value); LReturn* ins = new (alloc()) LReturn(isGenerator); ins->setOperand(0, LUse(JSReturnReg_Type)); ins->setOperand(1, LUse(JSReturnReg_Data)); fillBoxUses(ins, 0, opd); add(ins); } void LIRGeneratorX86::lowerUntypedPhiInput(MPhi* phi, uint32_t inputPosition, LBlock* block, size_t lirIndex) { MDefinition* operand = phi->getOperand(inputPosition); LPhi* type = block->getPhi(lirIndex + VREG_TYPE_OFFSET); LPhi* payload = block->getPhi(lirIndex + VREG_DATA_OFFSET); type->setOperand( inputPosition, LUse(operand->virtualRegister() + VREG_TYPE_OFFSET, LUse::ANY)); payload->setOperand(inputPosition, LUse(VirtualRegisterOfPayload(operand), LUse::ANY)); } void LIRGeneratorX86::defineInt64Phi(MPhi* phi, size_t lirIndex) { LPhi* low = current->getPhi(lirIndex + INT64LOW_INDEX); LPhi* high = current->getPhi(lirIndex + INT64HIGH_INDEX); uint32_t lowVreg = getVirtualRegister(); phi->setVirtualRegister(lowVreg); uint32_t highVreg = getVirtualRegister(); MOZ_ASSERT(lowVreg + INT64HIGH_INDEX == highVreg + INT64LOW_INDEX); low->setDef(0, LDefinition(lowVreg, LDefinition::INT32)); high->setDef(0, LDefinition(highVreg, LDefinition::INT32)); annotate(high); annotate(low); } void LIRGeneratorX86::lowerInt64PhiInput(MPhi* phi, uint32_t inputPosition, LBlock* block, size_t lirIndex) { MDefinition* operand = phi->getOperand(inputPosition); LPhi* low = block->getPhi(lirIndex + INT64LOW_INDEX); LPhi* high = block->getPhi(lirIndex + INT64HIGH_INDEX); low->setOperand(inputPosition, LUse(operand->virtualRegister() + INT64LOW_INDEX, LUse::ANY)); high->setOperand( inputPosition, LUse(operand->virtualRegister() + INT64HIGH_INDEX, LUse::ANY)); } void LIRGeneratorX86::lowerForALUInt64( LInstructionHelper* ins, MDefinition* mir, MDefinition* input) { ins->setInt64Operand(0, useInt64RegisterAtStart(input)); defineInt64ReuseInput(ins, mir, 0); } void LIRGeneratorX86::lowerForALUInt64( LInstructionHelper* ins, MDefinition* mir, MDefinition* lhs, MDefinition* rhs) { ins->setInt64Operand(0, useInt64RegisterAtStart(lhs)); ins->setInt64Operand(INT64_PIECES, useInt64OrConstant(rhs)); defineInt64ReuseInput(ins, mir, 0); } void LIRGeneratorX86::lowerForMulInt64(LMulI64* ins, MMul* mir, MDefinition* lhs, MDefinition* rhs) { bool needsTemp = true; if (rhs->isConstant()) { int64_t constant = rhs->toConstant()->toInt64(); int32_t shift = mozilla::FloorLog2(constant); // See special cases in CodeGeneratorX86Shared::visitMulI64. if (constant >= -1 && constant <= 2) { needsTemp = false; } if (constant > 0 && int64_t(1) << shift == constant) { needsTemp = false; } } // MulI64 on x86 needs output to be in edx, eax; ins->setInt64Operand( 0, useInt64Fixed(lhs, Register64(edx, eax), /*useAtStart = */ true)); ins->setInt64Operand(INT64_PIECES, useInt64OrConstant(rhs)); if (needsTemp) { ins->setTemp(0, temp()); } defineInt64Fixed(ins, mir, LInt64Allocation(LAllocation(AnyRegister(edx)), LAllocation(AnyRegister(eax)))); } void LIRGenerator::visitCompareExchangeTypedArrayElement( MCompareExchangeTypedArrayElement* ins) { MOZ_ASSERT(ins->elements()->type() == MIRType::Elements); MOZ_ASSERT(ins->index()->type() == MIRType::IntPtr); if (Scalar::isBigIntType(ins->arrayType())) { LUse elements = useFixed(ins->elements(), esi); LAllocation index = useRegisterOrIndexConstant(ins->index(), ins->arrayType()); LUse oldval = useFixed(ins->oldval(), eax); LUse newval = useFixed(ins->newval(), edx); LDefinition temp = tempFixed(ebx); auto* lir = new (alloc()) LCompareExchangeTypedArrayElement64( elements, index, oldval, newval, temp); defineFixed(lir, ins, LAllocation(AnyRegister(ecx))); assignSafepoint(lir, ins); return; } lowerCompareExchangeTypedArrayElement(ins, /* useI386ByteRegisters = */ true); } void LIRGenerator::visitAtomicExchangeTypedArrayElement( MAtomicExchangeTypedArrayElement* ins) { MOZ_ASSERT(ins->elements()->type() == MIRType::Elements); MOZ_ASSERT(ins->index()->type() == MIRType::IntPtr); if (Scalar::isBigIntType(ins->arrayType())) { LUse elements = useRegister(ins->elements()); LAllocation index = useRegisterOrIndexConstant(ins->index(), ins->arrayType()); LAllocation value = useFixed(ins->value(), edx); LInt64Definition temp = tempInt64Fixed(Register64(ecx, ebx)); auto* lir = new (alloc()) LAtomicExchangeTypedArrayElement64(elements, index, value, temp); defineFixed(lir, ins, LAllocation(AnyRegister(eax))); assignSafepoint(lir, ins); return; } lowerAtomicExchangeTypedArrayElement(ins, /*useI386ByteRegisters=*/true); } void LIRGenerator::visitAtomicTypedArrayElementBinop( MAtomicTypedArrayElementBinop* ins) { MOZ_ASSERT(ins->elements()->type() == MIRType::Elements); MOZ_ASSERT(ins->index()->type() == MIRType::IntPtr); if (Scalar::isBigIntType(ins->arrayType())) { LUse elements = useRegister(ins->elements()); LAllocation index = useRegisterOrIndexConstant(ins->index(), ins->arrayType()); LAllocation value = useFixed(ins->value(), edx); LInt64Definition temp = tempInt64Fixed(Register64(ecx, ebx)); // Case 1: the result of the operation is not used. // // We can omit allocating the result BigInt. if (ins->isForEffect()) { LDefinition tempLow = tempFixed(eax); auto* lir = new (alloc()) LAtomicTypedArrayElementBinopForEffect64( elements, index, value, temp, tempLow); add(lir, ins); return; } // Case 2: the result of the operation is used. auto* lir = new (alloc()) LAtomicTypedArrayElementBinop64(elements, index, value, temp); defineFixed(lir, ins, LAllocation(AnyRegister(eax))); assignSafepoint(lir, ins); return; } lowerAtomicTypedArrayElementBinop(ins, /* useI386ByteRegisters = */ true); } void LIRGeneratorX86::lowerAtomicLoad64(MLoadUnboxedScalar* ins) { const LUse elements = useRegister(ins->elements()); const LAllocation index = useRegisterOrIndexConstant(ins->index(), ins->storageType()); auto* lir = new (alloc()) LAtomicLoad64(elements, index, tempFixed(ebx), tempInt64Fixed(Register64(edx, eax))); defineFixed(lir, ins, LAllocation(AnyRegister(ecx))); assignSafepoint(lir, ins); } void LIRGeneratorX86::lowerAtomicStore64(MStoreUnboxedScalar* ins) { LUse elements = useRegister(ins->elements()); LAllocation index = useRegisterOrIndexConstant(ins->index(), ins->writeType()); LAllocation value = useFixed(ins->value(), edx); LInt64Definition temp1 = tempInt64Fixed(Register64(ecx, ebx)); LDefinition