/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- * vim: set ts=8 sts=2 et sw=2 tw=80: * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "vm/SelfHosting.h" #include "mozilla/BinarySearch.h" #include "mozilla/Casting.h" #include "mozilla/Maybe.h" #include "mozilla/ScopeExit.h" // mozilla::MakeScopeExit #include "mozilla/Utf8.h" // mozilla::Utf8Unit #include #include #include "jsdate.h" #include "jsfriendapi.h" #include "jsmath.h" #include "jsnum.h" #include "selfhosted.out.h" #include "builtin/Array.h" #include "builtin/BigInt.h" #ifdef JS_HAS_INTL_API # include "builtin/intl/Collator.h" # include "builtin/intl/DateTimeFormat.h" # include "builtin/intl/DisplayNames.h" # include "builtin/intl/IntlObject.h" # include "builtin/intl/ListFormat.h" # include "builtin/intl/Locale.h" # include "builtin/intl/NumberFormat.h" # include "builtin/intl/PluralRules.h" # include "builtin/intl/RelativeTimeFormat.h" # include "builtin/intl/Segmenter.h" #endif #include "builtin/MapObject.h" #include "builtin/Object.h" #include "builtin/Promise.h" #include "builtin/Reflect.h" #include "builtin/RegExp.h" #include "builtin/SelfHostingDefines.h" #include "builtin/String.h" #ifdef ENABLE_RECORD_TUPLE # include "builtin/TupleObject.h" #endif #include "frontend/BytecodeCompiler.h" // CompileGlobalScriptToStencil #include "frontend/CompilationStencil.h" // js::frontend::CompilationStencil #include "frontend/FrontendContext.h" // AutoReportFrontendContext #include "jit/AtomicOperations.h" #include "jit/InlinableNatives.h" #include "jit/TrampolineNatives.h" #include "js/CompilationAndEvaluation.h" #include "js/Conversions.h" #include "js/ErrorReport.h" // JS::PrintError #include "js/experimental/JSStencil.h" #include "js/experimental/TypedData.h" // JS_GetArrayBufferViewType #include "js/friend/ErrorMessages.h" // js::GetErrorMessage, JSMSG_* #include "js/HashTable.h" #include "js/Printer.h" #include "js/PropertySpec.h" #include "js/ScalarType.h" // js::Scalar::Type #include "js/SourceText.h" // JS::SourceText #include "js/TracingAPI.h" #include "js/Transcoding.h" #include "js/Warnings.h" // JS::{,Set}WarningReporter #include "js/Wrapper.h" #include "vm/ArgumentsObject.h" #include "vm/AsyncFunction.h" #include "vm/AsyncIteration.h" #include "vm/BigIntType.h" #include "vm/Compression.h" #include "vm/DateObject.h" #include "vm/ErrorReporting.h" // js::MaybePrintAndClearPendingException #include "vm/FrameIter.h" // js::ScriptFrameIter #include "vm/GeneratorObject.h" #include "vm/Interpreter.h" #include "vm/Iteration.h" #include "vm/JSAtomUtils.h" // Atomize #include "vm/JSContext.h" #include "vm/JSFunction.h" #include "vm/JSObject.h" #include "vm/PIC.h" #include "vm/PlainObject.h" // js::PlainObject #include "vm/Realm.h" #include "vm/RegExpObject.h" #include "vm/StringType.h" #include "vm/ToSource.h" // js::ValueToSource #include "vm/TypedArrayObject.h" #include "vm/Uint8Clamped.h" #include "vm/WrapperObject.h" #include "vm/Compartment-inl.h" #include "vm/JSAtomUtils-inl.h" // PrimitiveValueToId #include "vm/JSFunction-inl.h" #include "vm/JSObject-inl.h" #include "vm/NativeObject-inl.h" #include "vm/TypedArrayObject-inl.h" using namespace js; using namespace js::selfhosted; using JS::CompileOptions; using mozilla::Maybe; static bool intrinsic_ToObject(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); JSObject* obj = ToObject(cx, args[0]); if (!obj) { return false; } args.rval().setObject(*obj); return true; } #ifdef ENABLE_RECORD_TUPLE bool intrinsic_ThisTupleValue(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); MOZ_ASSERT(args.length() == 1); mozilla::Maybe result = js::ThisTupleValue(cx, args[0]); if (!result) { return false; } args.rval().setExtendedPrimitive(*result); return true; } bool intrinsic_TupleLength(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); MOZ_ASSERT(args.length() == 1); mozilla::Maybe result = js::ThisTupleValue(cx, args[0]); if (!result) { return false; } args.rval().setInt32((*result).getDenseInitializedLength()); return true; } #endif static bool intrinsic_IsObject(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); Value val = args[0]; bool isObject = val.isObject(); args.rval().setBoolean(isObject); return true; } static bool intrinsic_IsArray(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); MOZ_ASSERT(args.length() == 1); RootedValue val(cx, args[0]); if (val.isObject()) { RootedObject obj(cx, &val.toObject()); bool isArray = false; if (!IsArray(cx, obj, &isArray)) { return false; } args.rval().setBoolean(isArray); } else { args.rval().setBoolean(false); } return true; } #ifdef ENABLE_RECORD_TUPLE // returns true for TupleTypes and TupleObjects bool js::IsTupleUnchecked(JSContext* cx, const CallArgs& args) { args.rval().setBoolean(IsTuple(args.get(0))); return true; } /* Identical to Tuple.prototype.isTuple, but with an * added check that args.length() is 1 */ bool js::intrinsic_IsTuple(JSContext* cx, unsigned argc, JS::Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); MOZ_ASSERT(args.length() == 1); return js::IsTupleUnchecked(cx, args); } #endif static bool intrinsic_IsCrossRealmArrayConstructor(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); MOZ_ASSERT(args.length() == 1); MOZ_ASSERT(args[0].isObject()); bool result = false; if (!IsCrossRealmArrayConstructor(cx, &args[0].toObject(), &result)) { return false; } args.rval().setBoolean(result); return true; } static bool intrinsic_ToLength(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); MOZ_ASSERT(args.length() == 1); // Inline fast path for the common case. if (args[0].isInt32()) { int32_t i = args[0].toInt32(); args.rval().setInt32(i < 0 ? 0 : i); return true; } uint64_t length = 0; if (!ToLength(cx, args[0], &length)) { return false; } args.rval().setNumber(double(length)); return true; } static bool intrinsic_ToInteger(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); double result; if (!ToInteger(cx, args[0], &result)) { return false; } args.rval().setNumber(result); return true; } static bool intrinsic_ToSource(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); JSString* str = ValueToSource(cx, args[0]); if (!str) { return false; } args.rval().setString(str); return true; } static bool intrinsic_ToPropertyKey(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); RootedId id(cx); if (!ToPropertyKey(cx, args[0], &id)) { return false; } args.rval().set(IdToValue(id)); return true; } static bool intrinsic_IsCallable(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); args.rval().setBoolean(IsCallable(args[0])); return true; } static bool intrinsic_IsConstructor(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); MOZ_ASSERT(args.length() == 1); args.rval().setBoolean(IsConstructor(args[0])); return true; } template static bool intrinsic_IsInstanceOfBuiltin(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); MOZ_ASSERT(args.length() == 1); MOZ_ASSERT(args[0].isObject()); args.rval().setBoolean(args[0].toObject().is()); return true; } template static bool intrinsic_GuardToBuiltin(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); MOZ_ASSERT(args.length() == 1); MOZ_ASSERT(args[0].isObject()); if (args[0].toObject().is()) { args.rval().setObject(args[0].toObject()); return true; } args.rval().setNull(); return true; } template static bool intrinsic_IsWrappedInstanceOfBuiltin(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); MOZ_ASSERT(args.length() == 1); MOZ_ASSERT(args[0].isObject()); JSObject* obj = &args[0].toObject(); if (!obj->is()) { args.rval().setBoolean(false); return true; } JSObject* unwrapped = CheckedUnwrapDynamic(obj, cx); if (!unwrapped) { ReportAccessDenied(cx); return false; } args.rval().setBoolean(unwrapped->is()); return true; } template static bool intrinsic_IsPossiblyWrappedInstanceOfBuiltin(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); MOZ_ASSERT(args.length() == 1); MOZ_ASSERT(args[0].isObject()); JSObject* obj = CheckedUnwrapDynamic(&args[0].toObject(), cx); if (!obj) { ReportAccessDenied(cx); return false; } args.rval().setBoolean(obj->is()); return true; } static bool intrinsic_SubstringKernel(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); MOZ_ASSERT(args[0].isString()); MOZ_RELEASE_ASSERT(args[1].isInt32()); MOZ_RELEASE_ASSERT(args[2].isInt32()); RootedString str(cx, args[0].toString()); int32_t begin = args[1].toInt32(); int32_t length = args[2].toInt32(); JSString* substr = SubstringKernel(cx, str, begin, length); if (!substr) { return false; } args.rval().setString(substr); return true; } static void ThrowErrorWithType(JSContext* cx, JSExnType type, const CallArgs& args) { MOZ_RELEASE_ASSERT(args[0].isInt32()); uint32_t errorNumber = args[0].toInt32(); #ifdef DEBUG const JSErrorFormatString* efs = GetErrorMessage(nullptr, errorNumber); MOZ_ASSERT(efs->argCount == args.length() - 1); MOZ_ASSERT(efs->exnType == type, "error-throwing intrinsic and error number are inconsistent"); #endif UniqueChars errorArgs[3]; for (unsigned i = 1; i < 4 && i < args.length(); i++) { HandleValue val = args[i]; if (val.isInt32() || val.isString()) { JSString* str = ToString(cx, val); if (!str) { return; } errorArgs[i - 1] = QuoteString(cx, str); } else { errorArgs[i - 1] = DecompileValueGenerator(cx, JSDVG_SEARCH_STACK, val, nullptr); } if (!errorArgs[i - 1]) { return; } } JS_ReportErrorNumberUTF8(cx, GetErrorMessage, nullptr, errorNumber, errorArgs[0].get(), errorArgs[1].get(), errorArgs[2].get()); } static bool intrinsic_ThrowRangeError(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); MOZ_ASSERT(args.length() >= 1); ThrowErrorWithType(cx, JSEXN_RANGEERR, args); return false; } static bool intrinsic_ThrowTypeError(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); MOZ_ASSERT(args.length() >= 1); ThrowErrorWithType(cx, JSEXN_TYPEERR, args); return false; } static bool intrinsic_ThrowAggregateError(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); MOZ_ASSERT(args.length() >= 1); ThrowErrorWithType(cx, JSEXN_AGGREGATEERR, args); return false; } static bool intrinsic_ThrowInternalError(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); MOZ_ASSERT(args.length() >= 1); ThrowErrorWithType(cx, JSEXN_INTERNALERR, args); return false; } /** * Handles an assertion failure in self-hosted code just like an assertion * failure in C++ code. Information about the failure can be provided in * args[0]. */ static bool intrinsic_AssertionFailed(JSContext* cx, unsigned argc, Value* vp) { #ifdef DEBUG CallArgs args = CallArgsFromVp(argc, vp); if (args.length() > 0) { // try to dump the informative string JSString* str = ToString(cx, args[0]); if (str) { js::Fprinter out(stderr); out.put("Self-hosted JavaScript assertion info: "); str->dumpCharsNoQuote(out); out.putChar('\n'); } } #endif MOZ_ASSERT(false); return false; } /** * Dumps a message to stderr, after stringifying