/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim: set ts=8 sts=2 et sw=2 tw=80: */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ /* struct containing the input to nsIFrame::Reflow */ #ifndef mozilla_ReflowInput_h #define mozilla_ReflowInput_h #include "nsMargin.h" #include "nsStyleConsts.h" #include "mozilla/Assertions.h" #include "mozilla/EnumSet.h" #include "mozilla/Maybe.h" #include "mozilla/WritingModes.h" #include "LayoutConstants.h" #include "ReflowOutput.h" #include class gfxContext; class nsFloatManager; struct nsHypotheticalPosition; class nsIPercentBSizeObserver; class nsLineLayout; class nsPlaceholderFrame; class nsPresContext; class nsReflowStatus; namespace mozilla { enum class LayoutFrameType : uint8_t; /** * A set of StyleSizes used as an input parameter to various functions that * compute sizes like nsIFrame::ComputeSize(). If any of the member fields has a * value, the function may use the value instead of retrieving it from the * frame's style. * * The logical sizes are assumed to be in the associated frame's writing-mode. */ struct StyleSizeOverrides { Maybe mStyleISize; Maybe mStyleBSize; Maybe mAspectRatio; bool HasAnyOverrides() const { return mStyleISize || mStyleBSize; } bool HasAnyLengthOverrides() const { return (mStyleISize && mStyleISize->ConvertsToLength()) || (mStyleBSize && mStyleBSize->ConvertsToLength()); } // By default, table wrapper frame considers the size overrides applied to // itself, so it creates any length size overrides for inner table frame by // subtracting the area occupied by the caption and border & padding according // to box-sizing. // // When this flag is true, table wrapper frame is required to apply the size // overrides to the inner table frame directly, without any modification, // which is useful for flex container to override the inner table frame's // preferred main size with 'flex-basis'. // // Note: if mStyleISize is a LengthPercentage, the inner table frame will // comply with the inline-size override without enforcing its min-content // inline-size in nsTableFrame::ComputeSize(). This is necessary so that small // flex-basis values like 'flex-basis:1%' can be resolved correctly; the // flexbox layout algorithm does still explicitly clamp to min-sizes *at a // later step*, after the flex-basis has been resolved -- so this flag won't // actually produce any user-visible tables whose final inline size is smaller // than their min-content inline size. bool mApplyOverridesVerbatim = false; }; } // namespace mozilla /** * @return aValue clamped to [aMinValue, aMaxValue]. * * @note This function needs to handle aMinValue > aMaxValue. In that case, * aMinValue is returned. That's why we cannot use std::clamp() and * mozilla::clamped() since they both assert max >= min. * @note If aMinValue and aMaxValue are computed min block-size and max * block-size, it is simpler to use ReflowInput::ApplyMinMaxBSize(). * Similarly, there is ReflowInput::ApplyMinMaxISize() for clamping an * inline-size. * @see http://www.w3.org/TR/CSS21/visudet.html#min-max-widths * @see http://www.w3.org/TR/CSS21/visudet.html#min-max-heights */ template NumericType NS_CSS_MINMAX(NumericType aValue, NumericType aMinValue, NumericType aMaxValue) { NumericType result = aValue; if (aMaxValue < result) result = aMaxValue; if (aMinValue > result) result = aMinValue; return result; } namespace mozilla { // A base class of ReflowInput that computes only the padding, // border, and margin, since those values are needed more often. struct SizeComputationInput { public: // The frame being reflowed. nsIFrame* const mFrame; // Rendering context to use for measurement. gfxContext* mRenderingContext; nsMargin ComputedPhysicalMargin() const { return mComputedMargin.GetPhysicalMargin(mWritingMode); } nsMargin ComputedPhysicalBorderPadding() const { return mComputedBorderPadding.GetPhysicalMargin(mWritingMode); } nsMargin ComputedPhysicalBorder() const { return ComputedLogicalBorder(mWritingMode).GetPhysicalMargin(mWritingMode); } nsMargin ComputedPhysicalPadding() const { return mComputedPadding.GetPhysicalMargin(mWritingMode); } mozilla::LogicalMargin ComputedLogicalMargin(mozilla::WritingMode aWM) const { return mComputedMargin.ConvertTo(aWM, mWritingMode); } mozilla::LogicalMargin ComputedLogicalBorderPadding( mozilla::WritingMode aWM) const { return mComputedBorderPadding.ConvertTo(aWM, mWritingMode); } mozilla::LogicalMargin ComputedLogicalPadding( mozilla::WritingMode aWM) const { return mComputedPadding.ConvertTo(aWM, mWritingMode); } mozilla::LogicalMargin ComputedLogicalBorder(mozilla::WritingMode aWM) const { return (mComputedBorderPadding - mComputedPadding) .ConvertTo(aWM, mWritingMode); } void SetComputedLogicalMargin(mozilla::WritingMode aWM, const mozilla::LogicalMargin& aMargin) { mComputedMargin = aMargin.ConvertTo(mWritingMode, aWM); } void SetComputedLogicalBorderPadding( mozilla::WritingMode aWM, const mozilla::LogicalMargin& aBorderPadding) { mComputedBorderPadding = aBorderPadding.ConvertTo(mWritingMode, aWM); } void SetComputedLogicalPadding(mozilla::WritingMode aWM, const mozilla::LogicalMargin& aPadding) { mComputedPadding = aPadding.ConvertTo(mWritingMode, aWM); } mozilla::WritingMode GetWritingMode() const { return mWritingMode; } protected: // cached copy of the frame's writing-mode, for logical coordinates const mozilla::WritingMode mWritingMode; // Cached mFrame->IsThemed(). const bool mIsThemed = false; // Computed margin values mozilla::LogicalMargin mComputedMargin; // Cached copy of the border + padding values mozilla::LogicalMargin mComputedBorderPadding; // Computed padding values mozilla::LogicalMargin mComputedPadding; public: // Callers using this constructor must call InitOffsets on their own. SizeComputationInput(nsIFrame* aFrame, gfxContext* aRenderingContext); SizeComputationInput(nsIFrame* aFrame, gfxContext* aRenderingContext, mozilla::WritingMode aContainingBlockWritingMode, nscoord aContainingBlockISize, const mozilla::Maybe& aBorder = mozilla::Nothing(), const mozilla::Maybe& aPadding = mozilla::Nothing()); #ifdef DEBUG // Reflow trace methods. Defined in nsFrame.cpp so they have access // to the display-reflow infrastructure. static void* DisplayInitOffsetsEnter(nsIFrame* aFrame, SizeComputationInput* aState, nscoord aPercentBasis, mozilla::WritingMode aCBWritingMode, const nsMargin* aBorder, const nsMargin* aPadding); static void DisplayInitOffsetsExit(nsIFrame* aFrame, SizeComputationInput* aState, void* aValue); #endif private: /** * Computes margin values from the specified margin style information, and * fills in the mComputedMargin member. * * @param aCBWM Writing mode of the containing block * @param aPercentBasis * Inline size of the containing block (in its own writing mode), to use * for resolving percentage margin values in the inline and block axes. * @return true if the margin is dependent on the containing block size. */ bool ComputeMargin(mozilla::WritingMode aCBWM, nscoord aPercentBasis, mozilla::LayoutFrameType aFrameType); /** * Computes padding values from the specified padding style information, and * fills in the mComputedPadding member. * * @param aCBWM Writing mode of the containing block * @param aPercentBasis * Inline size of the containing block (in its own writing mode), to use * for resolving percentage padding values in the inline and block axes. * @return true if the padding is dependent on the containing block size. */ bool ComputePadding(mozilla::WritingMode aCBWM, nscoord aPercentBasis, mozilla::LayoutFrameType aFrameType); protected: void InitOffsets(mozilla::WritingMode aCBWM, nscoord aPercentBasis, mozilla::LayoutFrameType aFrameType, mozilla::ComputeSizeFlags aFlags, const mozilla::Maybe& aBorder, const mozilla::Maybe& aPadding, const nsStyleDisplay* aDisplay = nullptr); /* * Convert StyleSize or StyleMaxSize to nscoord when percentages depend on the * inline size of the containing block, and enumerated values are for inline * size, min-inline-size, or max-inline-size. Does not handle auto inline * sizes. */ template inline nscoord ComputeISizeValue(const WritingMode aWM, const LogicalSize& aContainingBlockSize, const LogicalSize& aContentEdgeToBoxSizing, nscoord aBoxSizingToMarginEdge, const SizeOrMaxSize&) const; // same as previous, but using mComputedBorderPadding, mComputedPadding, // and mComputedMargin template inline nscoord ComputeISizeValue(const LogicalSize& aContainingBlockSize, mozilla::StyleBoxSizing aBoxSizing, const SizeOrMaxSize&) const; nscoord ComputeBSizeValue(nscoord aContainingBlockBSize, mozilla::StyleBoxSizing aBoxSizing, const mozilla::LengthPercentage& aCoord) const; }; /** * State passed to a frame during reflow or intrinsic size calculation. * * XXX Refactor so only a base class (nsSizingState?) is used for intrinsic * size calculation. * * @see nsIFrame#Reflow() */ struct ReflowInput : public SizeComputationInput { // the reflow inputs are linked together. this is the pointer to the // parent's reflow input const ReflowInput* mParentReflowInput = nullptr; // A non-owning pointer to the float manager associated with this area, // which points to the object owned by nsAutoFloatManager::mNew. nsFloatManager* mFloatManager = nullptr; // LineLayout object (only for inline reflow; set to nullptr otherwise) nsLineLayout* mLineLayout = nullptr; // The appropriate reflow input for the containing block (for // percentage widths, etc.) of this reflow input's frame. It will be setup // properly in InitCBReflowInput(). const ReflowInput* mCBReflowInput = nullptr; // The amount the in-flow position of the block is moving vertically relative // to its previous in-flow position (i.e. the amount the line containing the // block is moving). // This should be zero for anything which is not a block outside, and it // should be zero for anything which has a non-block parent. // The intended use of this value is to allow the accurate