temp2 = tempFixed(eax); add(new (alloc()) LAtomicStore64(elements, index, value, temp1, temp2), ins); } void LIRGenerator::visitWasmUnsignedToDouble(MWasmUnsignedToDouble* ins) { MOZ_ASSERT(ins->input()->type() == MIRType::Int32); LWasmUint32ToDouble* lir = new (alloc()) LWasmUint32ToDouble(useRegisterAtStart(ins->input()), temp()); define(lir, ins); } void LIRGenerator::visitWasmUnsignedToFloat32(MWasmUnsignedToFloat32* ins) { MOZ_ASSERT(ins->input()->type() == MIRType::Int32); LWasmUint32ToFloat32* lir = new (alloc()) LWasmUint32ToFloat32(useRegisterAtStart(ins->input()), temp()); define(lir, ins); } // If the base is a constant, and it is zero or its offset is zero, then // code generation will fold the values into the access. Allocate the // pointer to a register only if that can't happen. static bool OptimizableConstantAccess(MDefinition* base, const wasm::MemoryAccessDesc& access) { MOZ_ASSERT(base->isConstant()); MOZ_ASSERT(base->type() == MIRType::Int32); if (!(base->toConstant()->isInt32(0) || access.offset() == 0)) { return false; } if (access.type() == Scalar::Int64) { // For int64 accesses on 32-bit systems we will need to add another offset // of 4 to access the high part of the value; make sure this does not // overflow the value. int32_t v; if (base->toConstant()->isInt32(0)) { v = access.offset(); } else { v = base->toConstant()->toInt32(); } return v <= int32_t(INT32_MAX - INT64HIGH_OFFSET); } return true; } void LIRGenerator::visitWasmLoad(MWasmLoad* ins) { MDefinition* base = ins->base(); MOZ_ASSERT(base->type() == MIRType::Int32); MDefinition* memoryBase = ins->memoryBase(); MOZ_ASSERT(memoryBase->type() == MIRType::Pointer); if (ins->access().type() == Scalar::Int64 && ins->access().isAtomic()) { auto* lir = new (alloc()) LWasmAtomicLoadI64(useRegister(memoryBase), useRegister(base), tempFixed(ecx), tempFixed(ebx)); defineInt64Fixed(lir, ins, LInt64Allocation(LAllocation(AnyRegister(edx)), LAllocation(AnyRegister(eax)))); return; } LAllocation baseAlloc; if (!base->isConstant() || !OptimizableConstantAccess(base, ins->access())) { baseAlloc = ins->type() == MIRType::Int64 ? useRegister(base) : useRegisterAtStart(base); } if (ins->type() != MIRType::Int64) { auto* lir = new (alloc()) LWasmLoad(baseAlloc, useRegisterAtStart(memoryBase)); define(lir, ins); return; } // "AtStart" register usage does not work for the 64-bit case because we // clobber two registers for the result and may need two registers for a // scaled address; we can't guarantee non-interference. auto* lir = new (alloc()) LWasmLoadI64(baseAlloc, useRegister(memoryBase)); Scalar::Type accessType = ins->access().type(); if (accessType == Scalar::Int8 || accessType == Scalar::Int16 || accessType == Scalar::Int32) { // We use cdq to sign-extend the result and cdq demands these registers. defineInt64Fixed(lir, ins, LInt64Allocation(LAllocation(AnyRegister(edx)), LAllocation(AnyRegister(eax)))); return; } defineInt64(lir, ins); } void LIRGenerator::visitWasmStore(MWasmStore* ins) { MDefinition* base = ins->base(); MOZ_ASSERT(base->type() == MIRType::Int32); MDefinition* memoryBase = ins->memoryBase(); MOZ_ASSERT(memoryBase->type() == MIRType::Pointer); if (ins->access().type() == Scalar::Int64 && ins->access().isAtomic()) { auto* lir = new (alloc()) LWasmAtomicStoreI64(useRegister(memoryBase), useRegister(base), useInt64Fixed(ins->value(), Register64(ecx, ebx)), tempFixed(edx), tempFixed(eax)); add(lir, ins); return; } LAllocation baseAlloc; if (!base->isConstant() || !OptimizableConstantAccess(base, ins->access())) { baseAlloc = useRegisterAtStart(base); } LAllocation valueAlloc; switch (ins->access().type()) { case Scalar::Int8: case Scalar::Uint8: // See comment for LIRGeneratorX86::useByteOpRegister. valueAlloc = useFixed(ins->value(), eax); break; case Scalar::Int16: case Scalar::Uint16: case Scalar::Int32: case Scalar::Uint32: case Scalar::Float32: case Scalar::Float64: // For now, don't allow constant values. The immediate operand affects // instruction layout which affects patching. valueAlloc = useRegisterAtStart(ins->value()); break; case Scalar::Simd128: #ifdef ENABLE_WASM_SIMD valueAlloc = useRegisterAtStart(ins->value()); break; #else MOZ_CRASH("unexpected array type"); #endif case Scalar::Int64: { LInt64Allocation valueAlloc = useInt64RegisterAtStart(ins->value()); auto* lir = new (alloc()) LWasmStoreI64(baseAlloc, valueAlloc, useRegisterAtStart(memoryBase)); add(lir, ins); return; } case Scalar::Uint8Clamped: case Scalar::BigInt64: case Scalar::BigUint64: case Scalar::Float16: case Scalar::MaxTypedArrayViewType: MOZ_CRASH("unexpected array type"); } auto* lir = new (alloc()) LWasmStore(baseAlloc, valueAlloc, useRegisterAtStart(memoryBase)); add(lir, ins); } void LIRGenerator::visitWasmCompareExchangeHeap(MWasmCompareExchangeHeap* ins) { MDefinition* base = ins->base(); MOZ_ASSERT(base->type() == MIRType::Int32); MDefinition* memoryBase = ins->memoryBase(); MOZ_ASSERT(memoryBase->type() == MIRType::Pointer); if (ins->access().type() == Scalar::Int64) { auto* lir = new (alloc()) LWasmCompareExchangeI64( useRegisterAtStart(memoryBase), useRegisterAtStart(base), useInt64FixedAtStart(ins->oldValue(), Register64(edx, eax)), useInt64FixedAtStart(ins->newValue(), Register64(ecx, ebx))); defineInt64Fixed(lir, ins, LInt64Allocation(LAllocation(AnyRegister(edx)), LAllocation(AnyRegister(eax)))); return; } MOZ_ASSERT(ins->access().type() < Scalar::Float32); bool byteArray = byteSize(ins->access().type()) == 1; // Register allocation: // // The output may not be used, but eax will be clobbered regardless // so pin the output to eax. // // oldval must be in a register. // // newval must be in a register. If the source is a byte array // then newval must be a register that has a byte size: this must // be ebx, ecx, or edx (eax is taken). // // Bug #1077036 describes some optimization opportunities. const LAllocation oldval = useRegister(ins->oldValue()); const LAllocation newval = byteArray ? useFixed(ins->newValue(), ebx) : useRegister(ins->newValue()); LWasmCompareExchangeHeap* lir = new (alloc()) LWasmCompareExchangeHeap( useRegister(base), oldval, newval, useRegister(memoryBase)); lir->setAddrTemp(temp()); defineFixed(lir, ins, LAllocation(AnyRegister(eax))); } void