/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim: set ts=8 sts=2 et sw=2 tw=80: */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ /* rendering object for CSS "display: flex" */ #include "nsFlexContainerFrame.h" #include <algorithm> #include "gfxContext.h" #include "mozilla/Baseline.h" #include "mozilla/ComputedStyle.h" #include "mozilla/CSSOrderAwareFrameIterator.h" #include "mozilla/FloatingPoint.h" #include "mozilla/Logging.h" #include "mozilla/PresShell.h" #include "mozilla/StaticPrefs_layout.h" #include "mozilla/WritingModes.h" #include "nsBlockFrame.h" #include "nsContentUtils.h" #include "nsCSSAnonBoxes.h" #include "nsDebug.h" #include "nsDisplayList.h" #include "nsFieldSetFrame.h" #include "nsIFrameInlines.h" #include "nsLayoutUtils.h" #include "nsPlaceholderFrame.h" #include "nsPresContext.h" using namespace mozilla; using namespace mozilla::layout; // Convenience typedefs for helper classes that we forward-declare in .h file // (so that nsFlexContainerFrame methods can use them as parameters): using FlexItem = nsFlexContainerFrame::FlexItem; using FlexLine = nsFlexContainerFrame::FlexLine; using FlexboxAxisTracker = nsFlexContainerFrame::FlexboxAxisTracker; using StrutInfo = nsFlexContainerFrame::StrutInfo; using CachedBAxisMeasurement = nsFlexContainerFrame::CachedBAxisMeasurement; using CachedFlexItemData = nsFlexContainerFrame::CachedFlexItemData; static mozilla::LazyLogModule gFlexContainerLog("FlexContainer"); #define FLEX_LOG(...) \ MOZ_LOG(gFlexContainerLog, LogLevel::Debug, (__VA_ARGS__)); #define FLEX_LOGV(...) \ MOZ_LOG(gFlexContainerLog, LogLevel::Verbose, (__VA_ARGS__)); // Returns true if aFlexContainer is a frame for some element that has // display:-webkit-{inline-}box (or -moz-{inline-}box). aFlexContainer is // expected to be an instance of nsFlexContainerFrame (enforced with an assert); // otherwise, this function's state-bit-check here is bogus. static bool IsLegacyBox(const nsIFrame* aFlexContainer) { MOZ_ASSERT(aFlexContainer->IsFlexContainerFrame(), "only flex containers may be passed to this function"); return aFlexContainer->HasAnyStateBits( NS_STATE_FLEX_IS_EMULATING_LEGACY_WEBKIT_BOX); } // Returns the OrderState enum we should pass to CSSOrderAwareFrameIterator // (depending on whether aFlexContainer has // NS_STATE_FLEX_NORMAL_FLOW_CHILDREN_IN_CSS_ORDER state bit). static CSSOrderAwareFrameIterator::OrderState OrderStateForIter( const nsFlexContainerFrame* aFlexContainer) { return aFlexContainer->HasAnyStateBits( NS_STATE_FLEX_NORMAL_FLOW_CHILDREN_IN_CSS_ORDER) ? CSSOrderAwareFrameIterator::OrderState::Ordered : CSSOrderAwareFrameIterator::OrderState::Unordered; } // Returns the OrderingProperty enum that we should pass to // CSSOrderAwareFrameIterator (depending on whether it's a legacy box). static CSSOrderAwareFrameIterator::OrderingProperty OrderingPropertyForIter( const nsFlexContainerFrame* aFlexContainer) { return IsLegacyBox(aFlexContainer) ? CSSOrderAwareFrameIterator::OrderingProperty::BoxOrdinalGroup : CSSOrderAwareFrameIterator::OrderingProperty::Order; } // Returns the "align-items" value that's equivalent to the legacy "box-align" // value in the given style struct. static StyleAlignFlags ConvertLegacyStyleToAlignItems( const nsStyleXUL* aStyleXUL) { // -[moz|webkit]-box-align corresponds to modern "align-items" switch (aStyleXUL->mBoxAlign) { case StyleBoxAlign::Stretch: return StyleAlignFlags::STRETCH; case StyleBoxAlign::Start: return StyleAlignFlags::FLEX_START; case StyleBoxAlign::Center: return StyleAlignFlags::CENTER; case StyleBoxAlign::Baseline: return StyleAlignFlags::BASELINE; case StyleBoxAlign::End: return StyleAlignFlags::FLEX_END; } MOZ_ASSERT_UNREACHABLE("Unrecognized mBoxAlign enum value"); // Fall back to default value of "align-items" property: return StyleAlignFlags::STRETCH; } // Returns the "justify-content" value that's equivalent to the legacy // "box-pack" value