determination // of the potential impact of a float // This takes on an arbitrary value the first time a block is reflowed nscoord mBlockDelta = 0; // If a ReflowInput finds itself initialized with an unconstrained // inline-size, it will look up its parentReflowInput chain for a reflow input // with an orthogonal writing mode and a non-NS_UNCONSTRAINEDSIZE value for // orthogonal limit; when it finds such a reflow input, it will use its // orthogonal-limit value to constrain inline-size. // This is initialized to NS_UNCONSTRAINEDSIZE (so it will be ignored), // but reset to a suitable value for the reflow root by PresShell. nscoord mOrthogonalLimit = NS_UNCONSTRAINEDSIZE; // Physical accessors for the private fields. They are needed for // compatibility with not-yet-updated code. New code should use the accessors // for logical coordinates, unless the code really works on physical // coordinates. nscoord AvailableWidth() const { return mAvailableSize.Width(mWritingMode); } nscoord AvailableHeight() const { return mAvailableSize.Height(mWritingMode); } nscoord ComputedWidth() const { return mComputedSize.Width(mWritingMode); } nscoord ComputedHeight() const { return mComputedSize.Height(mWritingMode); } nscoord ComputedMinWidth() const { return mComputedMinSize.Width(mWritingMode); } nscoord ComputedMaxWidth() const { return mComputedMaxSize.Width(mWritingMode); } nscoord ComputedMinHeight() const { return mComputedMinSize.Height(mWritingMode); } nscoord ComputedMaxHeight() const { return mComputedMaxSize.Height(mWritingMode); } // Logical accessors for private fields in mWritingMode. nscoord AvailableISize() const { return mAvailableSize.ISize(mWritingMode); } nscoord AvailableBSize() const { return mAvailableSize.BSize(mWritingMode); } nscoord ComputedISize() const { return mComputedSize.ISize(mWritingMode); } nscoord ComputedBSize() const { return mComputedSize.BSize(mWritingMode); } nscoord ComputedMinISize() const { return mComputedMinSize.ISize(mWritingMode); } nscoord ComputedMaxISize() const { return mComputedMaxSize.ISize(mWritingMode); } nscoord ComputedMinBSize() const { return mComputedMinSize.BSize(mWritingMode); } nscoord ComputedMaxBSize() const { return mComputedMaxSize.BSize(mWritingMode); } // WARNING: In general, adjusting available inline-size or block-size is not // safe because ReflowInput has members whose values depend on the available // size passing through the constructor. For example, // CalculateBlockSideMargins() is called during initialization, and uses // AvailableSize(). Make sure your use case doesn't lead to stale member // values in ReflowInput! void SetAvailableISize(nscoord aAvailableISize) { mAvailableSize.ISize(mWritingMode) = aAvailableISize; } void SetAvailableBSize(nscoord aAvailableBSize) { mAvailableSize.BSize(mWritingMode) = aAvailableBSize; } void SetComputedMinISize(nscoord aMinISize) { mComputedMinSize.ISize(mWritingMode) = aMinISize; } void SetComputedMaxISize(nscoord aMaxISize) { mComputedMaxSize.ISize(mWritingMode) = aMaxISize; } void SetComputedMinBSize(nscoord aMinBSize) { mComputedMinSize.BSize(mWritingMode) = aMinBSize; } void SetComputedMaxBSize(nscoord aMaxBSize) { mComputedMaxSize.BSize(mWritingMode) = aMaxBSize; } void SetPercentageBasisInBlockAxis(nscoord aBSize) { mPercentageBasisInBlockAxis = Some(aBSize); } mozilla::LogicalSize AvailableSize() const { return mAvailableSize; } mozilla::LogicalSize ComputedSize() const { return mComputedSize; } mozilla::LogicalSize ComputedMinSize() const { return mComputedMinSize; } mozilla::LogicalSize ComputedMaxSize() const { return mComputedMaxSize; } mozilla::LogicalSize AvailableSize(mozilla::WritingMode aWM) const { return AvailableSize().ConvertTo(aWM, mWritingMode); } mozilla::LogicalSize ComputedSize(mozilla::WritingMode aWM) const { return ComputedSize().ConvertTo(aWM, mWritingMode); } mozilla::LogicalSize ComputedMinSize(mozilla::WritingMode aWM) const { return ComputedMinSize().ConvertTo(aWM, mWritingMode); } mozilla::LogicalSize ComputedMaxSize(mozilla::WritingMode aWM) const { return ComputedMaxSize().ConvertTo(aWM, mWritingMode); } mozilla::LogicalSize ComputedSizeWithPadding(mozilla::WritingMode aWM) const { return ComputedSize(aWM) + ComputedLogicalPadding(aWM).Size(aWM); } mozilla::LogicalSize ComputedSizeWithBorderPadding( mozilla::WritingMode aWM) const { return ComputedSize(aWM) + ComputedLogicalBorderPadding(aWM).Size(aWM); } mozilla::LogicalSize ComputedSizeWithMarginBorderPadding( mozilla::WritingMode aWM) const { return ComputedSizeWithBorderPadding(aWM) + ComputedLogicalMargin(aWM).Size(aWM); } nsSize ComputedPhysicalSize() const { return mComputedSize.GetPhysicalSize(mWritingMode); } nsMargin ComputedPhysicalOffsets() const { return mComputedOffsets.GetPhysicalMargin(mWritingMode); } LogicalMargin ComputedLogicalOffsets(mozilla::WritingMode aWM) const { return mComputedOffsets.ConvertTo(aWM, mWritingMode); } void SetComputedLogicalOffsets(mozilla::WritingMode