LIRGenerator::visitWasmAtomicExchangeHeap(MWasmAtomicExchangeHeap* ins) { MDefinition* memoryBase = ins->memoryBase(); MOZ_ASSERT(memoryBase->type() == MIRType::Pointer); if (ins->access().type() == Scalar::Int64) { MDefinition* base = ins->base(); auto* lir = new (alloc()) LWasmAtomicExchangeI64( useRegister(memoryBase), useRegister(base), useInt64Fixed(ins->value(), Register64(ecx, ebx)), ins->access()); defineInt64Fixed(lir, ins, LInt64Allocation(LAllocation(AnyRegister(edx)), LAllocation(AnyRegister(eax)))); return; } const LAllocation base = useRegister(ins->base()); const LAllocation value = useRegister(ins->value()); LWasmAtomicExchangeHeap* lir = new (alloc()) LWasmAtomicExchangeHeap(base, value, useRegister(memoryBase)); lir->setAddrTemp(temp()); if (byteSize(ins->access().type()) == 1) { defineFixed(lir, ins, LAllocation(AnyRegister(eax))); } else { define(lir, ins); } } void LIRGenerator::visitWasmAtomicBinopHeap(MWasmAtomicBinopHeap* ins) { MDefinition* base = ins->base(); MOZ_ASSERT(base->type() == MIRType::Int32); MDefinition* memoryBase = ins->memoryBase(); MOZ_ASSERT(memoryBase->type() == MIRType::Pointer); if (ins->access().type() == Scalar::Int64) { auto* lir = new (alloc()) LWasmAtomicBinopI64(useRegister(memoryBase), useRegister(base), useInt64Fixed(ins->value(), Register64(ecx, ebx)), ins->access(), ins->operation()); defineInt64Fixed(lir, ins, LInt64Allocation(LAllocation(AnyRegister(edx)), LAllocation(AnyRegister(eax)))); return; } MOZ_ASSERT(ins->access().type() < Scalar::Float32); bool byteArray = byteSize(ins->access().type()) == 1; // Case 1: the result of the operation is not used. // // We'll emit a single instruction: LOCK ADD, LOCK SUB, LOCK AND, // LOCK OR, or LOCK XOR. These can all take an immediate. if (!ins->hasUses()) { LAllocation value; if (byteArray && !ins->value()->isConstant()) { value = useFixed(ins->value(), ebx); } else { value = useRegisterOrConstant(ins->value()); } LWasmAtomicBinopHeapForEffect* lir = new (alloc()) LWasmAtomicBinopHeapForEffect(useRegister(base), value, LDefinition::BogusTemp(), useRegister(memoryBase)); lir->setAddrTemp(temp()); add(lir, ins); return; } // Case 2: the result of the operation is used. // // For ADD and SUB we'll use XADD: // // movl value, output // lock xaddl output, mem // // For the 8-bit variants XADD needs a byte register for the // output only, we can still set up with movl; just pin the output // to eax (or ebx / ecx / edx). // // For AND/OR/XOR we need to use a CMPXCHG loop: // // movl *mem, eax // L: mov eax, temp // andl value, temp // lock cmpxchg temp, mem ; reads eax also // jnz L // ; result in eax // // Note the placement of L, cmpxchg will update eax with *mem if // *mem does not have the expected value, so reloading it at the // top of the loop would be redundant. // // We want to fix eax as the output. We also need a temp for // the intermediate value. // // For the 8-bit variants the temp must have a byte register. // // There are optimization opportunities: // - better 8-bit register allocation and instruction selection, Bug // #1077036. bool bitOp = !