in the given style struct. static StyleContentDistribution ConvertLegacyStyleToJustifyContent( const nsStyleXUL* aStyleXUL) { // -[moz|webkit]-box-pack corresponds to modern "justify-content" switch (aStyleXUL->mBoxPack) { case StyleBoxPack::Start: return {StyleAlignFlags::FLEX_START}; case StyleBoxPack::Center: return {StyleAlignFlags::CENTER}; case StyleBoxPack::End: return {StyleAlignFlags::FLEX_END}; case StyleBoxPack::Justify: return {StyleAlignFlags::SPACE_BETWEEN}; } MOZ_ASSERT_UNREACHABLE("Unrecognized mBoxPack enum value"); // Fall back to default value of "justify-content" property: return {StyleAlignFlags::FLEX_START}; } // Check if the size is auto or it is a keyword in the block axis. // |aIsInline| should represent whether aSize is in the inline axis, from the // perspective of the writing mode of the flex item that the size comes from. // // max-content and min-content should behave as property's initial value. // Bug 567039: We treat -moz-fit-content and -moz-available as property's // initial value for now. static inline bool IsAutoOrEnumOnBSize(const StyleSize& aSize, bool aIsInline) { return aSize.IsAuto() || (!aIsInline && !aSize.IsLengthPercentage()); } // Encapsulates our flex container's main & cross axes. This class is backed by // a FlexboxAxisInfo helper member variable, and it adds some convenience APIs // on top of what that struct offers. class MOZ_STACK_CLASS nsFlexContainerFrame::FlexboxAxisTracker { public: explicit FlexboxAxisTracker(const nsFlexContainerFrame* aFlexContainer); // Accessors: LogicalAxis MainAxis() const { return IsRowOriented() ? eLogicalAxisInline : eLogicalAxisBlock; } LogicalAxis CrossAxis() const { return IsRowOriented() ? eLogicalAxisBlock : eLogicalAxisInline; } LogicalSide MainAxisStartSide() const; LogicalSide MainAxisEndSide() const { return GetOppositeSide(MainAxisStartSide()); } LogicalSide CrossAxisStartSide() const; LogicalSide CrossAxisEndSide() const { return GetOppositeSide(CrossAxisStartSide()); } mozilla::Side MainAxisPhysicalStartSide() const { return mWM.PhysicalSide(MainAxisStartSide()); } mozilla::Side MainAxisPhysicalEndSide() const { return mWM.PhysicalSide(MainAxisEndSide()); } mozilla::Side CrossAxisPhysicalStartSide() const { return mWM.PhysicalSide(CrossAxisStartSide()); } mozilla::Side CrossAxisPhysicalEndSide() const { return mWM.PhysicalSide(CrossAxisEndSide()); } // Returns the flex container's writing mode. WritingMode GetWritingMode() const { return mWM; } // Returns true if our main axis is in the reverse direction of our // writing mode's corresponding axis. (From 'flex-direction: *-reverse') bool IsMainAxisReversed() const { return mAxisInfo.mIsMainAxisReversed; } // Returns true if our cross axis is in the reverse direction of our // writing mode's corresponding axis. (From 'flex-wrap: *-reverse') bool IsCrossAxisReversed() const { return mAxisInfo.mIsCrossAxisReversed; } bool IsRowOriented() const { return mAxisInfo.mIsRowOriented; } bool IsColumnOriented() const { return !IsRowOriented(); } // aSize is expected to match the flex container's WritingMode. nscoord MainComponent(const LogicalSize& aSize) const { return IsRowOriented() ? aSize.ISize(mWM) : aSize.BSize(mWM); } int32_t MainComponent(const LayoutDeviceIntSize& aIntSize) const { return IsMainAxisHorizontal() ? aIntSize.width : aIntSize.height; } // aSize is expected to match the flex container's WritingMode. nscoord CrossComponent(const LogicalSize& aSize) const { return IsRowOriented() ? aSize.BSize(mWM) : aSize.ISize(mWM); } int32_t CrossComponent(const LayoutDeviceIntSize& aIntSize) const { return IsMainAxisHorizontal() ? aIntSize.height : aIntSize.width; } // NOTE: aMargin is expected to use the flex container's WritingMode. nscoord MarginSizeInMainAxis(const LogicalMargin& aMargin) const { // If we're row-oriented, our main axis is the inline axis. return IsRowOriented() ? aMargin.IStartEnd(mWM) : aMargin.BStartEnd(mWM); } nscoord