aWM, const LogicalMargin& aOffsets) { mComputedOffsets = aOffsets.ConvertTo(mWritingMode, aWM); } // Return ReflowInput's computed size including border-padding, with // unconstrained dimensions replaced by zero. nsSize ComputedSizeAsContainerIfConstrained() const; // Our saved containing block dimensions. LogicalSize mContainingBlockSize{mWritingMode}; // Cached pointers to the various style structs used during initialization. const nsStyleDisplay* mStyleDisplay = nullptr; const nsStylePosition* mStylePosition = nullptr; const nsStyleBorder* mStyleBorder = nullptr; const nsStyleMargin* mStyleMargin = nullptr; enum class BreakType : uint8_t { Auto, Column, Page, }; BreakType mBreakType = BreakType::Auto; // a frame (e.g. nsTableCellFrame) which may need to generate a special // reflow for percent bsize calculations nsIPercentBSizeObserver* mPercentBSizeObserver = nullptr; // CSS margin collapsing sometimes requires us to reflow // optimistically assuming that margins collapse to see if clearance // is required. When we discover that clearance is required, we // store the frame in which clearance was discovered to the location // requested here. nsIFrame** mDiscoveredClearance = nullptr; struct Flags { Flags() { memset(this, 0, sizeof(*this)); } // cached mFrame->IsReplaced() || mFrame->IsReplacedWithBlock() bool mIsReplaced : 1; // used by tables to communicate special reflow (in process) to handle // percent bsize frames inside cells which may not have computed bsizes bool mSpecialBSizeReflow : 1; // nothing in the frame's next-in-flow (or its descendants) is changing bool mNextInFlowUntouched : 1; // Is the current context at the top of a page? When true, we force // something that's too tall for a page/column to fit anyway to avoid // infinite loops. bool mIsTopOfPage : 1; // parent frame is an nsIScrollableFrame and it is assuming a horizontal // scrollbar bool mAssumingHScrollbar : 1; // parent frame is an nsIScrollableFrame and it is assuming a vertical // scrollbar bool mAssumingVScrollbar : 1; // Is frame a different inline-size than before? bool mIsIResize : 1; // Is frame (potentially) a different block-size than before? // This includes cases where the block-size is 'auto' and the // contents or width have changed. bool mIsBResize : 1; // Has this frame changed block-size in a way that affects // block-size percentages on frames for which it is the containing // block? This includes a change between 'auto' and a length that // doesn't actually change the frame's block-size. It does not // include cases where the block-size is 'auto' and the frame's // contents have changed. // // In the current code, this is only true when mIsBResize is also // true, although it doesn't necessarily need to be that way (e.g., // in the case of a frame changing from 'auto' to a length that // produces the same height). bool mIsBResizeForPercentages : 1; // tables are splittable, this should happen only inside a page and never // insider a column frame bool mTableIsSplittable : 1; // Does frame height depend on an ancestor table-cell? bool mHeightDependsOnAncestorCell : 1; // nsColumnSetFrame is balancing columns bool mIsColumnBalancing : 1; // We have an ancestor nsColumnSetFrame performing the last column balancing // reflow. The available block-size of the last column might become // unconstrained. bool mIsInLastColumnBalancingReflow : 1; // True if ColumnSetWrapperFrame has a constrained block-size, and is going // to consume all of its block-size in this fragment. This bit is passed to // nsColumnSetFrame to determine whether to give up balancing and create // overflow columns. bool mColumnSetWrapperHasNoBSizeLeft : 1; // If this flag is set, the BSize of this frame should be considered // indefinite for the purposes of percent resolution on child frames (we // should behave as if ComputedBSize() were NS_UNCONSTRAINEDSIZE when doing // percent resolution against this.ComputedBSize()). For example: flex // items may have their ComputedBSize() resolved ahead-of-time by their // flex container, and yet their BSize might have to be considered // indefinite per https://drafts.csswg.org/css-flexbox/#definite-sizes bool mTreatBSizeAsIndefinite : 1; // a "fake" reflow input made in order to be the parent of a real one bool mDummyParentReflowInput : 1; // Should this frame reflow its place-holder children? If the available // height of this frame didn't change, but its in a paginated environment // (e.g. columns), it should always reflow its placeholder children. bool mMustReflowPlaceholders : 1; // the STATIC_POS_IS_CB_ORIGIN ctor flag bool mStaticPosIsCBOrigin : 1; // If set, the following two flags indicate that: // (1) this frame is absolutely-positioned (or fixed-positioned). // (2) this frame's static position depends on the CSS Box Alignment. // (3) we do need to compute the static position, because the frame's // {Inline and/or Block} offsets actually depend on it. // When