// Copyright 2013 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Performance.now is used in latency benchmarks, the fallback is Date.now. var performance = performance || {}; performance.now = (function() { return performance.now || performance.mozNow || performance.msNow || performance.oNow || performance.webkitNow || Date.now; })(); // Simple framework for running the benchmark suites and // computing a score based on the timing measurements. // A benchmark has a name (string) and a function that will be run to // do the performance measurement. The optional setup and tearDown // arguments are functions that will be invoked before and after // running the benchmark, but the running time of these functions will // not be accounted for in the benchmark score. function Benchmark(name, doWarmup, doDeterministic, deterministicIterations, run, setup, tearDown, rmsResult, minIterations) { this.name = name; this.doWarmup = doWarmup; this.doDeterministic = doDeterministic; this.deterministicIterations = deterministicIterations; this.run = run; this.Setup = setup ? setup : function() { }; this.TearDown = tearDown ? tearDown : function() { }; this.rmsResult = rmsResult ? rmsResult : null; this.minIterations = minIterations ? minIterations : 32; } // Benchmark results hold the benchmark and the measured time used to // run the benchmark. The benchmark score is computed later once a // full benchmark suite has run to completion. If latency is set to 0 // then there is no latency score for this benchmark. function BenchmarkResult(benchmark, time, latency) { this.benchmark = benchmark; this.time = time; this.latency = latency; } // Automatically convert results to numbers. Used by the geometric // mean computation. BenchmarkResult.prototype.valueOf = function() { return this.time; } // Suites of benchmarks consist of a name and the set of benchmarks in // addition to the reference timing that the final score will be based // on. This way, all scores are relative to a reference run and higher // scores implies better performance. function BenchmarkSuite(name, reference, benchmarks) { this.name = name; this.reference = reference; this.benchmarks = benchmarks; BenchmarkSuite.suites.push(this); } // Keep track of all declared benchmark suites. BenchmarkSuite.suites = []; // Scores are not comparable across versions. Bump the version if // you're making changes that will affect that scores, e.g. if you add // a new benchmark or change an existing one. BenchmarkSuite.version = '9'; // Defines global benchsuite running mode that overrides benchmark suite // behavior. Intended to be set by the benchmark driver. Undefined // values here allow a benchmark to define behaviour itself. BenchmarkSuite.config = { doWarmup: undefined, doDeterministic: undefined }; // Override the alert function to throw an exception instead. alert = function(s) { throw "Alert called with argument: " + s; }; // To make the benchmark results predictable, we replace Math.random // with a 100% deterministic alternative. BenchmarkSuite.ResetRNG = function() { Math.random = (function() { var seed = 49734321; return function() { // Robert Jenkins' 32 bit integer hash function. seed = ((seed + 0x7ed55d16) + (seed << 12)) & 0xffffffff; seed = ((seed ^ 0xc761c23c) ^ (seed >>> 19)) & 0xffffffff; seed = ((seed + 0x165667b1) + (seed << 5)) & 0xffffffff; seed = ((seed + 0xd3a2646c) ^ (seed << 9)) & 0xffffffff; seed = ((seed + 0xfd7046c5) + (seed << 3)) & 0xffffffff; seed = ((seed ^ 0xb55a4f09) ^ (seed >>> 16)) & 0xffffffff; return (seed & 0xfffffff) / 0x10000000; }; })(); } // Runs all registered benchmark suites and optionally yields between // each individual benchmark to avoid running for too long in the // context of browsers. Once done, the final score is reported to the // runner. BenchmarkSuite.RunSuites = function(runner, skipBenchmarks) { skipBenchmarks = typeof skipBenchmarks === 'undefined' ? [] : skipBenchmarks; var continuation = null; var suites = BenchmarkSuite.suites; var length = suites.length; BenchmarkSuite.scores = []; var index = 0; function RunStep() { while (continuation || index < length) { if (continuation) { continuation = continuation(); } else { var suite = suites[index++]; if (runner.NotifyStart) runner.NotifyStart(suite.name); if (skipBenchmarks.indexOf(suite.name) > -1) { suite.NotifySkipped(runner); } else { continuation = suite.RunStep(runner); } } if (continuation && typeof window != 'undefined' && window.setTimeout) { window.setTimeout(RunStep, 25); return; } } // show final result if (runner.NotifyScore) { var score = BenchmarkSuite.GeometricMean(BenchmarkSuite.scores); var formatted = BenchmarkSuite.FormatScore(100 * score); runner.NotifyScore(formatted); } } RunStep(); } // Counts the total number of registered benchmarks. Useful for // showing progress as a percentage. BenchmarkSuite.CountBenchmarks = function() { var result = 0; var suites = BenchmarkSuite.suites; for (var i = 0; i < suites.length; i++) { result += suites[i].benchmarks.length; } return result; } // Computes the geometric mean of a set of numbers. BenchmarkSuite.GeometricMean = function(numbers) { var log = 0; for (var i = 0; i < numbers.length; i++) { log += Math.log(numbers[i]); } return