MarginSizeInCrossAxis(const LogicalMargin& aMargin) const { // If we're row-oriented, our cross axis is the block axis. return IsRowOriented() ? aMargin.BStartEnd(mWM) : aMargin.IStartEnd(mWM); } /** * Converts a "flex-relative" point (a main-axis & cross-axis coordinate) * into a LogicalPoint, using the flex container's writing mode. * * @arg aMainCoord The main-axis coordinate -- i.e an offset from the * main-start edge of the flex container's content box. * @arg aCrossCoord The cross-axis coordinate -- i.e an offset from the * cross-start edge of the flex container's content box. * @arg aContainerMainSize The main size of flex container's content box. * @arg aContainerCrossSize The cross size of flex container's content box. * @return A LogicalPoint, with the flex container's writing mode, that * represents the same position. The logical coordinates are * relative to the flex container's content box. */ LogicalPoint LogicalPointFromFlexRelativePoint( nscoord aMainCoord, nscoord aCrossCoord, nscoord aContainerMainSize, nscoord aContainerCrossSize) const { nscoord logicalCoordInMainAxis = IsMainAxisReversed() ? aContainerMainSize - aMainCoord : aMainCoord; nscoord logicalCoordInCrossAxis = IsCrossAxisReversed() ? aContainerCrossSize - aCrossCoord : aCrossCoord; return IsRowOriented() ? LogicalPoint(mWM, logicalCoordInMainAxis, logicalCoordInCrossAxis) : LogicalPoint(mWM, logicalCoordInCrossAxis, logicalCoordInMainAxis); } /** * Converts a "flex-relative" size (a main-axis & cross-axis size) * into a LogicalSize, using the flex container's writing mode. * * @arg aMainSize The main-axis size. * @arg aCrossSize The cross-axis size. * @return A LogicalSize, with the flex container's writing mode, that * represents the same size. */ LogicalSize LogicalSizeFromFlexRelativeSizes(nscoord aMainSize, nscoord aCrossSize) const { return IsRowOriented() ? LogicalSize(mWM, aMainSize, aCrossSize) : LogicalSize(mWM, aCrossSize, aMainSize); } /** * Converts a "flex-relative" ascent (the distance from the flex container's * content-box cross-start edge to its baseline) into a logical ascent (the * distance from the flex container's content-box block-start edge to its * baseline). */ nscoord LogicalAscentFromFlexRelativeAscent( nscoord aFlexRelativeAscent, nscoord aContentBoxCrossSize) const { return (IsCrossAxisReversed() ? aContentBoxCrossSize - aFlexRelativeAscent : aFlexRelativeAscent); } bool IsMainAxisHorizontal() const { // If we're row-oriented, and our writing mode is NOT vertical, // or we're column-oriented and our writing mode IS vertical, // then our main axis is horizontal. This handles all cases: return IsRowOriented() != mWM.IsVertical(); } // Returns true if this flex item's inline axis in aItemWM is parallel (or // antiparallel) to the container's main axis. Returns false, otherwise. // // Note: this is a helper used before constructing FlexItem. Inside of flex // reflow code, FlexItem::IsInlineAxisMainAxis() is equivalent & more optimal. bool IsInlineAxisMainAxis(WritingMode aItemWM) const { return IsRowOriented() != GetWritingMode().IsOrthogonalTo(aItemWM); } // Maps justify-*: 'left' or 'right' to 'start' or 'end'. StyleAlignFlags ResolveJustifyLeftRight(const StyleAlignFlags& aFlags) const { MOZ_ASSERT( aFlags == StyleAlignFlags::LEFT || aFlags == StyleAlignFlags::RIGHT, "This helper accepts only 'LEFT' or 'RIGHT' flags!"); const auto wm = GetWritingMode(); const bool isJustifyLeft = aFlags == StyleAlignFlags::LEFT; if (IsColumnOriented()) { if (!wm.IsVertical()) { // Container's alignment axis (main axis) is *not* parallel to the // line-left <-> line-right axis or the physical left <-> physical right // axis, so we map both 'left' and 'right' to 'start'. return StyleAlignFlags::START; } MOZ_ASSERT(wm.PhysicalAxis(MainAxis()) == eAxisHorizontal, "Vertical column-oriented flex container's main axis should " "be