it. Doesn't append a newline. */ static bool intrinsic_DumpMessage(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); #ifdef DEBUG if (args.length() > 0) { // try to dump the informative string js::Fprinter out(stderr); JSString* str = ToString(cx, args[0]); if (str) { str->dumpCharsNoQuote(out); out.putChar('\n'); } else { cx->recoverFromOutOfMemory(); } } #endif args.rval().setUndefined(); return true; } /* * Used to decompile values in the nearest non-builtin stack frame, falling * back to decompiling in the current frame. Helpful for printing higher-order * function arguments. * * The user must supply the argument number of the value in question; it * _cannot_ be automatically determined. */ static bool intrinsic_DecompileArg(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); MOZ_ASSERT(args.length() == 2); MOZ_RELEASE_ASSERT(args[0].isInt32()); HandleValue value = args[1]; JSString* str = DecompileArgument(cx, args[0].toInt32(), value); if (!str) { return false; } args.rval().setString(str); return true; } static bool intrinsic_DefineDataProperty(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); // When DefineDataProperty is called with 3 arguments, it's compiled to // JSOp::InitElem in the bytecode emitter so we shouldn't get here. MOZ_ASSERT(args.length() == 4); MOZ_ASSERT(args[0].isObject()); MOZ_RELEASE_ASSERT(args[3].isInt32()); RootedObject obj(cx, &args[0].toObject()); RootedId id(cx); if (!ToPropertyKey(cx, args[1], &id)) { return false; } RootedValue value(cx, args[2]); JS::PropertyAttributes attrs; unsigned attributes = args[3].toInt32(); MOZ_ASSERT(bool(attributes & ATTR_ENUMERABLE) != bool(attributes & ATTR_NONENUMERABLE), "DefineDataProperty must receive either ATTR_ENUMERABLE xor " "ATTR_NONENUMERABLE"); if (attributes & ATTR_ENUMERABLE) { attrs += JS::PropertyAttribute::Enumerable; } MOZ_ASSERT(bool(attributes & ATTR_CONFIGURABLE) != bool(attributes & ATTR_NONCONFIGURABLE), "DefineDataProperty must receive either ATTR_CONFIGURABLE xor " "ATTR_NONCONFIGURABLE"); if (attributes & ATTR_CONFIGURABLE) { attrs += JS::PropertyAttribute::Configurable; } MOZ_ASSERT( bool(attributes & ATTR_WRITABLE) != bool(attributes & ATTR_NONWRITABLE), "DefineDataProperty must receive either ATTR_WRITABLE xor " "ATTR_NONWRITABLE"); if (attributes & ATTR_WRITABLE) { attrs += JS::PropertyAttribute::Writable; } Rooted desc(cx, PropertyDescriptor::Data(value, attrs)); if (!DefineProperty(cx, obj, id, desc)) { return false; } args.rval().setUndefined(); return true; } static bool intrinsic_DefineProperty(JSContext* cx, unsigned argc, Value* vp) { // _DefineProperty(object, propertyKey, attributes, // valueOrGetter, setter, strict) CallArgs args = CallArgsFromVp(argc, vp); MOZ_ASSERT(args.length() == 6); MOZ_ASSERT(args[0].isObject()); MOZ_ASSERT(args[1].isString() || args[1].isNumber() || args[1].isSymbol()); MOZ_RELEASE_ASSERT(args[2].isInt32()); MOZ_ASSERT(args[5].isBoolean()); RootedObject obj(cx, &args[0].toObject()); RootedId id(cx); if (!PrimitiveValueToId(cx, args[1], &id)) { return false; } Rooted desc(cx, PropertyDescriptor::Empty()); unsigned attributes = args[2].toInt32(); if (attributes & (ATTR_ENUMERABLE | ATTR_NONENUMERABLE)) { desc.setEnumerable(attributes & ATTR_ENUMERABLE); } if (attributes & (ATTR_CONFIGURABLE | ATTR_NONCONFIGURABLE)) { desc.setConfigurable(attributes & ATTR_CONFIGURABLE); } if (attributes & (ATTR_WRITABLE | ATTR_NONWRITABLE)) { desc.setWritable(attributes & ATTR_WRITABLE); } // When args[4] is |null|, the data descriptor has a value component. if ((attributes & DATA_DESCRIPTOR_KIND) && args[4].isNull()) { desc.setValue(args[3]); } if (attributes & ACCESSOR_DESCRIPTOR_KIND) { Value getter = args[3]; if (getter.isObject()) { desc.setGetter(&getter.toObject()); } else if (getter.isUndefined()) { desc.setGetter(nullptr); } else { MOZ_ASSERT(getter.isNull()); } Value setter = args[4]; if (setter.isObject()) { desc.setSetter(&setter.toObject()); } else if (setter.isUndefined()) { desc.setSetter(nullptr); } else { MOZ_ASSERT(setter.isNull()); } } desc.assertValid(); ObjectOpResult result; if (!DefineProperty(cx, obj, id, desc, result)) { return false; } bool strict = args[5].toBoolean(); if (strict && !result.ok()) { // We need to tell our caller Object.defineProperty, // that this operation failed, without actually throwing // for web-compatibility reasons. if (result.failureCode() == JSMSG_CANT_DEFINE_WINDOW_NC) { args.rval().setBoolean(false); return true; } return result.reportError(cx, obj, id); } args.rval().setBoolean(result.ok()); return true; } static bool intrinsic_ObjectHasPrototype(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); MOZ_ASSERT(args.length() == 2); // Self-hosted code calls this intrinsic with builtin prototypes. These are // always native objects. auto* obj = &args[0].toObject().as(); auto* proto = &args[1].toObject().as(); JSObject* actualProto = obj->staticPrototype(); args.rval().setBoolean(actualProto == proto); return true; } static bool intrinsic_UnsafeSetReservedSlot(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); MOZ_ASSERT(args.length() == 3); MOZ_ASSERT(args[0].isObject()); MOZ_RELEASE_ASSERT(args[1].isInt32()); MOZ_ASSERT(args[1].toInt32() >= 0); uint32_t slot = uint32_t(args[1].toInt32()); args[0].toObject().as().setReservedSlot(slot, args[2]); args.rval().setUndefined(); return true; } static bool intrinsic_UnsafeGetReservedSlot(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); MOZ_ASSERT(args.length() == 2); MOZ_ASSERT(args[0].isObject()); MOZ_RELEASE_ASSERT(args[1].isInt32()); MOZ_ASSERT(args[1].toInt32() >= 0); uint32_t slot = uint32_t(args[1].toInt32()); args.rval().set(args[0].toObject().as().getReservedSlot(slot)); return true; } static bool intrinsic_UnsafeGetObjectFromReservedSlot(JSContext* cx, unsigned argc, Value* vp) { if (!intrinsic_UnsafeGetReservedSlot(cx, argc, vp)) { return false; } MOZ_ASSERT(vp->isObject()); return true; } static bool intrinsic_UnsafeGetInt32FromReservedSlot(JSContext* cx, unsigned argc, Value* vp) { if (!intrinsic_UnsafeGetReservedSlot(cx, argc, vp)) { return false; } MOZ_ASSERT(vp->isInt32()); return true; } static bool intrinsic_UnsafeGetStringFromReservedSlot(JSContext* cx, unsigned argc, Value* vp) { if (!intrinsic_UnsafeGetReservedSlot(cx, argc, vp)) { return false; } MOZ_ASSERT(vp->isString()); return true; } static bool intrinsic_ThisTimeValue(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); MOZ_ASSERT(args.length() == 1); MOZ_ASSERT(args[0].isInt32()); const char* name = nullptr; int32_t method = args[0].toInt32(); if (method == DATE_METHOD_LOCALE_TIME_STRING) { name = "toLocaleTimeString"; } else if (method == DATE_METHOD_LOCALE_DATE_STRING) { name = "toLocaleDateString"; } else { MOZ_ASSERT(method == DATE_METHOD_LOCALE_STRING); name = "toLocaleString"; } auto* unwrapped = UnwrapAndTypeCheckThis(cx, args, name); if (!unwrapped) { return false; } args.rval().set(unwrapped->UTCTime()); return true; } static bool intrinsic_IsPackedArray(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); MOZ_ASSERT(args.length() == 1); MOZ_ASSERT(args[0].isObject()); args.rval().setBoolean(IsPackedArray(&args[0].toObject())); return true; } bool js::intrinsic_NewArrayIterator(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); MOZ_ASSERT(args.length() == 0); JSObject* obj = NewArrayIterator(cx); if (!obj) { return false; } args.rval().setObject(*obj); return true; } static bool intrinsic_ArrayIteratorPrototypeOptimizable(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); MOZ_ASSERT(args.length() == 0); ForOfPIC::Chain* stubChain = ForOfPIC::getOrCreate(cx); if (!stubChain) { return false; } bool optimized; if (!stubChain->tryOptimizeArrayIteratorNext(cx, &optimized)) { return false; } args.rval().setBoolean(optimized); return true; } static bool intrinsic_GetNextMapEntryForIterator(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); MOZ_ASSERT(args.length() == 2); MOZ_ASSERT(args[0].toObject().is()); MOZ_ASSERT(args[1].isObject()); MapIteratorObject* mapIterator = &args[0].toObject().as(); ArrayObject* result = &args[1].toObject().as(); args.rval().setBoolean(MapIteratorObject::next(mapIterator, result)); return true; } static bool intrinsic_CreateMapIterationResultPair(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); MOZ_ASSERT(args.length() == 0); JSObject* result = MapIteratorObject::createResultPair(cx); if (!result) { return false; } args.rval().setObject(*result); return true; } static bool intrinsic_GetNextSetEntryForIterator(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); MOZ_ASSERT(args.length() == 2); MOZ_ASSERT(args[0].toObject().is()); MOZ_ASSERT(args[1].isObject()); SetIteratorObject* setIterator = &args[0].toObject().as(); ArrayObject* result = &args[1].toObject().as(); args.rval().setBoolean(SetIteratorObject::next(setIterator, result)); return true; } static bool intrinsic_CreateSetIterationResult(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); MOZ_ASSERT(args.length() == 0); JSObject* result = SetIteratorObject::createResult(cx); if (!result) { return false; } args.rval().setObject(*result); return true; } bool js::intrinsic_NewStringIterator(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); MOZ_ASSERT(args.length() == 0); JSObject* obj = NewStringIterator(cx); if (!obj) { return false; } args.rval().setObject(*obj); return true; } bool js::intrinsic_NewRegExpStringIterator(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); MOZ_ASSERT(args.length() == 0); JSObject* obj = NewRegExpStringIterator(cx); if (!obj) { return false; } args.rval().setObject(*obj); return true; } js::PropertyName* js::GetClonedSelfHostedFunctionName(const JSFunction* fun) { if (!fun->isExtended()) { return nullptr; } Value name = fun->getExtendedSlot(LAZY_FUNCTION_NAME_SLOT); if (!name.isString()) { return nullptr; } return name.toString()->asAtom().asPropertyName(); } bool js::IsExtendedUnclonedSelfHostedFunctionName(JSAtom* name) { if (name->length() < 2) { return false; } return name->latin1OrTwoByteChar(0) == ExtendedUnclonedSelfHostedFunctionNamePrefix; } void js::SetClonedSelfHostedFunctionName(JSFunction* fun, js::PropertyName* name) { fun->setExtendedSlot(LAZY_FUNCTION_NAME_SLOT, StringValue(name)); } static bool intrinsic_GeneratorObjectIsClosed(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); MOZ_ASSERT(args.length() == 1); MOZ_ASSERT(args[0].isObject()); GeneratorObject* genObj = &args[0].toObject().as(); args.rval().setBoolean(genObj->isClosed()); return true; } static bool intrinsic_IsSuspendedGenerator(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); MOZ_ASSERT(args.length() == 1); if (!args[0].isObject() || !args[0].toObject().is()) { args.rval().setBoolean(false); return true; } GeneratorObject& genObj = args[0].toObject().as(); args.rval().setBoolean(!genObj.isClosed() && genObj.isSuspended()); return true; } static bool intrinsic_GeneratorIsRunning(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); MOZ_ASSERT(args.length() == 1); MOZ_ASSERT(args[0].isObject()); GeneratorObject* genObj = &args[0].toObject().as(); args.rval().setBoolean(genObj->isRunning()); return true; } static bool intrinsic_GeneratorSetClosed(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); MOZ_ASSERT(args.length() == 1); MOZ_ASSERT(args[0].isObject()); GeneratorObject* genObj = &args[0].toObject().as(); genObj->setClosed(cx); return true; } template static bool intrinsic_ArrayBufferByteLength(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); MOZ_ASSERT(args.length() == 1); MOZ_ASSERT(args[0].isObject()); MOZ_ASSERT(args[0].toObject().is()); size_t byteLength = args[0].toObject().as().byteLength(); args.rval().setNumber(byteLength); return true; } template static bool intrinsic_PossiblyWrappedArrayBufferByteLength(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); MOZ_ASSERT(args.length() == 1); T* obj = args[0].toObject().maybeUnwrapAs(); if (!obj) { ReportAccessDenied(cx); return false; } size_t byteLength = obj->byteLength(); args.rval().setNumber(byteLength); return true; } static void AssertNonNegativeInteger(const Value& v) { MOZ_ASSERT(v.isNumber()); MOZ_ASSERT(v.toNumber() >= 0); MOZ_ASSERT(v.toNumber() < DOUBLE_INTEGRAL_PRECISION_LIMIT); MOZ_ASSERT(JS::ToInteger(v.toNumber()) == v.toNumber()); } template static bool intrinsic_ArrayBufferCopyData(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); MOZ_ASSERT(args.length() == 6); AssertNonNegativeInteger(args[1]); AssertNonNegativeInteger(args[3]); AssertNonNegativeInteger(args[4]); bool isWrapped = args[5].toBoolean(); Rooted toBuffer(cx); if (!isWrapped) { toBuffer = &args[0].toObject().as(); } else { JSObject* wrapped = &args[0].toObject(); MOZ_ASSERT(wrapped->is()); toBuffer = wrapped->maybeUnwrapAs(); if (!toBuffer) { ReportAccessDenied(cx); return false; } } size_t toIndex = size_t(args[1].toNumber()); Rooted fromBuffer(cx, &args[2].toObject().as()); size_t fromIndex = size_t(args[3].toNumber()); size_t count = size_t(args[4].toNumber()); T::copyData(toBuffer, toIndex, fromBuffer, fromIndex, count); args.rval().setUndefined(); return true; } // Arguments must both be SharedArrayBuffer or wrapped SharedArrayBuffer. static bool intrinsic_SharedArrayBuffersMemorySame(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); MOZ_ASSERT(args.length() == 2); auto* lhs = args[0].toObject().maybeUnwrapAs(); if (!lhs) { ReportAccessDenied(cx); return false; } auto* rhs = args[1].toObject().maybeUnwrapAs(); if (!rhs) { ReportAccessDenied(cx); return false; } args.rval().setBoolean(lhs->rawBufferObject() == rhs->rawBufferObject()); return true; } static bool intrinsic_GetTypedArrayKind(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); MOZ_ASSERT(args.length() == 1); MOZ_ASSERT(args[0].isObject()); static_assert(TYPEDARRAY_KIND_INT8 == Scalar::Type::Int8, "TYPEDARRAY_KIND_INT8 doesn't match the scalar type"); static_assert(TYPEDARRAY_KIND_UINT8 == Scalar::Type::Uint8, "TYPEDARRAY_KIND_UINT8 doesn't match the scalar type"); static_assert(TYPEDARRAY_KIND_INT16 == Scalar::Type::Int16, "TYPEDARRAY_KIND_INT16 doesn't match the scalar type"); static_assert(TYPEDARRAY_KIND_UINT16 == Scalar::Type::Uint16, "TYPEDARRAY_KIND_UINT16 doesn't match the scalar type"); static_assert(TYPEDARRAY_KIND_INT32 == Scalar::Type::Int32, "TYPEDARRAY_KIND_INT32 doesn't match the scalar type"); static_assert(TYPEDARRAY_KIND_UINT32 == Scalar::Type::Uint32, "TYPEDARRAY_KIND_UINT32 doesn't match the scalar type"); static_assert(TYPEDARRAY_KIND_FLOAT32 == Scalar::Type::Float32, "TYPEDARRAY_KIND_FLOAT32 doesn't match the scalar type"); static_assert(TYPEDARRAY_KIND_FLOAT64 == Scalar::Type::Float64, "TYPEDARRAY_KIND_FLOAT64 doesn't match the scalar type"); static_assert(TYPEDARRAY_KIND_UINT8CLAMPED == Scalar::Type::Uint8Clamped, "TYPEDARRAY_KIND_UINT8CLAMPED doesn't match the scalar type"); static_assert(TYPEDARRAY_KIND_BIGINT64 == Scalar::Type::BigInt64, "TYPEDARRAY_KIND_BIGINT64 doesn't match the scalar type"); static_assert(TYPEDARRAY_KIND_BIGUINT64 == Scalar::Type::BigUint64, "TYPEDARRAY_KIND_BIGUINT64 doesn't match the scalar type"); JSObject* obj = &args[0].toObject(); Scalar::Type type = JS_GetArrayBufferViewType(obj); args.rval().setInt32(static_cast(type)); return true; } static bool intrinsic_IsTypedArrayConstructor(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); MOZ_ASSERT(args.length() == 1); MOZ_ASSERT(args[0].isObject()); args.rval().setBoolean(js::IsTypedArrayConstructor(&args[0].toObject())); return true; } static bool intrinsic_TypedArrayBuffer(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); MOZ_ASSERT(args.length() == 1); MOZ_ASSERT(args[0].toObject().is()); Rooted tarray(cx, &args[0].toObject().as()); if (!TypedArrayObject::ensureHasBuffer(cx, tarray)) { return false; } args.rval().set(tarray->bufferValue()); return true; } static bool intrinsic_TypedArrayByteOffset(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); MOZ_ASSERT(args.length() == 1); MOZ_ASSERT(args[0].toObject().is()); auto* tarr = &args[0].toObject().as(); args.rval().setNumber(tarr->byteOffsetMaybeOutOfBounds()); return true; } static bool intrinsic_TypedArrayElementSize(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); MOZ_ASSERT(args.length() == 1); MOZ_ASSERT(args[0].toObject().is()); unsigned size = TypedArrayElemSize(args[0].toObject().as().type()); MOZ_ASSERT(size == 1 || size == 2 || size == 4 || size == 8); args.rval().setInt32(mozilla::AssertedCast(size)); return true; } // Return the value of [[ArrayLength]] internal slot of the TypedArray static bool intrinsic_TypedArrayLength(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); MOZ_ASSERT(args.length() == 1); MOZ_ASSERT(args[0].toObject().is()); auto* tarr = &args[0].toObject().as(); mozilla::Maybe length = tarr->length(); if (!length) { // Return zero for detached buffers to match JIT code. if (tarr->hasDetachedBuffer()) { args.rval().setInt32(0); return true; } JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr, JSMSG_TYPED_ARRAY_RESIZED_BOUNDS); return false; } args.rval().setNumber(*length); return true; } // Return the value of [[ArrayLength]] internal slot of the TypedArray. If the // length is out-of-bounds, always return zero. static bool intrinsic_TypedArrayLengthZeroOnOutOfBounds(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); MOZ_ASSERT(args.length() == 1); MOZ_ASSERT(args[0].toObject().is()); auto* tarr = &args[0].toObject().as(); args.rval().setNumber(tarr->length().valueOr(0)); return true; } static bool intrinsic_PossiblyWrappedTypedArrayLength(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); MOZ_ASSERT(args.length() == 1); MOZ_ASSERT(args[0].isObject()); TypedArrayObject* obj = args[0].toObject().maybeUnwrapAs(); if (!obj) { ReportAccessDenied(cx); return false; } mozilla::Maybe length = obj->length(); if (!length) { // Return zero for detached buffers to match JIT code. if (obj->hasDetachedBuffer()) { args.rval().setInt32(0); return true; } JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr, JSMSG_TYPED_ARRAY_RESIZED_BOUNDS); return false; } args.rval().setNumber(*length); return true; } static bool intrinsic_PossiblyWrappedTypedArrayHasDetachedBuffer(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); MOZ_ASSERT(args.length() == 1); MOZ_ASSERT(args[0].isObject()); TypedArrayObject* obj = args[0].toObject().maybeUnwrapAs(); if (!obj) { ReportAccessDenied(cx); return false; } bool detached = obj->hasDetachedBuffer(); args.rval().setBoolean(detached); return true; } static bool intrinsic_TypedArrayIsAutoLength(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); MOZ_ASSERT(args.length() == 1); MOZ_ASSERT(args[0].toObject().is()); JSObject* obj = &args[0].toObject(); bool isAutoLength = obj->is() && obj->as().isAutoLength(); args.rval().setBoolean(isAutoLength); return true; } // Extract the TypedArrayObject* underlying |obj| and return it. This method, // in a TOTALLY UNSAFE manner, completely violates the normal compartment // boundaries, returning an object not necessarily in the current compartment // or in |obj|'s compartment. // // All callers of this method are expected to sigil this TypedArrayObject*, and // all values and information derived from it, with an "unsafe" prefix, to // indicate the extreme caution required when dealing with such values. // // If calling code discipline ever fails to be maintained, it's gonna have a // bad time. static TypedArrayObject* DangerouslyUnwrapTypedArray(JSContext* cx, JSObject* obj) { // An unwrapped pointer to an object potentially on the other side of a // compartment boundary! Isn't this such fun? TypedArrayObject* unwrapped = obj->maybeUnwrapAs(); if (!unwrapped) { ReportAccessDenied(cx); return nullptr; } // Be super-duper careful using this, as we've just punched through // the compartment boundary, and things like buffer() on this aren't // same-compartment with anything else in the calling method. return unwrapped; } // The specification requires us to perform bitwise copying when |sourceType| // and |targetType| are the same (ES2017, ยง22.2.3.24, step 15). Additionally, // as an optimization, we can also perform bitwise copying when |sourceType| // and |targetType| have compatible bit-level representations. static bool IsTypedArrayBitwiseSlice(Scalar::Type sourceType, Scalar::Type targetType) { switch (sourceType) { case Scalar::Int8: return targetType == Scalar::Int8 || targetType == Scalar::Uint8; case Scalar::Uint8: case Scalar::Uint8Clamped: return targetType == Scalar::Int8 || targetType == Scalar::Uint8 || targetType == Scalar::Uint8Clamped; case Scalar::Int16: case Scalar::Uint16: return targetType == Scalar::Int16 || targetType == Scalar::Uint16; case Scalar::Int32: case Scalar::Uint32: return targetType == Scalar::Int32 || targetType == Scalar::Uint32; case Scalar::Float32: return targetType == Scalar::Float32; case Scalar::Float64: return targetType == Scalar::Float64; case Scalar::BigInt64: case Scalar::BigUint64: return targetType == Scalar::BigInt64 || targetType == Scalar::BigUint64; default: MOZ_CRASH("IsTypedArrayBitwiseSlice with a bogus typed array type"); } } static bool intrinsic_TypedArrayBitwiseSlice(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); MOZ_ASSERT(args.length() == 4); MOZ_ASSERT(args[0].isObject()); MOZ_ASSERT(args[1].isObject()); AssertNonNegativeInteger(args[2]); AssertNonNegativeInteger(args[3]); Rooted source(cx, &args[0].toObject().as()); auto sourceLength = source->length(); if (!sourceLength) { if (source->hasDetachedBuffer()) { JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr, JSMSG_TYPED_ARRAY_DETACHED); } else { JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr, JSMSG_TYPED_ARRAY_RESIZED_BOUNDS); } return false; } MOZ_ASSERT(!source->hasDetachedBuffer()); // As directed by |DangerouslyUnwrapTypedArray|, sigil this pointer and all // variables derived from it to counsel extreme caution here. Rooted unsafeTypedArrayCrossCompartment(cx); unsafeTypedArrayCrossCompartment = DangerouslyUnwrapTypedArray(cx, &args[1].toObject()); if (!unsafeTypedArrayCrossCompartment) { return false; } MOZ_ASSERT(!unsafeTypedArrayCrossCompartment->hasDetachedBuffer()); Scalar::Type sourceType = source->type(); if (!IsTypedArrayBitwiseSlice(sourceType, unsafeTypedArrayCrossCompartment->type())) { args.rval().setBoolean(false); return true; } size_t sourceOffset = size_t(args[2].toNumber()); size_t count = size_t(args[3].toNumber()); MOZ_ASSERT(count > 0); MOZ_ASSERT(count <= unsafeTypedArrayCrossCompartment->length().valueOr(0)); size_t elementSize = TypedArrayElemSize(sourceType); MOZ_ASSERT(elementSize == TypedArrayElemSize(unsafeTypedArrayCrossCompartment->type())); SharedMem sourceData = source->dataPointerEither().cast() + sourceOffset * elementSize; SharedMem unsafeTargetDataCrossCompartment = unsafeTypedArrayCrossCompartment->dataPointerEither().cast(); size_t byteLength = std::min(count, *sourceLength) * elementSize; // The same-type case requires exact copying preserving the bit-level // encoding of the source data, so use memcpy if possible. If source and // target are the same buffer, we can't use memcpy (or memmove), because // the specification requires sequential copying of the values. This case // is only possible if a @@species constructor created a specifically // crafted typed array. It won't happen in normal code and hence doesn't // need to be optimized. if (!TypedArrayObject::sameBuffer(source, unsafeTypedArrayCrossCompartment)) { if (source->isSharedMemory() || unsafeTypedArrayCrossCompartment->isSharedMemory()) { jit::AtomicOperations::memcpySafeWhenRacy( unsafeTargetDataCrossCompartment, sourceData, byteLength); } else { memcpy(unsafeTargetDataCrossCompartment.unwrapUnshared(), sourceData.unwrapUnshared(), byteLength); } } else { using namespace jit; for (; byteLength > 0; byteLength--) { AtomicOperations::storeSafeWhenRacy( unsafeTargetDataCrossCompartment++, AtomicOperations::loadSafeWhenRacy(sourceData++)); } } args.rval().setBoolean(true); return true; } static bool intrinsic_TypedArrayInitFromPackedArray(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); MOZ_ASSERT(args.length() == 2); MOZ_ASSERT(args[0].isObject()); MOZ_ASSERT(args[1].isObject()); Rooted target( cx, &args[0].toObject().as()); MOZ_ASSERT(!target->hasDetachedBuffer()); MOZ_ASSERT(!target->isSharedMemory()); Rooted source(cx, &args[1].toObject().as()); MOZ_ASSERT(IsPackedArray(source)); MOZ_ASSERT(source->length() == target->length()); switch (target->type()) { #define INIT_TYPED_ARRAY(_, T, N) \ case Scalar::N: { \ if (!ElementSpecific::initFromIterablePackedArray( \ cx, target, source)) { \ return false; \ } \ break; \ } JS_FOR_EACH_TYPED_ARRAY(INIT_TYPED_ARRAY) #undef INIT_TYPED_ARRAY default: MOZ_CRASH( "TypedArrayInitFromPackedArray with a typed array with bogus type"); } args.rval().setUndefined(); return true; } template static bool intrinsic_RegExpBuiltinExec(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); MOZ_ASSERT(args.length() == 2); MOZ_ASSERT(args[0].isObject()); MOZ_ASSERT(args[0].toObject().is()); MOZ_ASSERT(args[1].isString()); Rooted obj(cx, &args[0].toObject().as()); Rooted string(cx, args[1].toString()); return RegExpBuiltinExec(cx, obj, string, ForTest, args.rval()); } template static bool intrinsic_RegExpExec(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); MOZ_ASSERT(args.length() == 2); MOZ_ASSERT(args[0].isObject()); MOZ_ASSERT(args[1].isString()); Rooted obj(cx, &args[0].toObject()); Rooted string(cx, args[1].toString()); return RegExpExec(cx, obj, string, ForTest, args.rval()); } static bool intrinsic_RegExpCreate(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); MOZ_ASSERT(args.length() == 1 || args.length() == 2); MOZ_ASSERT_IF(args.length() == 2, args[1].isString() || args[1].isUndefined()); MOZ_ASSERT(!args.isConstructing()); return RegExpCreate(cx, args[0], args.get(1), args.rval()); } static bool intrinsic_RegExpGetSubstitution(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); MOZ_ASSERT(args.length() == 6); Rooted matchResult(cx, &args[0].toObject().as()); Rooted string(cx, args[1].toString()->ensureLinear(cx)); if (!string) { return false; } int32_t position = int32_t(args[2].toNumber()); MOZ_ASSERT(position >= 0); Rooted replacement(cx, args[3].toString()->ensureLinear(cx)); if (!replacement) { return false; } int32_t firstDollarIndex = int32_t(args[4].toNumber()); MOZ_ASSERT(firstDollarIndex >= 0); RootedValue namedCaptures(cx, args[5]); MOZ_ASSERT(namedCaptures.isUndefined() || namedCaptures.isObject()); return RegExpGetSubstitution(cx, matchResult, string, size_t(position), replacement, size_t(firstDollarIndex), namedCaptures, args.rval()); } static bool intrinsic_RegExpHasCaptureGroups(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); MOZ_ASSERT(args.length() == 2); MOZ_ASSERT(args[0].isObject()); MOZ_ASSERT(args[1].isString()); Rooted obj(cx, &args[0].toObject().as()); Rooted string(cx, args[1].toString()); bool result; if (!RegExpHasCaptureGroups(cx, obj, string, &result)) { return false; } args.rval().setBoolean(result); return true; } static bool intrinsic_StringReplaceString(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); MOZ_ASSERT(args.length() == 3); RootedString string(cx, args[0].toString()); RootedString pattern(cx, args[1].toString()); RootedString replacement(cx, args[2].toString()); JSString* result = str_replace_string_raw(cx, string, pattern, replacement); if (!result) { return false; } args.rval().setString(result); return true; } static bool intrinsic_StringReplaceAllString(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); MOZ_ASSERT(args.length() == 3); RootedString string(cx, args[0].toString()); RootedString pattern(cx, args[1].toString()); RootedString replacement(cx, args[2].toString()); JSString* result = str_replaceAll_string_raw(cx, string, pattern, replacement); if (!result) { return false; } args.rval().setString(result); return true; } static bool intrinsic_StringSplitString(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); MOZ_ASSERT(args.length() == 2); RootedString string(cx, args[0].toString()); RootedString sep(cx, args[1].toString()); JSObject* aobj = StringSplitString(cx, string, sep, INT32_MAX); if (!aobj) { return false; } args.rval().setObject(*aobj); return true; } static bool intrinsic_StringSplitStringLimit(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); MOZ_ASSERT(args.length() == 3); RootedString string(cx, args[0].toString()); RootedString sep(cx, args[1].toString()); // args[2] should be already in UInt32 range, but it could be double typed, // because of Ion optimization. uint32_t limit = uint32_t(args[2].toNumber()); MOZ_ASSERT(limit > 0, "Zero limit case is already handled in self-hosted code."); JSObject* aobj = StringSplitString(cx, string, sep, limit); if (!aobj) { return false; } args.rval().setObject(*aobj); return true; } bool CallSelfHostedNonGenericMethod(JSContext* cx, const CallArgs& args) { // This function is called when a self-hosted method is invoked on a // wrapper object, like a CrossCompartmentWrapper. The last argument is // the name of the self-hosted function. The other arguments are the // arguments to pass to this function. MOZ_ASSERT(args.length() > 0); Rooted name( cx, args[args.length() - 1].toString()->asAtom().asPropertyName()); InvokeArgs args2(cx); if (!args2.init(cx, args.length() - 1)) { return false; } for (size_t i = 0; i < args.length() - 1; i++) { args2[i].set(args[i]); } return CallSelfHostedFunction(cx, name, args.thisv(), args2, args.rval()); } #ifdef DEBUG bool js::CallSelfHostedFunction(JSContext* cx, const char* name, HandleValue thisv, const AnyInvokeArgs& args, MutableHandleValue rval) { JSAtom* funAtom = Atomize(cx, name, strlen(name)); if (!funAtom) { return false; } Rooted funName(cx, funAtom->asPropertyName()); return CallSelfHostedFunction(cx, funName, thisv, args, rval); } #endif bool js::CallSelfHostedFunction(JSContext* cx, Handle name, HandleValue thisv, const AnyInvokeArgs& args, MutableHandleValue rval) { RootedValue fun(cx); if (!GlobalObject::getIntrinsicValue(cx, cx->global(), name, &fun)) { return false; } MOZ_ASSERT(fun.toObject().is()); return Call(cx, fun, thisv, args, rval); } template bool Is(HandleValue v) { return v.isObject() && v.toObject().is(); } template static bool CallNonGenericSelfhostedMethod(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); return CallNonGenericMethod(cx, args); } bool js::IsCallSelfHostedNonGenericMethod(NativeImpl impl) { return impl == CallSelfHostedNonGenericMethod; } bool js::ReportIncompatibleSelfHostedMethod(JSContext* cx, Handle thisValue) { // The contract for this function is the same as // CallSelfHostedNonGenericMethod. The normal ReportIncompatible function // doesn't work for selfhosted functions, because they always call the // different CallXXXMethodIfWrapped methods, which would be reported as the // called function instead. // Lookup the selfhosted method that was invoked. But skip over // internal self-hosted function frames, because those are never the // actual self-hosted callee from external code. We can't just skip // self-hosted things until we find a non-self-hosted one because of cases // like array.sort(somethingSelfHosted), where we want to report the error // in the somethingSelfHosted, not in the sort() call. static const char* const internalNames[] = { "EnsureTypedArrayWithArrayBuffer", "RegExpSearchSlowPath", "RegExpReplaceSlowPath", "RegExpMatchSlowPath", }; ScriptFrameIter iter(cx); MOZ_ASSERT(iter.isFunctionFrame()); while (!iter.done()) { MOZ_ASSERT(iter.callee(cx)->isSelfHostedOrIntrinsic()); UniqueChars funNameBytes; const char* funName = GetFunctionNameBytes(cx, iter.callee(cx), &funNameBytes); if (!funName) { return false; } if (std::all_of( std::begin(internalNames), std::end(internalNames), [funName](auto* name) { return strcmp(funName, name) != 0; })) { JS_ReportErrorNumberUTF8(cx, GetErrorMessage, nullptr, JSMSG_INCOMPATIBLE_METHOD, funName, "method", InformalValueTypeName(thisValue)); return false; } ++iter; } MOZ_ASSERT_UNREACHABLE("How did we not find a useful self-hosted frame?"); return false; } #ifdef JS_HAS_INTL_API /** * Returns the default locale as a well-formed, but not necessarily * canonicalized, BCP-47 language tag. */ static bool intrinsic_RuntimeDefaultLocale(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); MOZ_ASSERT(args.length() == 0); const char* locale = cx->realm()->getLocale(); if (!locale) { return false; } JSString* jslocale = NewStringCopyZ(cx, locale); if (!jslocale) { return false; } args.rval().setString(jslocale); return true; } static bool intrinsic_IsRuntimeDefaultLocale(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); MOZ_ASSERT(args.length() == 1); MOZ_ASSERT(args[0].isString() || args[0].isUndefined()); // |undefined| is the default value when the Intl runtime caches haven't // yet been initialized. Handle it the same way as a cache miss. if (args[0].isUndefined()) { args.rval().setBoolean(false); return true; } const char* locale = cx->realm()->getLocale(); if (!locale) { return false; } JSLinearString* str = args[0].toString()->ensureLinear(cx); if (!str) { return false; } bool equals = StringEqualsAscii(str, locale); args.rval().setBoolean(equals); return true; } #endif // JS_HAS_INTL_API static bool intrinsic_ConstructFunction(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); MOZ_ASSERT(args.length() == 3); MOZ_ASSERT(IsConstructor(args[0])); MOZ_ASSERT(IsConstructor(args[1])); MOZ_ASSERT(args[2].toObject().is()); Rooted argsList(cx, &args[2].toObject().as()); uint32_t len = argsList->length(); ConstructArgs constructArgs(cx); if (!constructArgs.init(cx, len)) { return false; } for (uint32_t index = 0; index < len; index++) { constructArgs[index].set(argsList->getDenseElement(index)); } RootedObject res(cx); if (!Construct(cx, args[0], constructArgs, args[1], &res)) { return false; } args.rval().setObject(*res); return true; } static bool intrinsic_IsConstructing(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); MOZ_ASSERT(args.length() == 0); ScriptFrameIter iter(cx); bool isConstructing = iter.isConstructing(); args.rval().setBoolean(isConstructing); return true; } static bool intrinsic_ConstructorForTypedArray(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); MOZ_ASSERT(args.length() == 1); MOZ_ASSERT(args[0].isObject()); auto* object = UnwrapAndDowncastValue(cx, args[0]); if (!object) { return false; } JSProtoKey protoKey = StandardProtoKeyOrNull(object); MOZ_ASSERT(protoKey); // While it may seem like an invariant that in any compartment, // seeing a typed array object implies that the TypedArray constructor // for that type is initialized on the compartment's global, this is not // the case. When we construct a typed array given a cross-compartment // ArrayBuffer, we put the constructed TypedArray in the same compartment // as the ArrayBuffer. Since we use the prototype from the initial // compartment, and never call the constructor in the ArrayBuffer's // compartment from script, we are not guaranteed to have initialized // the constructor. JSObject* ctor = GlobalObject::getOrCreateConstructor(cx, protoKey); if (!ctor) { return false; } args.rval().setObject(*ctor); return true; } static bool intrinsic_PromiseResolve(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); MOZ_ASSERT(args.length() == 2); RootedObject constructor(cx, &args[0].toObject()); JSObject* promise = js::PromiseResolve(cx, constructor, args[1]); if (!promise) { return false; } args.rval().setObject(*promise); return true; } static bool intrinsic_CopyDataPropertiesOrGetOwnKeys(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); MOZ_ASSERT(args.length() == 3); MOZ_ASSERT(args[0].isObject()); MOZ_ASSERT(args[1].isObject()); MOZ_ASSERT(args[2].isObjectOrNull()); RootedObject target(cx, &args[0].toObject()); RootedObject from(cx, &args[1].toObject()); RootedObject excludedItems(cx, args[2].toObjectOrNull()); if (from->is() && target->is() && (!excludedItems || excludedItems->is())) { bool optimized; if (!CopyDataPropertiesNative( cx, target.as(), from.as(), (excludedItems ? excludedItems.as() : nullptr), &optimized)) { return false; } if (optimized) { args.rval().setNull(); return true; } } return GetOwnPropertyKeys( cx, from, JSITER_OWNONLY | JSITER_HIDDEN | JSITER_SYMBOLS, args.rval()); } static bool intrinsic_ToBigInt(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); MOZ_ASSERT(args.length() == 1); BigInt* res = ToBigInt(cx, args[0]); if (!res) { return false; } args.rval().setBigInt(res); return true; } static bool intrinsic_NewWrapForValidIterator(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); MOZ_ASSERT(args.length() == 0); JSObject* obj = NewWrapForValidIterator(cx); if (!obj) { return false; } args.rval().setObject(*obj); return true; } static bool intrinsic_NewIteratorHelper(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); MOZ_ASSERT(args.length() == 0); JSObject* obj = NewIteratorHelper(cx); if (!obj) { return false; } args.rval().setObject(*obj); return true; } static bool intrinsic_NewAsyncIteratorHelper(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); MOZ_ASSERT(args.length() == 0); JSObject* obj = NewAsyncIteratorHelper(cx); if (!obj) { return false; } args.rval().setObject(*obj); return true; } static JSObject* NewIteratorRecord(JSContext* cx, HandleObject iterator, HandleValue nextMethod) { gc::AllocKind allocKind = gc::GetGCObjectKind(3); Rooted obj( cx, NewPlainObjectWithProtoAndAllocKind(cx, nullptr, allocKind)); if (!obj) { return nullptr; } RootedId propid(cx, NameToId(cx->names().iterator)); RootedValue value(cx, ObjectValue(*iterator)); if (!NativeDefineDataProperty(cx, obj, propid, value, JSPROP_ENUMERATE)) { return nullptr; } propid = NameToId(cx->names().nextMethod); value.set(nextMethod); if (!NativeDefineDataProperty(cx, obj, propid, value, JSPROP_ENUMERATE)) { return nullptr; } propid = NameToId(cx->names().done); value.setBoolean(false); if (!NativeDefineDataProperty(cx, obj, propid, value, JSPROP_ENUMERATE)) { return nullptr; } return obj; } static bool intrinsic_CreateAsyncFromSyncIterator(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); MOZ_ASSERT(args.length() == 2); RootedObject iterator(cx, &args[0].toObject()); RootedObject asyncIterator( cx, CreateAsyncFromSyncIterator(cx, iterator, args[1])); if (!asyncIterator) { return false; } RootedValue nextMethod(cx); if (!GetProperty(cx, asyncIterator, asyncIterator, cx->names().next, &nextMethod)) { return false; } RootedObject iteratorRecord(cx, NewIteratorRecord(cx, asyncIterator, nextMethod)); if (!iteratorRecord) { return false; } args.rval().setObject(*iteratorRecord); return true; } static bool intrinsic_NoPrivateGetter(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); MOZ_ASSERT(args.length() == 0); JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr, JSMSG_PRIVATE_SETTER_ONLY); args.rval().setUndefined(); return false; } static bool intrinsic_newList(JSContext* cx, unsigned argc, js::Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); MOZ_ASSERT(args.length() == 0); ArrayObject* list = NewArrayWithNullProto(cx); if (!list) { return false; } args.rval().setObject(*list); return true; } static const JSFunctionSpec intrinsic_functions[] = { // Intrinsic helper functions JS_INLINABLE_FN("ArrayBufferByteLength", intrinsic_ArrayBufferByteLength, 1, 0, IntrinsicArrayBufferByteLength), JS_FN("ArrayBufferCopyData", intrinsic_ArrayBufferCopyData, 6, 0), JS_INLINABLE_FN("ArrayIteratorPrototypeOptimizable", intrinsic_ArrayIteratorPrototypeOptimizable, 0, 0, IntrinsicArrayIteratorPrototypeOptimizable), JS_FN("AssertionFailed", intrinsic_AssertionFailed, 1, 0), JS_FN("CallArrayBufferMethodIfWrapped", CallNonGenericSelfhostedMethod>, 2, 0), JS_FN("CallArrayIteratorMethodIfWrapped", CallNonGenericSelfhostedMethod>, 2, 0), JS_FN("CallAsyncIteratorHelperMethodIfWrapped", CallNonGenericSelfhostedMethod>, 2, 0), JS_FN("CallGeneratorMethodIfWrapped", CallNonGenericSelfhostedMethod>, 2, 0), JS_FN("CallIteratorHelperMethodIfWrapped", CallNonGenericSelfhostedMethod>, 2, 0), JS_FN("CallMapIteratorMethodIfWrapped", CallNonGenericSelfhostedMethod>, 2, 0), JS_FN("CallMapMethodIfWrapped", CallNonGenericSelfhostedMethod>, 2, 0), JS_FN("CallRegExpMethodIfWrapped", CallNonGenericSelfhostedMethod>, 2, 0), JS_FN("CallRegExpStringIteratorMethodIfWrapped", CallNonGenericSelfhostedMethod>, 2, 0), JS_FN("CallSetIteratorMethodIfWrapped", CallNonGenericSelfhostedMethod>, 2, 0), JS_FN("CallSetMethodIfWrapped", CallNonGenericSelfhostedMethod>, 2, 0), JS_FN("CallSharedArrayBufferMethodIfWrapped", CallNonGenericSelfhostedMethod>, 2, 0), JS_FN("CallStringIteratorMethodIfWrapped", CallNonGenericSelfhostedMethod>, 2, 0), JS_FN("CallTypedArrayMethodIfWrapped", CallNonGenericSelfhostedMethod>, 2, 0), JS_FN("CallWrapForValidIteratorMethodIfWrapped", CallNonGenericSelfhostedMethod>, 2, 0), JS_FN("ConstructFunction", intrinsic_ConstructFunction, 2, 0), JS_FN("ConstructorForTypedArray", intrinsic_ConstructorForTypedArray, 1, 0), JS_FN("CopyDataPropertiesOrGetOwnKeys", intrinsic_CopyDataPropertiesOrGetOwnKeys, 3, 0), JS_FN("CreateAsyncFromSyncIterator", intrinsic_CreateAsyncFromSyncIterator, 2, 0), JS_FN("CreateMapIterationResultPair", intrinsic_CreateMapIterationResultPair, 0, 0), JS_FN("CreateSetIterationResult", intrinsic_CreateSetIterationResult, 0, 0), JS_FN("DecompileArg", intrinsic_DecompileArg, 2, 0), JS_FN("DefineDataProperty", intrinsic_DefineDataProperty, 4, 0), JS_FN("DefineProperty", intrinsic_DefineProperty, 6, 0), JS_FN("DumpMessage", intrinsic_DumpMessage, 1, 0), JS_FN("FlatStringMatch", FlatStringMatch, 2, 0), JS_FN("FlatStringSearch", FlatStringSearch, 2, 0), JS_FN("GeneratorIsRunning", intrinsic_GeneratorIsRunning, 1, 0), JS_FN("GeneratorObjectIsClosed", intrinsic_GeneratorObjectIsClosed, 1, 0), JS_FN("GeneratorSetClosed", intrinsic_GeneratorSetClosed, 1, 0), JS_FN("GetElemBaseForLambda", intrinsic_GetElemBaseForLambda, 1, 0), JS_INLINABLE_FN("GetFirstDollarIndex", GetFirstDollarIndex, 1, 0, GetFirstDollarIndex), JS_INLINABLE_FN("GetNextMapEntryForIterator", intrinsic_GetNextMapEntryForIterator, 2, 0, IntrinsicGetNextMapEntryForIterator), JS_INLINABLE_FN("GetNextSetEntryForIterator", intrinsic_GetNextSetEntryForIterator, 2, 0, IntrinsicGetNextSetEntryForIterator), JS_FN("GetOwnPropertyDescriptorToArray", GetOwnPropertyDescriptorToArray, 2, 0), JS_FN("GetStringDataProperty", intrinsic_GetStringDataProperty, 2, 0), JS_FN("GetTypedArrayKind", intrinsic_GetTypedArrayKind, 1, 0), JS_INLINABLE_FN("GuardToArrayBuffer", intrinsic_GuardToBuiltin, 1, 0, IntrinsicGuardToArrayBuffer), JS_INLINABLE_FN("GuardToArrayIterator", intrinsic_GuardToBuiltin, 1, 0, IntrinsicGuardToArrayIterator), JS_INLINABLE_FN("GuardToAsyncIteratorHelper", intrinsic_GuardToBuiltin, 1, 0, IntrinsicGuardToAsyncIteratorHelper), JS_INLINABLE_FN("GuardToIteratorHelper", intrinsic_GuardToBuiltin, 1, 0, IntrinsicGuardToIteratorHelper), JS_INLINABLE_FN("GuardToMapIterator", intrinsic_GuardToBuiltin, 1, 0, IntrinsicGuardToMapIterator), JS_INLINABLE_FN("GuardToMapObject", intrinsic_GuardToBuiltin, 1, 0, IntrinsicGuardToMapObject), JS_INLINABLE_FN("GuardToRegExpStringIterator", intrinsic_GuardToBuiltin, 1, 