Math.pow(Math.E, log / numbers.length); } // Computes the geometric mean of a set of throughput time measurements. BenchmarkSuite.GeometricMeanTime = function(measurements) { var log = 0; for (var i = 0; i < measurements.length; i++) { log += Math.log(measurements[i].time); } return Math.pow(Math.E, log / measurements.length); } // Computes the geometric mean of a set of rms measurements. BenchmarkSuite.GeometricMeanLatency = function(measurements) { var log = 0; var hasLatencyResult = false; for (var i = 0; i < measurements.length; i++) { if (measurements[i].latency != 0) { log += Math.log(measurements[i].latency); hasLatencyResult = true; } } if (hasLatencyResult) { return Math.pow(Math.E, log / measurements.length); } else { return 0; } } // Converts a score value to a string with at least three significant // digits. BenchmarkSuite.FormatScore = function(value) { if (value > 100) { return value.toFixed(0); } else { return value.toPrecision(3); } } // Notifies the runner that we're done running a single benchmark in // the benchmark suite. This can be useful to report progress. BenchmarkSuite.prototype.NotifyStep = function(result) { this.results.push(result); if (this.runner.NotifyStep) this.runner.NotifyStep(result.benchmark.name); } // Notifies the runner that we're done with running a suite and that // we have a result which can be reported to the user if needed. BenchmarkSuite.prototype.NotifyResult = function() { var mean = BenchmarkSuite.GeometricMeanTime(this.results); var score = this.reference[0] / mean; BenchmarkSuite.scores.push(score); if (this.runner.NotifyResult) { var formatted = BenchmarkSuite.FormatScore(100 * score); this.runner.NotifyResult(this.name, formatted); } if (this.reference.length == 2) { var meanLatency = BenchmarkSuite.GeometricMeanLatency(this.results); if (meanLatency != 0) { var scoreLatency = this.reference[1] / meanLatency; BenchmarkSuite.scores.push(scoreLatency); if (this.runner.NotifyResult) { var formattedLatency = BenchmarkSuite.FormatScore(100 * scoreLatency) this.runner.NotifyResult(this.name + "Latency", formattedLatency); } } } } BenchmarkSuite.prototype.NotifySkipped = function(runner) { BenchmarkSuite.scores.push(1); // push default reference score. if (runner.NotifyResult) { runner.NotifyResult(this.name, "Skipped"); } } // Notifies the runner that running a benchmark resulted in an error. BenchmarkSuite.prototype.NotifyError = function(error) { if (this.runner.NotifyError) { this.runner.NotifyError(this.name, error); } if (this.runner.NotifyStep) { this.runner.NotifyStep(this.name); } } // Runs a single benchmark for at least a second and computes the // average time it takes to run a single iteration. BenchmarkSuite.prototype.RunSingleBenchmark = function(benchmark, data) { var config = BenchmarkSuite.config; var doWarmup = config.doWarmup !== undefined ? config.doWarmup : benchmark.doWarmup; var doDeterministic = config.doDeterministic !== undefined ? config.doDeterministic : benchmark.doDeterministic; function Measure(data) { var elapsed = 0; var start = new Date(); // Run either for 1 second or for the number of iterations specified // by minIterations, depending on the config flag doDeterministic. for (var i = 0; (doDeterministic ? i<benchmark.deterministicIterations : elapsed < 1000); i++) { benchmark.run(); elapsed = new Date() - start; } if (data != null) { data.runs += i; data.elapsed += elapsed; } } // Sets up data in order to skip or not the warmup phase. if (!doWarmup && data == null) { data = { runs: 0, elapsed: 0 }; } if (data == null) { Measure(null); return { runs: 0, elapsed: 0 }; } else { Measure(data); // If we've run too few iterations, we continue for another second. if (data.runs < benchmark.minIterations) return data; var usec = (data.elapsed * 1000) / data.runs; var rms = (benchmark.rmsResult != null) ? benchmark.rmsResult() : 0; this.NotifyStep(new BenchmarkResult(benchmark, usec, rms)); return null; } } // This function starts running a suite, but stops between each // individual benchmark in the suite and returns a continuation // function which can be invoked to run the next benchmark. Once the // last benchmark has been executed, null is returned. BenchmarkSuite.prototype.RunStep = function(runner) { BenchmarkSuite.ResetRNG(); this.results = []; this.runner = runner; var length = this.benchmarks.length; var index = 0; var suite = this; var data; // Run the setup, the actual benchmark, and the tear down in three // separate steps to allow the framework to yield between any of the // steps. function RunNextSetup() { if (index < length) { try { suite.benchmarks[index].Setup(); } catch (e) { suite.NotifyError(e); return null; } return RunNextBenchmark; } suite.NotifyResult(); return null; } function RunNextBenchmark() { try { data = suite.RunSingleBenchmark(suite.benchmarks[index], data); } catch (e) { suite.NotifyError(e); return null; } // If data is null, we're done with this benchmark. return (data == null) ? RunNextTearDown : RunNextBenchmark(); } function RunNextTearDown() { try { suite.benchmarks[index++].TearDown(); } catch (e) { suite.NotifyError(e); return null; } return RunNextSetup; } // Start out running the setup. return RunNextSetup(); }