parallel to physical left <-> right axis!"); // Map 'left' or 'right' to 'start' or 'end', depending on its block flow // direction. return isJustifyLeft == wm.IsVerticalLR() ? StyleAlignFlags::START : StyleAlignFlags::END; } MOZ_ASSERT(MainAxis() == eLogicalAxisInline, "Row-oriented flex container's main axis should be parallel to " "line-left <-> line-right axis!"); // If we get here, we're operating on the flex container's inline axis, // so we map 'left' to whichever of 'start' or 'end' corresponds to the // *line-relative* left side; and similar for 'right'. return isJustifyLeft == wm.IsBidiLTR() ? StyleAlignFlags::START : StyleAlignFlags::END; } // Delete copy-constructor & reassignment operator, to prevent accidental // (unnecessary) copying. FlexboxAxisTracker(const FlexboxAxisTracker&) = delete; FlexboxAxisTracker& operator=(const FlexboxAxisTracker&) = delete; private: const WritingMode mWM; // The flex container's writing mode. const FlexboxAxisInfo mAxisInfo; }; /** * Represents a flex item. * Includes the various pieces of input that the Flexbox Layout Algorithm uses * to resolve a flexible width. */ class nsFlexContainerFrame::FlexItem final { public: // Normal constructor: FlexItem(ReflowInput& aFlexItemReflowInput, float aFlexGrow, float aFlexShrink, nscoord aFlexBaseSize, nscoord aMainMinSize, nscoord aMainMaxSize, nscoord aTentativeCrossSize, nscoord aCrossMinSize, nscoord aCrossMaxSize, const FlexboxAxisTracker& aAxisTracker); // Simplified constructor, to be used only for generating "struts": // (NOTE: This "strut" constructor uses the *container's* writing mode, which // we'll use on this FlexItem instead of the child frame's real writing mode. // This is fine - it doesn't matter what writing mode we use for a // strut, since it won't render any content and we already know its size.) FlexItem(nsIFrame* aChildFrame, nscoord aCrossSize, WritingMode aContainerWM, const FlexboxAxisTracker& aAxisTracker); // Clone existing FlexItem for its underlying frame's continuation. // @param aContinuation a continuation in our next-in-flow chain. FlexItem CloneFor(nsIFrame* const aContinuation) const { MOZ_ASSERT(Frame() == aContinuation->FirstInFlow(), "aContinuation should be in aItem's continuation chain!"); FlexItem item(*this); item.mFrame = aContinuation; item.mHadMeasuringReflow = false; return item; } // Accessors nsIFrame* Frame() const { return mFrame; } nscoord FlexBaseSize() const { return mFlexBaseSize; } nscoord MainMinSize() const { MOZ_ASSERT(!mNeedsMinSizeAutoResolution, "Someone's using an unresolved 'auto' main min-size"); return mMainMinSize; } nscoord MainMaxSize() const { return mMainMaxSize; } // Note: These return the main-axis position and size of our *content box*. nscoord MainSize() const { return mMainSize; } nscoord MainPosition() const { return mMainPosn; } nscoord CrossMinSize() const { return mCrossMinSize; } nscoord CrossMaxSize() const { return mCrossMaxSize; } // Note: These return the cross-axis position and size of our *content box*. nscoord CrossSize() const { return mCrossSize; } nscoord CrossPosition() const { return mCrossPosn; } // Lazy getter for mAscent or mAscentForLast. nscoord ResolvedAscent(bool aUseFirstBaseline) const { // XXX We should be using the *container's* writing-mode (mCBWM) here, // instead of the item's (mWM). This is essentially bug 1155322. nscoord& ascent = aUseFirstBaseline ? mAscent : mAscentForLast; if (ascent != ReflowOutput::ASK_FOR_BASELINE) { return ascent; } // Use GetFirstLineBaseline() or GetLastLineBaseline() as appropriate: bool found = aUseFirstBaseline ? nsLayoutUtils::GetFirstLineBaseline(mWM, mFrame, &ascent) : nsLayoutUtils::GetLastLineBaseline(mWM, mFrame, &ascent); if (found) { return ascent; } // If the nsLayoutUtils getter fails, then ask the frame directly: auto baselineGroup = aUseFirstBaseline ? BaselineSharingGroup::First : BaselineSharingGroup::Last; if (auto baseline = mFrame->GetNaturalBaselineBOffset( mWM, baselineGroup, BaselineExportContext::Other)) { // Offset for last baseline from `GetNaturalBaselineBOffset` originates // from the frame's block end, so convert it back. ascent = baselineGroup == BaselineSharingGroup::First ? *baseline : mFrame->BSize(mWM) - *baseline; return ascent; } // We couldn't determine a baseline, so we synthesize one from border box: ascent = Baseline::SynthesizeBOffsetFromBorderBox( mFrame, mWM, BaselineSharingGroup::First); return ascent; } // Convenience methods to compute the main & cross size of our *margin-box*. nscoord OuterMainSize() const { return mMainSize + MarginBorderPaddingSizeInMainAxis(); } nscoord OuterCrossSize() const { return mCrossSize + MarginBorderPaddingSizeInCrossAxis(); } // Convenience method to return the content-box block-size. nscoord BSize() const { return IsBlockAxisMainAxis() ? MainSize() : CrossSize(); } // Convenience method to return the measured content-box block-size computed // in nsFlexContainerFrame::MeasureBSizeForFlexItem(). Maybe<nscoord> MeasuredBSize() const; // Convenience methods to synthesize a style main size or a style cross size // with box-size considered, to provide the size overrides when constructing // ReflowInput for flex items. StyleSize StyleMainSize() const { nscoord mainSize = MainSize(); if (Frame()->StylePosition()->mBoxSizing == StyleBoxSizing::Border) { mainSize += BorderPaddingSizeInMainAxis(); } return StyleSize::LengthPercentage( LengthPercentage::FromAppUnits(mainSize)); } StyleSize StyleCrossSize() const { nscoord crossSize = CrossSize(); if (Frame()->StylePosition()->mBoxSizing == StyleBoxSizing::Border) { crossSize += BorderPaddingSizeInCrossAxis(); } return StyleSize::LengthPercentage( LengthPercentage::FromAppUnits(crossSize)); } // Returns the distance between this FlexItem's baseline and the cross-start // edge of its margin-box. Used in baseline alignment. // // (This function needs to be told which physical start side we're measuring // the baseline from, so that it can look up the appropriate components from // margin.) nscoord BaselineOffsetFromOuterCrossEdge(mozilla::Side aStartSide, bool aUseFirstLineBaseline) const; double ShareOfWeightSoFar() const { return mShareOfWeightSoFar; } bool IsFrozen() const { return mIsFrozen; } bool HadMinViolation() const { MOZ_ASSERT(!mIsFrozen, "min violation has no meaning for frozen items."); return mHadMinViolation; } bool HadMaxViolation() const { MOZ_ASSERT(!mIsFrozen, "max violation has no meaning for frozen items."); return mHadMaxViolation; } bool WasMinClamped() const { MOZ_ASSERT(mIsFrozen, "min clamping has no meaning for unfrozen items."); return mHadMinViolation; } bool WasMaxClamped() const { MOZ_ASSERT(mIsFrozen, "max clamping has no meaning for unfrozen items."); return mHadMaxViolation; } // Indicates whether this item received a preliminary "measuring" reflow // before its actual reflow. bool HadMeasuringReflow() const { return mHadMeasuringReflow; } // Indicates whether this item's computed cross-size property is 'auto'. bool IsCrossSizeAuto() const; // Indicates whether the cross-size property is set to something definite, // for the purpose of preferred aspect ratio calculations. bool IsCrossSizeDefinite(const ReflowInput& aItemReflowInput) const; // Indicates whether this item's cross-size has been stretched (from having // "align-self: stretch" with an auto cross-size and no auto margins in the // cross axis). bool IsStretched() const { return mIsStretched; } bool IsFlexBaseSizeContentBSize() const { return mIsFlexBaseSizeContentBSize; } bool IsMainMinSizeContentBSize() const { return mIsMainMinSizeContentBSize; } // Indicates whether we need to resolve an 'auto' value for the main-axis // min-[width|height] property. bool NeedsMinSizeAutoResolution() const { return mNeedsMinSizeAutoResolution; } bool HasAnyAutoMargin() const { return