0, IntrinsicGuardToRegExpStringIterator), JS_INLINABLE_FN("GuardToSetIterator", intrinsic_GuardToBuiltin, 1, 0, IntrinsicGuardToSetIterator), JS_INLINABLE_FN("GuardToSetObject", intrinsic_GuardToBuiltin, 1, 0, IntrinsicGuardToSetObject), JS_INLINABLE_FN("GuardToSharedArrayBuffer", intrinsic_GuardToBuiltin, 1, 0, IntrinsicGuardToSharedArrayBuffer), JS_INLINABLE_FN("GuardToStringIterator", intrinsic_GuardToBuiltin, 1, 0, IntrinsicGuardToStringIterator), JS_INLINABLE_FN("GuardToWrapForValidIterator", intrinsic_GuardToBuiltin, 1, 0, IntrinsicGuardToWrapForValidIterator), JS_FN("IntrinsicAsyncGeneratorNext", AsyncGeneratorNext, 1, 0), JS_FN("IntrinsicAsyncGeneratorReturn", AsyncGeneratorReturn, 1, 0), JS_FN("IntrinsicAsyncGeneratorThrow", AsyncGeneratorThrow, 1, 0), JS_INLINABLE_FN("IsArray", intrinsic_IsArray, 1, 0, ArrayIsArray), JS_FN("IsAsyncFunctionGeneratorObject", intrinsic_IsInstanceOfBuiltin, 1, 0), JS_FN("IsAsyncGeneratorObject", intrinsic_IsInstanceOfBuiltin, 1, 0), JS_INLINABLE_FN("IsCallable", intrinsic_IsCallable, 1, 0, IntrinsicIsCallable), JS_INLINABLE_FN("IsConstructing", intrinsic_IsConstructing, 0, 0, IntrinsicIsConstructing), JS_INLINABLE_FN("IsConstructor", intrinsic_IsConstructor, 1, 0, IntrinsicIsConstructor), JS_INLINABLE_FN("IsCrossRealmArrayConstructor", intrinsic_IsCrossRealmArrayConstructor, 1, 0, IntrinsicIsCrossRealmArrayConstructor), JS_FN("IsGeneratorObject", intrinsic_IsInstanceOfBuiltin, 1, 0), JS_INLINABLE_FN("IsObject", intrinsic_IsObject, 1, 0, IntrinsicIsObject), JS_INLINABLE_FN("IsPackedArray", intrinsic_IsPackedArray, 1, 0, IntrinsicIsPackedArray), JS_INLINABLE_FN("IsPossiblyWrappedRegExpObject", intrinsic_IsPossiblyWrappedInstanceOfBuiltin, 1, 0, IsPossiblyWrappedRegExpObject), JS_INLINABLE_FN( "IsPossiblyWrappedTypedArray", intrinsic_IsPossiblyWrappedInstanceOfBuiltin, 1, 0, IntrinsicIsPossiblyWrappedTypedArray), JS_INLINABLE_FN("IsRegExpObject", intrinsic_IsInstanceOfBuiltin, 1, 0, IsRegExpObject), JS_INLINABLE_FN("IsSuspendedGenerator", intrinsic_IsSuspendedGenerator, 1, 0, IntrinsicIsSuspendedGenerator), #ifdef ENABLE_RECORD_TUPLE JS_FN("IsTuple", intrinsic_IsTuple, 1, 0), #endif JS_INLINABLE_FN("IsTypedArray", intrinsic_IsInstanceOfBuiltin, 1, 0, IntrinsicIsTypedArray), JS_INLINABLE_FN("IsTypedArrayConstructor", intrinsic_IsTypedArrayConstructor, 1, 0, IntrinsicIsTypedArrayConstructor), JS_FN("IsWrappedArrayBuffer", intrinsic_IsWrappedInstanceOfBuiltin, 1, 0), JS_FN("IsWrappedSharedArrayBuffer", intrinsic_IsWrappedInstanceOfBuiltin, 1, 0), JS_INLINABLE_FN("NewArrayIterator", intrinsic_NewArrayIterator, 0, 0, IntrinsicNewArrayIterator), JS_FN("NewAsyncIteratorHelper", intrinsic_NewAsyncIteratorHelper, 0, 0), JS_FN("NewIteratorHelper", intrinsic_NewIteratorHelper, 0, 0), JS_INLINABLE_FN("NewRegExpStringIterator", intrinsic_NewRegExpStringIterator, 0, 0, IntrinsicNewRegExpStringIterator), JS_INLINABLE_FN("NewStringIterator", intrinsic_NewStringIterator, 0, 0, IntrinsicNewStringIterator), JS_FN("NewWrapForValidIterator", intrinsic_NewWrapForValidIterator, 0, 0), JS_FN("NoPrivateGetter", intrinsic_NoPrivateGetter, 1, 0), JS_INLINABLE_FN("ObjectHasPrototype", intrinsic_ObjectHasPrototype, 2, 0, IntrinsicObjectHasPrototype), JS_INLINABLE_FN( "PossiblyWrappedArrayBufferByteLength", intrinsic_PossiblyWrappedArrayBufferByteLength, 1, 0, IntrinsicPossiblyWrappedArrayBufferByteLength), JS_FN( "PossiblyWrappedSharedArrayBufferByteLength", intrinsic_PossiblyWrappedArrayBufferByteLength, 1, 0), JS_FN("PossiblyWrappedTypedArrayHasDetachedBuffer", intrinsic_PossiblyWrappedTypedArrayHasDetachedBuffer, 1, 0), JS_INLINABLE_FN("PossiblyWrappedTypedArrayLength", intrinsic_PossiblyWrappedTypedArrayLength, 1, 0, IntrinsicPossiblyWrappedTypedArrayLength), JS_FN("PromiseResolve", intrinsic_PromiseResolve, 2, 0), JS_INLINABLE_FN("RegExpBuiltinExec", intrinsic_RegExpBuiltinExec, 2, 0, IntrinsicRegExpBuiltinExec), JS_INLINABLE_FN("RegExpBuiltinExecForTest", intrinsic_RegExpBuiltinExec, 2, 0, IntrinsicRegExpBuiltinExecForTest), JS_FN("RegExpConstructRaw", regexp_construct_raw_flags, 2, 0), JS_FN("RegExpCreate", intrinsic_RegExpCreate, 2, 0), JS_INLINABLE_FN("RegExpExec", intrinsic_RegExpExec, 2, 0, IntrinsicRegExpExec), JS_INLINABLE_FN("RegExpExecForTest", intrinsic_RegExpExec, 2, 0, IntrinsicRegExpExecForTest), JS_FN("RegExpGetSubstitution", intrinsic_RegExpGetSubstitution, 5, 0), JS_INLINABLE_FN("RegExpHasCaptureGroups", intrinsic_RegExpHasCaptureGroups, 2, 0, RegExpHasCaptureGroups), JS_INLINABLE_FN("RegExpInstanceOptimizable", RegExpInstanceOptimizable, 1, 0, RegExpInstanceOptimizable), JS_INLINABLE_FN("RegExpMatcher", RegExpMatcher, 3, 0, RegExpMatcher), JS_INLINABLE_FN("RegExpPrototypeOptimizable", RegExpPrototypeOptimizable, 1, 0, RegExpPrototypeOptimizable), JS_INLINABLE_FN("RegExpSearcher", RegExpSearcher, 3, 0, RegExpSearcher), JS_INLINABLE_FN("RegExpSearcherLastLimit", RegExpSearcherLastLimit, 0, 0, RegExpSearcherLastLimit), JS_INLINABLE_FN("SameValue", js::obj_is, 2, 0, ObjectIs), JS_FN("SetCopy", SetObject::copy, 1, 0), JS_FN("SharedArrayBufferByteLength", intrinsic_ArrayBufferByteLength, 1, 0), JS_FN("SharedArrayBufferCopyData", intrinsic_ArrayBufferCopyData, 6, 0), JS_FN("SharedArrayBuffersMemorySame", intrinsic_SharedArrayBuffersMemorySame, 2, 0), JS_FN("StringReplaceAllString", intrinsic_StringReplaceAllString, 3, 0), JS_INLINABLE_FN("StringReplaceString", intrinsic_StringReplaceString, 3, 0, IntrinsicStringReplaceString), JS_INLINABLE_FN("StringSplitString", intrinsic_StringSplitString, 2, 0, IntrinsicStringSplitString), JS_FN("StringSplitStringLimit", intrinsic_StringSplitStringLimit, 3, 0), JS_INLINABLE_FN("SubstringKernel", intrinsic_SubstringKernel, 3, 0, IntrinsicSubstringKernel), JS_FN("ThisNumberValueForToLocaleString", ThisNumberValueForToLocaleString, 0, 0), JS_FN("ThisTimeValue", intrinsic_ThisTimeValue, 1, 0), #ifdef ENABLE_RECORD_TUPLE JS_FN("ThisTupleValue", intrinsic_ThisTupleValue, 1, 0), #endif JS_FN("ThrowAggregateError", intrinsic_ThrowAggregateError, 4, 0), JS_FN("ThrowInternalError", intrinsic_ThrowInternalError, 4, 0), JS_FN("ThrowRangeError", intrinsic_ThrowRangeError, 4, 0), JS_FN("ThrowTypeError", intrinsic_ThrowTypeError, 4, 0), JS_FN("ToBigInt", intrinsic_ToBigInt, 1, 0), JS_INLINABLE_FN("ToInteger", intrinsic_ToInteger, 1, 0, IntrinsicToInteger), JS_INLINABLE_FN("ToLength", intrinsic_ToLength, 1, 0, IntrinsicToLength), JS_INLINABLE_FN("ToObject", intrinsic_ToObject, 1, 0, IntrinsicToObject), JS_FN("ToPropertyKey", intrinsic_ToPropertyKey, 1, 0), JS_FN("ToSource", intrinsic_ToSource, 1, 0), #ifdef ENABLE_RECORD_TUPLE JS_FN("TupleLength", intrinsic_TupleLength, 1, 0), #endif JS_FN("TypedArrayBitwiseSlice", intrinsic_TypedArrayBitwiseSlice, 4, 0), JS_FN("TypedArrayBuffer", intrinsic_TypedArrayBuffer, 1, 0), JS_INLINABLE_FN("TypedArrayByteOffset", intrinsic_TypedArrayByteOffset, 1, 0, IntrinsicTypedArrayByteOffset), JS_INLINABLE_FN("TypedArrayElementSize", intrinsic_TypedArrayElementSize, 1, 0, IntrinsicTypedArrayElementSize), JS_FN("TypedArrayInitFromPackedArray", intrinsic_TypedArrayInitFromPackedArray, 2, 0), JS_FN("TypedArrayIsAutoLength", intrinsic_TypedArrayIsAutoLength, 1, 0), JS_INLINABLE_FN("TypedArrayLength", intrinsic_TypedArrayLength, 1, 0, IntrinsicTypedArrayLength), JS_INLINABLE_FN("TypedArrayLengthZeroOnOutOfBounds", intrinsic_TypedArrayLengthZeroOnOutOfBounds, 1, 0, IntrinsicTypedArrayLengthZeroOnOutOfBounds), JS_FN("TypedArrayNativeSort", intrinsic_TypedArrayNativeSort, 1, 0), JS_INLINABLE_FN("UnsafeGetInt32FromReservedSlot", intrinsic_UnsafeGetInt32FromReservedSlot, 2, 0, IntrinsicUnsafeGetInt32FromReservedSlot), JS_INLINABLE_FN("UnsafeGetObjectFromReservedSlot", intrinsic_UnsafeGetObjectFromReservedSlot, 2, 0, IntrinsicUnsafeGetObjectFromReservedSlot), JS_INLINABLE_FN("UnsafeGetReservedSlot", intrinsic_UnsafeGetReservedSlot, 2, 0, IntrinsicUnsafeGetReservedSlot), JS_INLINABLE_FN("UnsafeGetStringFromReservedSlot", intrinsic_UnsafeGetStringFromReservedSlot, 2, 0, IntrinsicUnsafeGetStringFromReservedSlot), JS_INLINABLE_FN("UnsafeSetReservedSlot", intrinsic_UnsafeSetReservedSlot, 3, 0, IntrinsicUnsafeSetReservedSlot), // Intrinsics and standard functions used by Intl API implementation. #ifdef JS_HAS_INTL_API JS_FN("intl_BestAvailableLocale", intl_BestAvailableLocale, 3, 0), JS_FN("intl_CallCollatorMethodIfWrapped", CallNonGenericSelfhostedMethod>, 2, 0), JS_FN("intl_CallDateTimeFormatMethodIfWrapped", CallNonGenericSelfhostedMethod>, 2, 0), JS_FN("intl_CallDisplayNamesMethodIfWrapped", CallNonGenericSelfhostedMethod>, 2, 0), JS_FN("intl_CallListFormatMethodIfWrapped", CallNonGenericSelfhostedMethod>, 2, 0), JS_FN("intl_CallNumberFormatMethodIfWrapped", CallNonGenericSelfhostedMethod>, 2, 0), JS_FN("intl_CallPluralRulesMethodIfWrapped", CallNonGenericSelfhostedMethod>, 2, 0), JS_FN("intl_CallRelativeTimeFormatMethodIfWrapped", CallNonGenericSelfhostedMethod>, 2, 0), JS_FN("intl_CallSegmentIteratorMethodIfWrapped", CallNonGenericSelfhostedMethod>, 2, 0), JS_FN("intl_CallSegmenterMethodIfWrapped", CallNonGenericSelfhostedMethod>, 2, 0), JS_FN("intl_CallSegmentsMethodIfWrapped", CallNonGenericSelfhostedMethod>, 2, 0), JS_FN("intl_Collator", intl_Collator, 2, 0), JS_FN("intl_CompareStrings", intl_CompareStrings, 3, 0), JS_FN("intl_ComputeDisplayName", intl_ComputeDisplayName, 6, 0), JS_FN("intl_CreateDateTimeFormat", intl_CreateDateTimeFormat, 4, 0), JS_FN("intl_CreateSegmentIterator", intl_CreateSegmentIterator, 1, 0), JS_FN("intl_CreateSegmentsObject", intl_CreateSegmentsObject, 2, 0), JS_FN("intl_FindNextSegmentBoundaries", intl_FindNextSegmentBoundaries, 1, 0), JS_FN("intl_FindSegmentBoundaries", intl_FindSegmentBoundaries, 2, 0), JS_FN("intl_FormatDateTime", intl_FormatDateTime, 2, 0), JS_FN("intl_FormatDateTimeRange", intl_FormatDateTimeRange, 4, 0), JS_FN("intl_FormatList", intl_FormatList, 3, 0), JS_FN("intl_FormatNumber", intl_FormatNumber, 3, 0), JS_FN("intl_FormatNumberRange", intl_FormatNumberRange, 4, 0), JS_FN("intl_FormatRelativeTime", intl_FormatRelativeTime, 4, 0), JS_FN("intl_GetCalendarInfo", intl_GetCalendarInfo, 1, 0), JS_FN("intl_GetPluralCategories", intl_GetPluralCategories, 1, 0), JS_INLINABLE_FN("intl_GuardToCollator", intrinsic_GuardToBuiltin, 1, 0, IntlGuardToCollator), JS_INLINABLE_FN("intl_GuardToDateTimeFormat", intrinsic_GuardToBuiltin, 1, 0, IntlGuardToDateTimeFormat), JS_INLINABLE_FN("intl_GuardToDisplayNames", intrinsic_GuardToBuiltin, 1, 0, IntlGuardToDisplayNames), JS_INLINABLE_FN("intl_GuardToListFormat", intrinsic_GuardToBuiltin, 1, 0, IntlGuardToListFormat), JS_INLINABLE_FN("intl_GuardToNumberFormat", intrinsic_GuardToBuiltin, 1, 0, IntlGuardToNumberFormat), JS_INLINABLE_FN("intl_GuardToPluralRules", intrinsic_GuardToBuiltin, 1, 0, IntlGuardToPluralRules), JS_INLINABLE_FN("intl_GuardToRelativeTimeFormat", intrinsic_GuardToBuiltin, 1, 