these bits are set, the offset values (IStart/IEnd, BStart/BEnd) // represent the "start" edge of the frame's CSS Box Alignment container // area, in that axis -- and these offsets need to be further-resolved // (with CSS Box Alignment) after we know the OOF frame's size. // NOTE: The "I" and "B" (for "Inline" and "Block") refer the axes of the // *containing block's writing-mode*, NOT mFrame's own writing-mode. This // is purely for convenience, since that's the writing-mode we're dealing // with when we set & react to these bits. bool mIOffsetsNeedCSSAlign : 1; bool mBOffsetsNeedCSSAlign : 1; // Is this frame or one of its ancestors being reflowed in a different // continuation than the one in which it was previously reflowed? In // other words, has it moved to a different column or page than it was in // the previous reflow? // // FIXME: For now, we only ensure that this is set correctly for blocks. // This is okay because the only thing that uses it only cares about // whether there's been a fragment change within the same block formatting // context. bool mMovedBlockFragments : 1; // Is the block-size computed by aspect-ratio and inline size (i.e. block // axis is the ratio-dependent axis)? We set this flag so that we can check // whether to apply automatic content-based minimum sizes once we know the // children's block-size (after reflowing them). // https://drafts.csswg.org/css-sizing-4/#aspect-ratio-minimum bool mIsBSizeSetByAspectRatio : 1; // If true, then children of this frame can generate class A breakpoints // for paginated reflow. bool mCanHaveClassABreakpoints : 1; }; Flags mFlags; mozilla::StyleSizeOverrides mStyleSizeOverrides; mozilla::ComputeSizeFlags mComputeSizeFlags; // This value keeps track of how deeply nested a given reflow input // is from the top of the frame tree. int16_t mReflowDepth = 0; // Logical and physical accessors for the resize flags. bool IsHResize() const { return mWritingMode.IsVertical() ? mFlags.mIsBResize : mFlags.mIsIResize; } bool IsVResize() const { return mWritingMode.IsVertical() ? mFlags.mIsIResize : mFlags.mIsBResize; } bool IsIResize() const { return mFlags.mIsIResize; } bool IsBResize() const { return mFlags.mIsBResize; } bool IsBResizeForWM(mozilla::WritingMode aWM) const { return aWM.IsOrthogonalTo(mWritingMode) ? mFlags.mIsIResize : mFlags.mIsBResize; } bool IsBResizeForPercentagesForWM(mozilla::WritingMode aWM) const { // This uses the relatively-accurate mIsBResizeForPercentages flag // when the writing modes are parallel, and is a bit more // pessimistic when orthogonal. return !aWM.IsOrthogonalTo(mWritingMode) ? mFlags.mIsBResizeForPercentages : IsIResize(); } void SetHResize(bool aValue) { if (mWritingMode.IsVertical()) { mFlags.mIsBResize = aValue; } else { mFlags.mIsIResize = aValue; } } void SetVResize(bool aValue) { if (mWritingMode.IsVertical()) { mFlags.mIsIResize = aValue; } else { mFlags.mIsBResize = aValue; } } void SetIResize(bool aValue) { mFlags.mIsIResize = aValue; } void SetBResize(bool aValue) { mFlags.mIsBResize = aValue; } // Values for |aFlags| passed to constructor enum class InitFlag : uint8_t { // Indicates that the parent of this reflow input is "fake" (see // mDummyParentReflowInput in mFlags). DummyParentReflowInput, // Indicates that the calling function will initialize the reflow input, and // that the constructor should not call Init(). CallerWillInit, // The caller wants the abs.pos. static-position resolved at the origin of // the containing block, i.e. at LogicalPoint(0, 0). (Note that this // doesn't necessarily mean that (0, 0) is the *correct* static position // for the frame in question.) // @note In a Grid container's masonry axis we'll always use // the placeholder's position in that axis regardless of this flag. StaticPosIsCBOrigin, }; using InitFlags = mozilla::EnumSet; // Note: The copy constructor is written by the compiler automatically. You // can use that and then override specific values if you want, or you can // call Init as desired... /** * Initialize a ROOT reflow input. * * @param aPresContext Must be equal to aFrame->PresContext(). * @param aFrame The frame for whose reflow input is being constructed. * @param aRenderingContext The rendering context to be used for measurements. * @param aAvailableSpace The available space to reflow aFrame (in aFrame's * writing-mode). See comments for mAvailableSize for more information. * @param aFlags A set of flags used for additional boolean parameters (see * InitFlags above). */ ReflowInput(nsPresContext* aPresContext, nsIFrame* aFrame, gfxContext* aRenderingContext, const mozilla::LogicalSize& aAvailableSpace, InitFlags aFlags = {}); /** * Initialize a reflow input for a child frame's reflow. Some parts of the * state are copied from the parent's reflow input. The remainder is computed. * * @param aPresContext Must be equal to aFrame->PresContext(). * @param aParentReflowInput A reference to an ReflowInput object that * is to