(ins->operation() == AtomicOp::Add || ins->operation() == AtomicOp::Sub); LDefinition tempDef = LDefinition::BogusTemp(); LAllocation value; if (byteArray) { value = useFixed(ins->value(), ebx); if (bitOp) { tempDef = tempFixed(ecx); } } else if (bitOp || ins->value()->isConstant()) { value = useRegisterOrConstant(ins->value()); if (bitOp) { tempDef = temp(); } } else { value = useRegisterAtStart(ins->value()); } LWasmAtomicBinopHeap* lir = new (alloc()) LWasmAtomicBinopHeap(useRegister(base), value, tempDef, LDefinition::BogusTemp(), useRegister(memoryBase)); lir->setAddrTemp(temp()); if (byteArray || bitOp) { defineFixed(lir, ins, LAllocation(AnyRegister(eax))); } else if (ins->value()->isConstant()) { define(lir, ins); } else { defineReuseInput(lir, ins, LWasmAtomicBinopHeap::valueOp); } } void LIRGeneratorX86::lowerDivI64(MDiv* div) { MOZ_CRASH("We use MWasmBuiltinModI64 instead."); } void LIRGeneratorX86::lowerWasmBuiltinDivI64(MWasmBuiltinDivI64* div) { MOZ_ASSERT(div->lhs()->type() == div->rhs()->type()); MOZ_ASSERT(IsNumberType(div->type())); MOZ_ASSERT(div->type() == MIRType::Int64); if (div->isUnsigned()) { LUDivOrModI64* lir = new (alloc()) LUDivOrModI64(useInt64FixedAtStart(div->lhs(), Register64(eax, ebx)), useInt64FixedAtStart(div->rhs(), Register64(ecx, edx)), useFixedAtStart(div->instance(), InstanceReg)); defineReturn(lir, div); return; } LDivOrModI64* lir = new (alloc()) LDivOrModI64(useInt64FixedAtStart(div->lhs(), Register64(eax, ebx)), useInt64FixedAtStart(div->rhs(), Register64(ecx, edx)), useFixedAtStart(div->instance(), InstanceReg)); defineReturn(lir, div); } void LIRGeneratorX86::lowerModI64(MMod* mod) { MOZ_CRASH("We use MWasmBuiltinModI64 instead."); } void LIRGeneratorX86::lowerWasmBuiltinModI64(MWasmBuiltinModI64* mod) { MDefinition* lhs = mod->lhs(); MDefinition* rhs = mod->rhs(); MOZ_ASSERT(lhs->type() == rhs->type()); MOZ_ASSERT(IsNumberType(mod->type())); MOZ_ASSERT(mod->type() == MIRType::Int64); MOZ_ASSERT(mod->type() == MIRType::Int64); if (mod->isUnsigned()) { LUDivOrModI64* lir = new (alloc()) LUDivOrModI64(useInt64FixedAtStart(lhs, Register64(eax, ebx)), useInt64FixedAtStart(rhs, Register64(ecx, edx)), useFixedAtStart(mod->instance(), InstanceReg)); defineReturn(lir, mod); return; } LDivOrModI64* lir = new (alloc()) LDivOrModI64(useInt64FixedAtStart(lhs, Register64(eax, ebx)), useInt64FixedAtStart(rhs, Register64(ecx, edx)), useFixedAtStart(mod->instance(), InstanceReg)); defineReturn(lir, mod); } void LIRGeneratorX86::lowerUDivI64(MDiv* div) { MOZ_CRASH("We use MWasmBuiltinDivI64 instead."); } void LIRGeneratorX86::lowerUModI64(MMod* mod) { MOZ_CRASH("We use MWasmBuiltinModI64 instead."); } void LIRGeneratorX86::lowerBigIntDiv(MBigIntDiv* ins) { auto* lir = new (alloc()) LBigIntDiv( useRegister(ins->lhs()), useRegister(ins->rhs()), tempFixed(eax), temp()); defineFixed(lir, ins, LAllocation(AnyRegister(edx))); assignSafepoint(lir, ins); } void LIRGeneratorX86::lowerBigIntMod(MBigIntMod* ins) { auto* lir = new (alloc()) LBigIntMod( useRegister(ins->lhs()), useRegister(ins->rhs()), tempFixed(eax), temp()); defineFixed(lir, ins, LAllocation(AnyRegister(edx))); assignSafepoint(lir, ins); } void