mHasAnyAutoMargin; } BaselineSharingGroup ItemBaselineSharingGroup() const { MOZ_ASSERT(mAlignSelf._0 == StyleAlignFlags::BASELINE || mAlignSelf._0 == StyleAlignFlags::LAST_BASELINE, "mBaselineSharingGroup only gets a meaningful value " "for baseline-aligned items"); return mBaselineSharingGroup; } // Indicates whether this item is a "strut" left behind by an element with // visibility:collapse. bool IsStrut() const { return mIsStrut; } // The main axis and cross axis are relative to mCBWM. LogicalAxis MainAxis() const { return mMainAxis; } LogicalAxis CrossAxis() const { return GetOrthogonalAxis(mMainAxis); } // IsInlineAxisMainAxis() returns true if this item's inline axis is parallel // (or antiparallel) to the container's main axis. Otherwise (i.e. if this // item's inline axis is orthogonal to the container's main axis), this // function returns false. The next 3 methods are all other ways of asking // the same question, and only exist for readability at callsites (depending // on which axes those callsites are reasoning about). bool IsInlineAxisMainAxis() const { return mIsInlineAxisMainAxis; } bool IsInlineAxisCrossAxis() const { return !mIsInlineAxisMainAxis; } bool IsBlockAxisMainAxis() const { return !mIsInlineAxisMainAxis; } bool IsBlockAxisCrossAxis() const { return mIsInlineAxisMainAxis; } WritingMode GetWritingMode() const { return mWM; } WritingMode ContainingBlockWM() const { return mCBWM; } StyleAlignSelf AlignSelf() const { return mAlignSelf; } StyleAlignFlags AlignSelfFlags() const { return mAlignSelfFlags; } // Returns the flex factor (flex-grow or flex-shrink), depending on // 'aIsUsingFlexGrow'. // // Asserts fatally if called on a frozen item (since frozen items are not // flexible). float GetFlexFactor(bool aIsUsingFlexGrow) { MOZ_ASSERT(!IsFrozen(), "shouldn't need flex factor after item is frozen"); return aIsUsingFlexGrow ? mFlexGrow : mFlexShrink; } // Returns the weight that we should use in the "resolving flexible lengths" // algorithm. If we're using the flex grow factor, we just return that; // otherwise, we return the "scaled flex shrink factor" (scaled by our flex // base size, so that when both large and small items are shrinking, the large // items shrink more). // // I'm calling this a "weight" instead of a "[scaled] flex-[grow|shrink] // factor", to more clearly distinguish it from the actual flex-grow & // flex-shrink factors. // // Asserts fatally if called on a frozen item (since frozen items are not // flexible). float GetWeight(bool aIsUsingFlexGrow) { MOZ_ASSERT(!IsFrozen(), "shouldn't need weight after item is frozen"); if (aIsUsingFlexGrow) { return mFlexGrow; } // We're using flex-shrink --> return mFlexShrink * mFlexBaseSize if (mFlexBaseSize == 0) { // Special-case for mFlexBaseSize == 0 -- we have no room to shrink, so // regardless of mFlexShrink, we should just return 0. // (This is really a special-case for when mFlexShrink is infinity, to // avoid performing mFlexShrink * mFlexBaseSize = inf * 0 = undefined.) return 0.0f; } return mFlexShrink * mFlexBaseSize; } bool TreatBSizeAsIndefinite() const { return mTreatBSizeAsIndefinite; } const AspectRatio& GetAspectRatio() const { return mAspectRatio; } bool HasAspectRatio() const { return !!mAspectRatio; } // Getters for margin: // =================== LogicalMargin Margin() const { return mMargin; } nsMargin PhysicalMargin() const { return mMargin.GetPhysicalMargin(mCBWM); } // Returns the margin component for a given LogicalSide in flex container's // writing-mode. nscoord GetMarginComponentForSide(LogicalSide aSide) const { return mMargin.Side(aSide, mCBWM); } // Returns the total space occupied by this item's margins in the given axis nscoord MarginSizeInMainAxis() const { return mMargin.StartEnd(MainAxis(), mCBWM); } nscoord MarginSizeInCrossAxis() const { return mMargin.StartEnd(CrossAxis(), mCBWM); } // Getters for border/padding // ========================== // Returns the total space occupied by this item's borders and padding in // the given axis LogicalMargin BorderPadding() const { return mBorderPadding; } nscoord BorderPaddingSizeInMainAxis() const { return mBorderPadding.StartEnd(MainAxis(), mCBWM); } nscoord BorderPaddingSizeInCrossAxis() const { return mBorderPadding.StartEnd(CrossAxis(), mCBWM); } // Getter for combined margin/border/padding // ========================================= // Returns the total space occupied by this item's margins, borders and // padding in the given axis nscoord MarginBorderPaddingSizeInMainAxis() const { return MarginSizeInMainAxis() + BorderPaddingSizeInMainAxis(); } nscoord MarginBorderPaddingSizeInCrossAxis() const { return MarginSizeInCrossAxis() + BorderPaddingSizeInCrossAxis(); } // Setters // ======= // Helper to set the resolved value of min-[width|height]:auto for the main // axis. (Should only be used if NeedsMinSizeAutoResolution() returns true.) void UpdateMainMinSize(nscoord aNewMinSize) { NS_ASSERTION(aNewMinSize >= 0, "How did we end up with a negative min-size?"); MOZ_ASSERT( mMainMaxSize == NS_UNCONSTRAINEDSIZE || mMainMaxSize >= aNewMinSize, "Should only use this function for resolving min-size:auto, " "and main max-size should be an upper-bound for resolved val"); MOZ_ASSERT( mNeedsMinSizeAutoResolution && (mMainMinSize == 0 || mFrame->IsThemed(mFrame->StyleDisplay())), "Should only use this function for resolving min-size:auto, " "so we shouldn't already have a nonzero min-size established " "(unless it's a themed-widget-imposed minimum size)"); if (aNewMinSize > mMainMinSize) { mMainMinSize = aNewMinSize; // Also clamp main-size to be >= new min-size: mMainSize = std::max(mMainSize, aNewMinSize); } mNeedsMinSizeAutoResolution = false; } // This sets our flex base size, and then sets our main size to the // resulting "hypothetical main size" (the base size clamped to our // main-axis [min,max] sizing constraints). void SetFlexBaseSizeAndMainSize(nscoord aNewFlexBaseSize) { MOZ_ASSERT(!mIsFrozen || mFlexBaseSize == NS_UNCONSTRAINEDSIZE, "flex base size shouldn't change after we're frozen " "(unless we're just resolving an intrinsic size)"); mFlexBaseSize = aNewFlexBaseSize; // Before we've resolved flexible lengths, we keep mMainSize set to // the 'hypothetical main size', which is the flex base size, clamped // to the [min,max] range: mMainSize = NS_CSS_MINMAX(mFlexBaseSize, mMainMinSize, mMainMaxSize); FLEX_LOGV( "Set flex base size: %d, hypothetical main size: %d for flex item %p", mFlexBaseSize, mMainSize, mFrame); } // Setters used while we're resolving flexible lengths // --------------------------------------------------- // Sets the main-size of our flex item's content-box. void SetMainSize(nscoord aNewMainSize) { MOZ_ASSERT(!mIsFrozen, "main size shouldn't change after we're frozen"); mMainSize = aNewMainSize; } void SetShareOfWeightSoFar(double aNewShare) { MOZ_ASSERT(!mIsFrozen || aNewShare == 0.0, "shouldn't be giving this item any share of the weight " "after it's frozen"); mShareOfWeightSoFar = aNewShare; } void Freeze() { mIsFrozen = true; // Now that we are frozen, the meaning of mHadMinViolation and // mHadMaxViolation changes to indicate min and max clamping. Clear // both of the member variables so that they are ready to be set // as clamping state later, if necessary. mHadMinViolation = false; mHadMaxViolation = false; } void SetHadMinViolation() { MOZ_ASSERT(!mIsFrozen, "shouldn't be changing main size & having violations " "after we're frozen"); mHadMinViolation = true; } void SetHadMaxViolation() { MOZ_ASSERT(!mIsFrozen, "shouldn't be changing main size & having violations " "after we're frozen"); mHadMaxViolation = true; } void ClearViolationFlags() { MOZ_ASSERT(!mIsFrozen, "shouldn't be altering violation flags after we're " "frozen"); mHadMinViolation = mHadMaxViolation = false; } void