be the parent of this object. * @param aFrame The frame for whose reflow input is being constructed. * @param aAvailableSpace The available space to reflow aFrame (in aFrame's * writing-mode). See comments for mAvailableSize for more information. * @param aContainingBlockSize An optional size (in aFrame's writing mode), * specifying the containing block size to use instead of the default * size computed by ComputeContainingBlockRectangle(). If * InitFlag::CallerWillInit is used, this is ignored. Pass it via * Init() instead. * @param aFlags A set of flags used for additional boolean parameters (see * InitFlags above). * @param aStyleSizeOverrides The style data used to override mFrame's when we * call nsIFrame::ComputeSize() internally. * @param aComputeSizeFlags A set of flags used when we call * nsIFrame::ComputeSize() internally. */ ReflowInput(nsPresContext* aPresContext, const ReflowInput& aParentReflowInput, nsIFrame* aFrame, const mozilla::LogicalSize& aAvailableSpace, const mozilla::Maybe& aContainingBlockSize = mozilla::Nothing(), InitFlags aFlags = {}, const mozilla::StyleSizeOverrides& aSizeOverrides = {}, mozilla::ComputeSizeFlags aComputeSizeFlags = {}); /** * This method initializes various data members. It is automatically called by * the constructors if InitFlags::CallerWillInit is *not* used. * * @param aContainingBlockSize An optional size (in mFrame's writing mode), * specifying the containing block size to use instead of the default * size computed by ComputeContainingBlockRectangle(). * @param aBorder An optional border (in mFrame's writing mode). If given, use * it instead of the border computed from mFrame's StyleBorder. * @param aPadding An optional padding (in mFrame's writing mode). If given, * use it instead of the padding computing from mFrame's StylePadding. */ void Init(nsPresContext* aPresContext, const mozilla::Maybe& aContainingBlockSize = mozilla::Nothing(), const mozilla::Maybe& aBorder = mozilla::Nothing(), const mozilla::Maybe& aPadding = mozilla::Nothing()); /** * Get the used line-height property. The return value will be >= 0. */ nscoord GetLineHeight() const; /** * Set the used line-height. aLineHeight must be >= 0. */ void SetLineHeight(nscoord aLineHeight); /** * Calculate the used line-height property without a reflow input instance. * The return value will be >= 0. * * @param aBlockBSize The computed block size of the content rect of the block * that the line should fill. Only used with * line-height:-moz-block-height. NS_UNCONSTRAINEDSIZE * results in a normal line-height for * line-height:-moz-block-height. * @param aFontSizeInflation The result of the appropriate * nsLayoutUtils::FontSizeInflationFor call, * or 1.0 if during intrinsic size * calculation. */ static nscoord CalcLineHeight(const ComputedStyle&, nsPresContext* aPresContext, const nsIContent* aContent, nscoord aBlockBSize, float aFontSizeInflation); static nscoord CalcLineHeight(const StyleLineHeight&, const nsStyleFont& aRelativeToFont, nsPresContext* aPresContext, bool aIsVertical, const nsIContent* aContent, nscoord aBlockBSize, float aFontSizeInflation); mozilla::LogicalSize ComputeContainingBlockRectangle( nsPresContext* aPresContext, const ReflowInput* aContainingBlockRI) const; /** * Apply the mComputed(Min/Max)ISize constraints to the content * size computed so far. */ nscoord ApplyMinMaxISize(nscoord aISize) const { if (NS_UNCONSTRAINEDSIZE != ComputedMaxISize()) { aISize = std::min(aISize, ComputedMaxISize()); } return std::max(aISize, ComputedMinISize()); } /** * Apply the mComputed(Min/Max)BSize constraints to the content * size computed so far. * * @param aBSize The block-size that we've computed an to which we want to * apply min/max constraints. * @param aConsumed The amount of the computed block-size that was consumed by * our prev-in-flows. */ nscoord ApplyMinMaxBSize(nscoord aBSize, nscoord aConsumed = 0) const { aBSize += aConsumed; if (NS_UNCONSTRAINEDSIZE != ComputedMaxBSize()) { aBSize = std::min(aBSize, ComputedMaxBSize()); } if (NS_UNCONSTRAINEDSIZE != ComputedMinBSize()) { aBSize = std::max(aBSize, ComputedMinBSize()); } return aBSize - aConsumed; } bool ShouldReflowAllKids() const; // This method doesn't apply min/max computed widths to the value passed in. void SetComputedWidth(nscoord aComputedWidth) { if (mWritingMode.IsVertical()) { SetComputedBSize(aComputedWidth); } else { SetComputedISize(aComputedWidth); } } // This method doesn't apply min/max computed heights to the value passed in. void SetComputedHeight(nscoord aComputedHeight) { if (mWritingMode.IsVertical()) { SetComputedISize(aComputedHeight); } else { SetComputedBSize(aComputedHeight); } } // Use "No" to request SetComputedISize/SetComputedBSize not to reset resize // flags. enum class ResetResizeFlags : bool { No, Yes }; // This method doesn't apply min/max computed inline-sizes to the value passed // in. void SetComputedISize(nscoord aComputedISize, ResetResizeFlags aFlags = ResetResizeFlags::Yes); // These methods don't apply min/max computed block-sizes to the value passed // in. void SetComputedBSize(nscoord aComputedBSize, ResetResizeFlags aFlags = ResetResizeFlags::Yes); bool WillReflowAgainForClearance() const { return mDiscoveredClearance && *mDiscoveredClearance; } // Returns true if we should apply automatic minimum on the block axis. // // The automatic minimum size in the ratio-dependent axis of a box with a // preferred aspect ratio that is neither a replaced element nor a scroll // container is its min-content size clamped from above by its maximum size. // // https://drafts.csswg.org/css-sizing-4/#aspect-ratio-minimum bool ShouldApplyAutomaticMinimumOnBlockAxis() const; // Returns true if mFrame has a constrained available block-size, or if mFrame // is a continuation. When this method returns true, mFrame can be considered // to be in a "fragmented context." // // Note: this method usually returns true when mFrame is in a paged // environment (e.g. printing) or has a multi-column container ancestor. // However, this doesn't include several cases when we're intentionally // performing layout in a fragmentation-ignoring way, e.g. 1) mFrame is a flex // or grid item, and this ReflowInput is for a measuring reflow with an // unconstrained available block-size, or 2) mFrame is (or is inside of) an // element that forms an orthogonal writing-mode. bool IsInFragmentedContext() const; // Compute the offsets for a relative position element // // @param aWM the writing mode of aCBSize and the returned offsets. static mozilla::LogicalMargin ComputeRelativeOffsets( mozilla::WritingMode aWM, nsIFrame* aFrame, const mozilla::LogicalSize& aCBSize); // If aFrame is a relatively or sticky positioned element, adjust aPosition // appropriately. // // @param aComputedOffsets aFrame's relative offset, either from the cached // nsIFrame::ComputedOffsetProperty() or ComputedPhysicalOffsets(). // Note: This parameter is used only when aFrame is relatively // positioned, not sticky positioned. // @param aPosition [in/out] Pass aFrame's normal position (pre-relative // positioning), and this method will update it to indicate aFrame's // actual position. static void ApplyRelativePositioning(nsIFrame* aFrame, const nsMargin& aComputedOffsets, nsPoint* aPosition); static void ApplyRelativePositioning( nsIFrame* aFrame, mozilla::WritingMode aWritingMode, const mozilla::LogicalMargin& aComputedOffsets, mozilla::LogicalPoint* aPosition, const nsSize& aContainerSize); // Resolve any block-axis 'auto' margins (if any) for an absolutely positioned // frame. aMargin and aOffsets are both outparams (though we only touch // aOffsets if the position is overconstrained) static void ComputeAbsPosBlockAutoMargin(nscoord aAvailMarginSpace, WritingMode aContainingBlockWM, bool aIsMarginBStartAuto, bool aIsMarginBEndAuto, LogicalMargin& aMargin, LogicalMargin& aOffsets); // Resolve any inline-axis 'auto' margins (if any) for an absolutely // positioned frame. aMargin and aOffsets are both outparams (though we only // touch aOffsets if the position is overconstrained) static void ComputeAbsPosInlineAutoMargin(nscoord aAvailMarginSpace, WritingMode aContainingBlockWM, bool aIsMarginIStartAuto, bool aIsMarginIEndAuto, LogicalMargin& aMargin, LogicalMargin& aOffsets); #ifdef DEBUG // Reflow trace methods. Defined in nsFrame.cpp so they have access // to the display-reflow infrastructure. static void* DisplayInitConstraintsEnter(nsIFrame* aFrame, ReflowInput* aState, nscoord aCBISize, nscoord aCBBSize, const nsMargin* aBorder, const nsMargin* aPadding); static void DisplayInitConstraintsExit(nsIFrame* aFrame, ReflowInput* aState, void* aValue); static void* DisplayInitFrameTypeEnter(nsIFrame* aFrame, ReflowInput* aState); static void DisplayInitFrameTypeExit(nsIFrame* aFrame, ReflowInput* aState, void* aValue); #endif protected: void InitCBReflowInput(); void InitResizeFlags(nsPresContext* aPresContext, mozilla::LayoutFrameType aFrameType); void InitDynamicReflowRoot(); void InitConstraints( nsPresContext* aPresContext, const mozilla::Maybe& aContainingBlockSize, const mozilla::Maybe& aBorder, const mozilla::Maybe& aPadding, mozilla::LayoutFrameType aFrameType); // Returns the nearest containing block or block frame (whether or not // it is a containing block) for the specified frame. Also returns // the inline-start edge and logical size of the containing block's // content area. // These are returned in the coordinate space of the containing block. nsIFrame* GetHypotheticalBoxContainer(nsIFrame* aFrame, nscoord& aCBIStartEdge, mozilla::LogicalSize& aCBSize) const; // Calculate a "hypothetical box" position where the placeholder frame // (for a position:fixed/absolute element) would have been placed if it were // positioned statically. The hypothetical box position will have a writing // mode with the same block direction as the absolute containing block // (aCBReflowInput->frame), though