LIRGenerator::visitSubstr(MSubstr* ins) { // Due to lack of registers on x86, we reuse the string register as // temporary. As a result we only need two temporary registers and take a // bogus temporary as fifth argument. LSubstr* lir = new (alloc()) LSubstr(useRegister(ins->string()), useRegister(ins->begin()), useRegister(ins->length()), temp(), LDefinition::BogusTemp(), tempByteOpRegister()); define(lir, ins); assignSafepoint(lir, ins); } void LIRGenerator::visitWasmTruncateToInt64(MWasmTruncateToInt64* ins) { MDefinition* opd = ins->input(); MOZ_ASSERT(opd->type() == MIRType::Double || opd->type() == MIRType::Float32); LDefinition temp = tempDouble(); defineInt64(new (alloc()) LWasmTruncateToInt64(useRegister(opd), temp), ins); } void LIRGeneratorX86::lowerWasmBuiltinTruncateToInt64( MWasmBuiltinTruncateToInt64* ins) { MOZ_CRASH("We don't use it for this architecture"); } void LIRGenerator::visitInt64ToFloatingPoint(MInt64ToFloatingPoint* ins) { MDefinition* opd = ins->input(); MOZ_ASSERT(opd->type() == MIRType::Int64); MOZ_ASSERT(IsFloatingPointType(ins->type())); LDefinition maybeTemp = (ins->isUnsigned() && ((ins->type() == MIRType::Double && AssemblerX86Shared::HasSSE3()) || ins->type() == MIRType::Float32)) ? temp() : LDefinition::BogusTemp(); define(new (alloc()) LInt64ToFloatingPoint(useInt64Register(opd), maybeTemp), ins); } void LIRGeneratorX86::lowerBuiltinInt64ToFloatingPoint( MBuiltinInt64ToFloatingPoint* ins) { MOZ_CRASH("We don't use it for this architecture"); } void LIRGenerator::visitExtendInt32ToInt64(MExtendInt32ToInt64* ins) { if (ins->isUnsigned()) { defineInt64(new (alloc()) LExtendInt32ToInt64(useRegisterAtStart(ins->input())), ins); } else { LExtendInt32ToInt64* lir = new (alloc()) LExtendInt32ToInt64(useFixedAtStart(ins->input(), eax)); defineInt64Fixed(lir, ins, LInt64Allocation(LAllocation(AnyRegister(edx)), LAllocation(AnyRegister(eax)))); } } void LIRGenerator::visitSignExtendInt64(MSignExtendInt64* ins) { // Here we'll end up using cdq which requires input and output in (edx,eax). LSignExtendInt64* lir = new (alloc()) LSignExtendInt64( useInt64FixedAtStart(ins->input(), Register64(edx, eax))); defineInt64Fixed(lir, ins, LInt64Allocation(LAllocation(AnyRegister(edx)), LAllocation(AnyRegister(eax)))); } // On x86 we specialize the only cases where compare is {U,}Int32 and select // is {U,}Int32. bool LIRGeneratorShared::canSpecializeWasmCompareAndSelect( MCompare::CompareType compTy, MIRType insTy) { return insTy == MIRType::Int32 && (compTy == MCompare::Compare_Int32 || compTy == MCompare::Compare_UInt32); } void LIRGeneratorShared::lowerWasmCompareAndSelect(MWasmSelect* ins, MDefinition* lhs, MDefinition* rhs, MCompare::CompareType compTy, JSOp jsop) { MOZ_ASSERT(canSpecializeWasmCompareAndSelect(compTy, ins->type())); auto* lir = new (alloc()) LWasmCompareAndSelect( useRegister(lhs), useAny(rhs), compTy, jsop, useRegisterAtStart(ins->trueExpr()), useAny(ins->falseExpr())); defineReuseInput(lir, ins, LWasmCompareAndSelect::IfTrueExprIndex); }