0, IntlGuardToRelativeTimeFormat), JS_INLINABLE_FN("intl_GuardToSegmentIterator", intrinsic_GuardToBuiltin, 1, 0, IntlGuardToSegmentIterator), JS_INLINABLE_FN("intl_GuardToSegmenter", intrinsic_GuardToBuiltin, 1, 0, IntlGuardToSegmenter), JS_INLINABLE_FN("intl_GuardToSegments", intrinsic_GuardToBuiltin, 1, 0, IntlGuardToSegments), JS_FN("intl_IsRuntimeDefaultLocale", intrinsic_IsRuntimeDefaultLocale, 1, 0), JS_FN("intl_IsValidTimeZoneName", intl_IsValidTimeZoneName, 1, 0), JS_FN("intl_IsWrappedDateTimeFormat", intrinsic_IsWrappedInstanceOfBuiltin, 1, 0), JS_FN("intl_IsWrappedNumberFormat", intrinsic_IsWrappedInstanceOfBuiltin, 1, 0), JS_FN("intl_NumberFormat", intl_NumberFormat, 2, 0), JS_FN("intl_RuntimeDefaultLocale", intrinsic_RuntimeDefaultLocale, 0, 0), JS_FN("intl_SelectPluralRule", intl_SelectPluralRule, 2, 0), JS_FN("intl_SelectPluralRuleRange", intl_SelectPluralRuleRange, 3, 0), JS_FN("intl_SupportedValuesOf", intl_SupportedValuesOf, 1, 0), JS_FN("intl_TryValidateAndCanonicalizeLanguageTag", intl_TryValidateAndCanonicalizeLanguageTag, 1, 0), JS_FN("intl_ValidateAndCanonicalizeLanguageTag", intl_ValidateAndCanonicalizeLanguageTag, 2, 0), JS_FN("intl_ValidateAndCanonicalizeUnicodeExtensionType", intl_ValidateAndCanonicalizeUnicodeExtensionType, 3, 0), JS_FN("intl_availableCalendars", intl_availableCalendars, 1, 0), JS_FN("intl_availableCollations", intl_availableCollations, 1, 0), # if DEBUG || MOZ_SYSTEM_ICU JS_FN("intl_availableMeasurementUnits", intl_availableMeasurementUnits, 0, 0), # endif JS_FN("intl_canonicalizeTimeZone", intl_canonicalizeTimeZone, 1, 0), JS_FN("intl_defaultCalendar", intl_defaultCalendar, 1, 0), JS_FN("intl_defaultTimeZone", intl_defaultTimeZone, 0, 0), JS_FN("intl_defaultTimeZoneOffset", intl_defaultTimeZoneOffset, 0, 0), JS_FN("intl_isDefaultTimeZone", intl_isDefaultTimeZone, 1, 0), JS_FN("intl_isIgnorePunctuation", intl_isIgnorePunctuation, 1, 0), JS_FN("intl_isUpperCaseFirst", intl_isUpperCaseFirst, 1, 0), JS_FN("intl_numberingSystem", intl_numberingSystem, 1, 0), JS_FN("intl_resolveDateTimeFormatComponents", intl_resolveDateTimeFormatComponents, 3, 0), JS_FN("intl_supportedLocaleOrFallback", intl_supportedLocaleOrFallback, 1, 0), JS_FN("intl_toLocaleLowerCase", intl_toLocaleLowerCase, 2, 0), JS_FN("intl_toLocaleUpperCase", intl_toLocaleUpperCase, 2, 0), #endif // JS_HAS_INTL_API // Standard builtins used by self-hosting. JS_FN("new_List", intrinsic_newList, 0, 0), JS_INLINABLE_FN("std_Array", array_construct, 1, 0, Array), JS_FN("std_Array_includes", array_includes, 1, 0), JS_FN("std_Array_indexOf", array_indexOf, 1, 0), JS_FN("std_Array_lastIndexOf", array_lastIndexOf, 1, 0), JS_INLINABLE_FN("std_Array_pop", array_pop, 0, 0, ArrayPop), JS_TRAMPOLINE_FN("std_Array_sort", array_sort, 1, 0, ArraySort), JS_FN("std_BigInt_valueOf", BigIntObject::valueOf, 0, 0), JS_FN("std_Date_now", date_now, 0, 0), JS_FN("std_Function_apply", fun_apply, 2, 0), JS_FN("std_Map_entries", MapObject::entries, 0, 0), JS_FN("std_Map_get", MapObject::get, 1, 0), JS_FN("std_Map_set", MapObject::set, 2, 0), JS_INLINABLE_FN("std_Math_abs", math_abs, 1, 0, MathAbs), JS_INLINABLE_FN("std_Math_floor", math_floor, 1, 0, MathFloor), JS_INLINABLE_FN("std_Math_max", math_max, 2, 0, MathMax), JS_INLINABLE_FN("std_Math_min", math_min, 2, 0, MathMin), JS_INLINABLE_FN("std_Math_trunc", math_trunc, 1, 0, MathTrunc), JS_INLINABLE_FN("std_Object_create", obj_create, 2, 0, ObjectCreate), JS_INLINABLE_FN("std_Object_isPrototypeOf", obj_isPrototypeOf, 1, 0, ObjectIsPrototypeOf), JS_FN("std_Object_propertyIsEnumerable", obj_propertyIsEnumerable, 1, 0), JS_FN("std_Object_setProto", obj_setProto, 1, 0), JS_FN("std_Object_toString", obj_toString, 0, 0), JS_INLINABLE_FN("std_Reflect_getPrototypeOf", Reflect_getPrototypeOf, 1, 0, ReflectGetPrototypeOf), JS_FN("std_Reflect_isExtensible", Reflect_isExtensible, 1, 0), JS_FN("std_Reflect_ownKeys", Reflect_ownKeys, 1, 0), JS_FN("std_Set_add", SetObject::add, 1, 0), JS_FN("std_Set_delete", SetObject::delete_, 1, 0), JS_INLINABLE_FN("std_Set_has", SetObject::has, 1, 0, SetHas), JS_INLINABLE_FN("std_Set_size", SetObject::size, 1, 0, SetSize), JS_FN("std_Set_values", SetObject::values, 0, 0), JS_INLINABLE_FN("std_String_charCodeAt", str_charCodeAt, 1, 0, StringCharCodeAt), JS_INLINABLE_FN("std_String_codePointAt", str_codePointAt, 1, 0, StringCodePointAt), JS_INLINABLE_FN("std_String_endsWith", str_endsWith, 1, 0, StringEndsWith), JS_INLINABLE_FN("std_String_fromCharCode", str_fromCharCode, 1, 0, StringFromCharCode), JS_INLINABLE_FN("std_String_fromCodePoint", str_fromCodePoint, 1, 0, StringFromCodePoint), JS_FN("std_String_includes", str_includes, 1, 0), JS_INLINABLE_FN("std_String_indexOf", str_indexOf, 1, 0, StringIndexOf), JS_INLINABLE_FN("std_String_startsWith", str_startsWith, 1, 0, StringStartsWith), #ifdef ENABLE_RECORD_TUPLE JS_FN("std_Tuple_unchecked", tuple_construct, 1, 0), #endif JS_FS_END}; #ifdef DEBUG static void CheckSelfHostedIntrinsics() { // The `intrinsic_functions` list must be sorted so that we can use // mozilla::BinarySearch to do lookups on demand. const char* prev = ""; for (JSFunctionSpec spec : intrinsic_functions) { if (spec.name.string()) { MOZ_ASSERT(strcmp(prev, spec.name.string()) < 0, "Self-hosted intrinsics must be sorted"); prev = spec.name.string(); } } } class CheckTenuredTracer : public JS::CallbackTracer { HashSet, SystemAllocPolicy> visited; Vector stack; public: explicit CheckTenuredTracer(JSRuntime* rt) : JS::CallbackTracer(rt) {} void check() { while (!stack.empty()) { JS::TraceChildren(this, stack.popCopy()); } } void onChild(JS::GCCellPtr thing, const char* name) override { gc::Cell* cell = thing.asCell(); MOZ_RELEASE_ASSERT(cell->isTenured(), "Expected tenured cell"); if (!visited.has(cell)) { if (!visited.put(cell) || !stack.append(thing)) { // Ignore OOM. This can happen during fuzzing. return; } } } }; static void CheckSelfHostingDataIsTenured(JSRuntime* rt) { // Check everything is tenured as we don't trace it when collecting the // nursery. CheckTenuredTracer trc(rt); rt->traceSelfHostingStencil(&trc); trc.check(); } #endif const JSFunctionSpec* js::FindIntrinsicSpec(js::PropertyName* name) { size_t limit = std::size(intrinsic_functions) - 1; MOZ_ASSERT(!intrinsic_functions[limit].name); MOZ_ASSERT(name->hasLatin1Chars()); JS::AutoCheckCannotGC nogc; const char* chars = reinterpret_cast(name->latin1Chars(nogc)); size_t len = name->length(); // NOTE: CheckSelfHostedIntrinsics checks that the intrinsic_functions list is // sorted appropriately so that we can use binary search here. size_t loc = 0; bool match = mozilla::BinarySearchIf( intrinsic_functions, 0, limit, [chars, len](const JSFunctionSpec& spec) { // The spec string is null terminated but the `name` string is not, so // compare chars up until the length of `name`. Since the `name` string // does not contain any nulls, seeing the null terminator of the spec // string will terminate the loop appropriately. A final comparison // against null is needed to determine if the spec string has an extra // suffix. const char* spec_chars = spec.name.string(); for (size_t i = 0; i < len; ++i) { if (auto cmp_result = int(chars[i]) - int(spec_chars[i])) { return cmp_result; } } return int('\0') - int(spec_chars[len]); }, &loc); if (match) { return &intrinsic_functions[loc]; } return nullptr; } void js::FillSelfHostingCompileOptions(CompileOptions& options) { /* * In self-hosting mode, scripts use JSOp::GetIntrinsic instead of * JSOp::GetName or JSOp::GetGName to access unbound variables. * JSOp::GetIntrinsic does a name lookup on a special object, whose * properties are filled in lazily upon first access for a given global. * * As that object is inaccessible to client code, the lookups are * guaranteed to return the original objects, ensuring safe implementation * of self-hosted builtins. * * Additionally, the special syntax callFunction(fun, receiver, ...args) * is supported, for which bytecode is emitted that invokes |fun| with * |receiver| as the this-object and ...args as the arguments. */ options.setIntroductionType("self-hosted"); options.setFileAndLine("self-hosted", 1); options.setSkipFilenameValidation(true); options.setSelfHostingMode(true); options.setForceFullParse(); options.setForceStrictMode(); options.setDiscardSource(); options.setIsRunOnce(true); options.setNoScriptRval(true); } // Report all errors and warnings to stderr because it is too early in the // startup process for any other error reporting to be used, and we don't want // errors in self-hosted code to be silently swallowed. class MOZ_STACK_CLASS AutoPrintSelfHostingFrontendContext : public FrontendContext { JSContext* cx_; public: explicit AutoPrintSelfHostingFrontendContext(JSContext* cx) : cx_(cx) { setCurrentJSContext(cx_); } ~AutoPrintSelfHostingFrontendContext() { // TODO: Remove this once JSContext is removed from frontend. MaybePrintAndClearPendingException(cx_); if (hadOutOfMemory()) { fprintf(stderr, "Out of memory\n"); } if (maybeError()) { JS::PrintError(stderr, &*maybeError(), true); } for (CompileError& error : warnings()) { JS::PrintError(stderr, &error, true); } if (hadOverRecursed()) { fprintf(stderr, "Over recursed\n"); } if (hadAllocationOverflow()) { fprintf(stderr, "Allocation overflow\n"); } } }; [[nodiscard]] static bool InitSelfHostingFromStencil( JSContext* cx, frontend::CompilationAtomCache& atomCache, const frontend::CompilationStencil& stencil) { // Build the JSAtom -> ScriptIndexRange mapping and save on the runtime. { auto& scriptMap = cx->runtime()->selfHostScriptMap.ref(); // We don't easily know the number of top-level functions, so use the total // number of stencil functions instead. There is very little nesting of // functions in self-hosted code so this is a good approximation. size_t numSelfHostedScripts = stencil.scriptData.size(); if (!scriptMap.reserve(numSelfHostedScripts)) { ReportOutOfMemory(cx); return false; } auto topLevelThings = stencil.scriptData[frontend::CompilationStencil::TopLevelIndex] .gcthings(stencil); // Iterate over the (named) top-level functions. We record the ScriptIndex // as well as the ScriptIndex of the next top-level function. Scripts // between these two indices are the inner functions of the first one. We // only record named scripts here since they are what might be looked up. Rooted prevAtom(cx); frontend::ScriptIndex prevIndex; for (frontend::TaggedScriptThingIndex thing : topLevelThings) { if (!thing.isFunction()) { continue; } frontend::ScriptIndex index = thing.toFunction(); const auto& script = stencil.scriptData[index]; if (prevAtom) { frontend::ScriptIndexRange range{prevIndex, index}; scriptMap.putNewInfallible(prevAtom, range); } prevAtom = script.functionAtom ? atomCache.getExistingAtomAt(cx, script.functionAtom) : nullptr; prevIndex = index; } if (prevAtom) { frontend::ScriptIndexRange range{ prevIndex, frontend::ScriptIndex(stencil.scriptData.size())}; scriptMap.putNewInfallible(prevAtom, range); } // We over-estimated the capacity of `scriptMap`, so check that the estimate // hasn't drifted too hasn't drifted too far since this was written. If this // assert fails, we may need a new way to size the `scriptMap`. MOZ_ASSERT(numSelfHostedScripts < (scriptMap.count() * 1.15)); } #ifdef DEBUG // Check that the list of intrinsics is well-formed. CheckSelfHostedIntrinsics(); CheckSelfHostingDataIsTenured(cx->runtime()); #endif return true; } bool JSRuntime::initSelfHostingStencil(JSContext* cx, JS::SelfHostedCache xdrCache, JS::SelfHostedWriter xdrWriter) { if (parentRuntime) { MOZ_RELEASE_ASSERT( parentRuntime->hasInitializedSelfHosting(), "Parent runtime must initialize self-hosting before workers"); selfHostStencilInput_ = parentRuntime->selfHostStencilInput_; selfHostStencil_ = parentRuntime->selfHostStencil_; return true; } // Variables used to instantiate scripts. CompileOptions options(cx); FillSelfHostingCompileOptions(options); // Try initializing from Stencil XDR. bool decodeOk = false; AutoPrintSelfHostingFrontendContext fc(cx); if (xdrCache.Length() > 0) { // Allow the VM to directly use bytecode from the XDR buffer without // copying it. The buffer must outlive all runtimes (including workers). options.borrowBuffer = true; options.usePinnedBytecode = true; Rooted> input( cx, cx->new_(options)); if (!input) { return false; } { AutoReportFrontendContext fc(cx); if (!input->initForSelfHostingGlobal(&fc)) { return false; } } RefPtr stencil( cx->new_(input->source)); if (!stencil) { return false; } if (!stencil->deserializeStencils(&fc, options, xdrCache, &decodeOk)) { return false; } if (decodeOk) { MOZ_ASSERT(input->atomCache.empty()); MOZ_ASSERT(!hasSelfHostStencil()); // Move it to the runtime. setSelfHostingStencil(&input, std::move(stencil)); return true; } } // If script wasn't generated, it means XDR was either not provided or that it // failed the decoding phase. Parse from text as before. uint32_t srcLen = GetRawScriptsSize(); const unsigned char* compressed = compressedSources; uint32_t compressedLen = GetCompressedSize(); auto src = cx->make_pod_array(srcLen); if (!src) { return false; } if (!DecompressString(compressed, compressedLen, reinterpret_cast(src.get()), srcLen)) { return false; } JS::SourceText srcBuf; if (!srcBuf.init(cx, std::move(src), srcLen)) { return false; } Rooted> input( cx, cx->new_(options)); if (!input) { return false; } frontend::NoScopeBindingCache scopeCache; RefPtr stencil = frontend::CompileGlobalScriptToStencil(cx, &fc, cx->tempLifoAlloc(), *input, &scopeCache, srcBuf, ScopeKind::Global); if (!stencil) { return false; } // Serialize the stencil to XDR. if (xdrWriter) { JS::TranscodeBuffer xdrBuffer; bool succeeded = false; if (!stencil->serializeStencils(cx, *input, xdrBuffer, &succeeded)) { return false; } if (!succeeded) { JS_ReportErrorASCII(cx, "Encoding failure"); return false; } if (!xdrWriter(cx, xdrBuffer)) { return false; } } MOZ_ASSERT(input->atomCache.empty()); MOZ_ASSERT(!hasSelfHostStencil()); // Move it to the runtime. setSelfHostingStencil(&input, std::move(stencil)); return true; } void JSRuntime::setSelfHostingStencil( MutableHandle> input, RefPtr&& stencil) { MOZ_ASSERT(!selfHostStencilInput_); MOZ_ASSERT(!selfHostStencil_); selfHostStencilInput_ = input.release(); selfHostStencil_ = stencil.forget().take(); #ifdef DEBUG CheckSelfHostingDataIsTenured(this); #endif } bool JSRuntime::initSelfHostingFromStencil(JSContext* cx) { return InitSelfHostingFromStencil( cx, cx->runtime()->selfHostStencilInput_->atomCache, *cx->runtime()->selfHostStencil_); } void JSRuntime::finishSelfHosting() { if (!parentRuntime) { js_delete(selfHostStencilInput_.ref()); if (selfHostStencil_) { // delete selfHostStencil_ by decrementing the ref-count of the last // instance. RefPtr stencil; *getter_AddRefs(stencil) = selfHostStencil_; MOZ_ASSERT(stencil->refCount == 1); } } selfHostStencilInput_ = nullptr; selfHostStencil_ = nullptr; selfHostScriptMap.ref().clear(); } void JSRuntime::traceSelfHostingStencil(JSTracer* trc) { if (selfHostStencilInput_.ref()) { selfHostStencilInput_->trace(trc); } selfHostScriptMap.ref().trace(trc); } GeneratorKind JSRuntime::getSelfHostedFunctionGeneratorKind( js::PropertyName* name) { frontend::ScriptIndex index = getSelfHostedScriptIndexRange(name)->start; auto flags = selfHostStencil().scriptExtra[index].immutableFlags; return flags.hasFlag(js::ImmutableScriptFlagsEnum::IsGenerator) ? GeneratorKind::Generator : GeneratorKind::NotGenerator; } // Returns the ScriptSourceObject to use for cloned self-hosted scripts in the // current realm. ScriptSourceObject* js::SelfHostingScriptSourceObject(JSContext* cx) { return GlobalObject::getOrCreateSelfHostingScriptSourceObject(cx, cx->global()); } /* static */ ScriptSourceObject* GlobalObject::getOrCreateSelfHostingScriptSourceObject( JSContext* cx, Handle global) { MOZ_ASSERT(cx->global() == global); if (ScriptSourceObject* sso = global->data().selfHostingScriptSource) { return sso; } CompileOptions options(cx); FillSelfHostingCompileOptions(options); RefPtr source(cx->new_()); if (!source) { return nullptr; } Rooted sourceObject(cx); { AutoReportFrontendContext fc(cx); if (!source->initFromOptions(&fc, options)) { return nullptr; } sourceObject = ScriptSourceObject::create(cx, source.get()); if (!sourceObject) { return nullptr; } JS::InstantiateOptions instantiateOptions(options); if (!ScriptSourceObject::initFromOptions(cx, sourceObject, instantiateOptions)) { return nullptr; } global->data().selfHostingScriptSource.init(sourceObject); } return sourceObject; } bool JSRuntime::delazifySelfHostedFunction(JSContext* cx, Handle name, HandleFunction targetFun) { MOZ_ASSERT(targetFun->isExtended()); MOZ_ASSERT(targetFun->hasSelfHostedLazyScript()); auto indexRange = *getSelfHostedScriptIndexRange(name); auto& stencil = cx->runtime()->selfHostStencil(); if (!stencil.delazifySelfHostedFunction( cx, cx->runtime()->selfHostStencilInput().atomCache, indexRange, targetFun)) { return false; } // Relazifiable self-hosted functions may be relazified later into a // SelfHostedLazyScript, dropping the BaseScript entirely. This only applies // to named function being delazified. Inner functions used by self-hosting // are never relazified. BaseScript* targetScript = targetFun->baseScript(); if (targetScript->isRelazifiable()) { targetScript->setAllowRelazify(); } return true; } mozilla::Maybe JSRuntime::getSelfHostedScriptIndexRange(js::PropertyName* name) { if (parentRuntime) { return parentRuntime->getSelfHostedScriptIndexRange(name); } MOZ_ASSERT(name->isPermanentAndMayBeShared()); if (auto ptr = selfHostScriptMap.ref().readonlyThreadsafeLookup(name)) { return mozilla::Some(ptr->value()); } return mozilla::Nothing(); } static bool GetComputedIntrinsic(JSContext* cx, Handle name, MutableHandleValue vp) { // If the intrinsic was not in hardcoded set, run the top-level of the // selfhosted script. This will generate values and call `SetIntrinsic` to // save them on a special "computed intrinsics holder". We then can check for // our required values and cache on the normal intrinsics holder. Rooted computedIntrinsicsHolder( cx, cx->global()->getComputedIntrinsicsHolder()); if (!computedIntrinsicsHolder) { auto computedIntrinsicHolderGuard = mozilla::MakeScopeExit( [cx]() { cx->global()->setComputedIntrinsicsHolder(nullptr); }); // Instantiate a script in current realm from the shared Stencil. JSRuntime* runtime = cx->runtime(); RootedScript script( cx, runtime->selfHostStencil().instantiateSelfHostedTopLevelForRealm( cx, runtime->selfHostStencilInput())); if (!script) { return false; } // Attach the computed intrinsics holder to the global now to capture // generated values. computedIntrinsicsHolder = NewPlainObjectWithProto(cx, nullptr, TenuredObject); if (!computedIntrinsicsHolder) { return false; } cx->global()->setComputedIntrinsicsHolder(computedIntrinsicsHolder); // Disable the interrupt callback while executing the top-level script. // This prevents recursive calls to GetComputedIntrinsic through the // interrupt callback. bool hadInterruptsDisabled = JS_DisableInterruptCallback(cx); auto resetInterrupts = mozilla::MakeScopeExit( [&]() { JS_ResetInterruptCallback(cx, hadInterruptsDisabled); }); // Attempt to execute the top-level script. If they fails to run to // successful completion, throw away the holder to avoid a partial // initialization state. if (!JS_ExecuteScript(cx, script)) { return false; } // Successfully ran the self-host top-level in current realm, so these // computed intrinsic values are now source of truth for the realm. computedIntrinsicHolderGuard.release(); } // Cache the individual intrinsic on the standard holder object so that we // only have to look for it in one place when performing `GetIntrinsic`. mozilla::Maybe prop = computedIntrinsicsHolder->lookup(cx, name); MOZ_RELEASE_ASSERT(prop, "SelfHosted intrinsic not found"); RootedValue value(cx, computedIntrinsicsHolder->getSlot(prop->slot())); return GlobalObject::addIntrinsicValue(cx, cx->global(), name, value); } bool JSRuntime::getSelfHostedValue(JSContext* cx, Handle name, MutableHandleValue vp) { // If the self-hosted value we want is a function in the stencil, instantiate // a lazy self-hosted function for it. This is typical when a self-hosted // function calls other self-hosted helper functions. if (auto index = getSelfHostedScriptIndexRange(name)) { JSFunction* fun = cx->runtime()->selfHostStencil().instantiateSelfHostedLazyFunction( cx, cx->runtime()->selfHostStencilInput().atomCache, index->start, name); if (!fun) { return false; } vp.setObject(*fun); return true; } return GetComputedIntrinsic(cx, name, vp); } void JSRuntime::assertSelfHostedFunctionHasCanonicalName( Handle name) { #ifdef DEBUG frontend::ScriptIndex index = getSelfHostedScriptIndexRange(name)->start; MOZ_ASSERT(selfHostStencil().scriptData[index].hasSelfHostedCanonicalName()); #endif } bool js::IsSelfHostedFunctionWithName(JSFunction* fun, JSAtom* name) { return fun->isSelfHostedBuiltin() && fun->isExtended() && GetClonedSelfHostedFunctionName(fun) == name; } bool js::IsSelfHostedFunctionWithName(const Value& v, JSAtom* name) { if (!v.isObject() || !v.toObject().is()) { return false; } JSFunction* fun = &v.toObject().as(); return IsSelfHostedFunctionWithName(fun, name); } static_assert( JSString::MAX_LENGTH <= INT32_MAX, "StringIteratorNext in builtin/String.js assumes the stored index " "into the string is an Int32Value"); static_assert(JSString::MAX_LENGTH == MAX_STRING_LENGTH, "JSString::MAX_LENGTH matches self-hosted constant for maximum " "string length"); static_assert(ARGS_LENGTH_MAX == MAX_ARGS_LENGTH, "ARGS_LENGTH_MAX matches self-hosted constant for maximum " "arguments length");