it may differ in inline direction. void CalculateHypotheticalPosition(nsPresContext* aPresContext, nsPlaceholderFrame* aPlaceholderFrame, const ReflowInput* aCBReflowInput, nsHypotheticalPosition& aHypotheticalPos, mozilla::LayoutFrameType aFrameType) const; // Check if we can use the resolved auto block size (by insets) to compute // the inline size through aspect-ratio on absolute-positioned elements. // This is only needed for non-replaced elements. // https://drafts.csswg.org/css-position/#abspos-auto-size bool IsInlineSizeComputableByBlockSizeAndAspectRatio( nscoord aBlockSize) const; // This calculates the size by using the resolved auto block size (from // non-auto block insets), according to the writing mode of current block. LogicalSize CalculateAbsoluteSizeWithResolvedAutoBlockSize( nscoord aAutoBSize, const LogicalSize& aTentativeComputedSize); void InitAbsoluteConstraints(nsPresContext* aPresContext, const ReflowInput* aCBReflowInput, const mozilla::LogicalSize& aContainingBlockSize, mozilla::LayoutFrameType aFrameType); // Calculates the computed values for the 'min-inline-size', // 'max-inline-size', 'min-block-size', and 'max-block-size' properties, and // stores them in the assorted data members void ComputeMinMaxValues(const mozilla::LogicalSize& aCBSize); // aInsideBoxSizing returns the part of the padding, border, and margin // in the aAxis dimension that goes inside the edge given by box-sizing; // aOutsideBoxSizing returns the rest. void CalculateBorderPaddingMargin(mozilla::LogicalAxis aAxis, nscoord aContainingBlockSize, nscoord* aInsideBoxSizing, nscoord* aOutsideBoxSizing) const; void CalculateBlockSideMargins(); /** * @return true if mFrame is an internal table frame, i.e. an * ns[RowGroup|ColGroup|Row|Cell]Frame. (We exclude nsTableColFrame * here since we never setup a ReflowInput for those.) */ bool IsInternalTableFrame() const; private: // The available size in which to reflow the frame. The space represents the // amount of room for the frame's margin, border, padding, and content area. // // The available inline-size should be constrained. The frame's inline-size // you choose should fit within it. // In galley mode, the available block-size is always unconstrained, and only // page mode or multi-column layout involves a constrained available // block-size. // // An unconstrained available block-size means you can choose whatever size // you want. If the value is constrained, the frame's block-start border, // padding, and content, must fit. If a frame is fully-complete after reflow, // then its block-end border, padding, and margin (and similar for its // fully-complete ancestors) will need to fit within this available // block-size. However, if a frame is monolithic, it may choose a block-size // larger than the available block-size. mozilla::LogicalSize mAvailableSize{mWritingMode}; // The computed size specifies the frame's content area, and it does not apply // to inline non-replaced elements. // // For block-level frames, the computed inline-size is based on the // inline-size of the containing block, the margin/border/padding areas, and // the min/max inline-size. // // For non-replaced block-level frames in the flow and floated, if the // computed block-size is NS_UNCONSTRAINEDSIZE, you should choose a block-size // to shrink wrap around the normal flow child frames. The block-size must be // within the limit of the min/max block-size if there is such a limit. mozilla::LogicalSize mComputedSize{mWritingMode}; // Computed values for 'inset' properties. Only applies to 'positioned' // elements. mozilla::LogicalMargin mComputedOffsets{mWritingMode}; // Computed value for 'min-inline-size'/'min-block-size'. mozilla::LogicalSize mComputedMinSize{mWritingMode}; // Computed value for 'max-inline-size'/'max-block-size'. mozilla::LogicalSize mComputedMaxSize{mWritingMode, NS_UNCONSTRAINEDSIZE, NS_UNCONSTRAINEDSIZE}; // Percentage basis in the block axis for the purpose of percentage resolution // on children. // // This will be ignored when mTreatBSizeAsIndefinite flag is true, or when a // customized containing block size is provided via ReflowInput's constructor // or Init(). When this percentage basis exists, it will be used to replace // the containing block's ComputedBSize() in // ComputeContainingBlockRectangle(). // // This is currently used in a special scenario where we treat certain // sized-to-content flex items as having an 'auto' block-size for their final // reflow to accomodate fragmentation-imposed block-size growth. This sort of // flex item does nonetheless have a known block-size (from the flex layout // algorithm) that it needs to use as a definite percentage-basis for its // children during its final reflow; and we represent that here. Maybe mPercentageBasisInBlockAxis; // Cache the used line-height property. mutable nscoord mLineHeight = NS_UNCONSTRAINEDSIZE; }; } // namespace mozilla #endif // mozilla_ReflowInput_h