SetWasMinClamped() { MOZ_ASSERT(!mHadMinViolation && !mHadMaxViolation, "only clamp once"); // This reuses the mHadMinViolation member variable to track clamping // events. This is allowable because mHadMinViolation only reflects // a violation up until the item is frozen. MOZ_ASSERT(mIsFrozen, "shouldn't set clamping state when we are unfrozen"); mHadMinViolation = true; } void SetWasMaxClamped() { MOZ_ASSERT(!mHadMinViolation && !mHadMaxViolation, "only clamp once"); // This reuses the mHadMaxViolation member variable to track clamping // events. This is allowable because mHadMaxViolation only reflects // a violation up until the item is frozen. MOZ_ASSERT(mIsFrozen, "shouldn't set clamping state when we are unfrozen"); mHadMaxViolation = true; } // Setters for values that are determined after we've resolved our main size // ------------------------------------------------------------------------- // Sets the main-axis position of our flex item's content-box. // (This is the distance between the main-start edge of the flex container // and the main-start edge of the flex item's content-box.) void SetMainPosition(nscoord aPosn) { MOZ_ASSERT(mIsFrozen, "main size should be resolved before this"); mMainPosn = aPosn; } // Sets the cross-size of our flex item's content-box. void SetCrossSize(nscoord aCrossSize) { MOZ_ASSERT(!mIsStretched, "Cross size shouldn't be modified after it's been stretched"); mCrossSize = aCrossSize; } // Sets the cross-axis position of our flex item's content-box. // (This is the distance between the cross-start edge of the flex container // and the cross-start edge of the flex item.) void SetCrossPosition(nscoord aPosn) { MOZ_ASSERT(mIsFrozen, "main size should be resolved before this"); mCrossPosn = aPosn; } // After a FlexItem has had a reflow, this method can be used to cache its // (possibly-unresolved) ascent, in case it's needed later for // baseline-alignment or to establish the container's baseline. // (NOTE: This can be marked 'const' even though it's modifying mAscent, // because mAscent is mutable. It's nice for this to be 'const', because it // means our final reflow can iterate over const FlexItem pointers, and we // can be sure it's not modifying those FlexItems, except via this method.) void SetAscent(nscoord aAscent) const { mAscent = aAscent; // NOTE: this may be ASK_FOR_BASELINE } void SetHadMeasuringReflow() { mHadMeasuringReflow = true; } void SetIsStretched() { MOZ_ASSERT(mIsFrozen, "main size should be resolved before this"); mIsStretched = true; } void SetIsFlexBaseSizeContentBSize() { mIsFlexBaseSizeContentBSize = true; } void SetIsMainMinSizeContentBSize() { mIsMainMinSizeContentBSize = true; } // Setter for margin components (for resolving "auto" margins) void SetMarginComponentForSide(LogicalSide aSide, nscoord aLength) { MOZ_ASSERT(mIsFrozen, "main size should be resolved before this"); mMargin.Side(aSide, mCBWM) = aLength; } void ResolveStretchedCrossSize(nscoord aLineCrossSize); // Resolves flex base size if flex-basis' used value is 'content', using this // item's preferred aspect ratio and cross size. void ResolveFlexBaseSizeFromAspectRatio(const ReflowInput& aItemReflowInput); uint32_t NumAutoMarginsInMainAxis() const { return NumAutoMarginsInAxis(MainAxis()); }; uint32_t NumAutoMarginsInCrossAxis() const { return NumAutoMarginsInAxis(CrossAxis()); }; // Once the main size has been resolved, should we bother doing layout to // establish the cross size? bool CanMainSizeInfluenceCrossSize() const; // Returns a main size, clamped by any definite min and max cross size // converted through the preferred aspect ratio. The caller is responsible for // ensuring that the flex item's preferred aspect ratio is not zero. nscoord ClampMainSizeViaCrossAxisConstraints( nscoord aMainSize, const ReflowInput& aItemReflowInput) const; // Indicates whether we think this flex item needs a "final" reflow // (after its final flexed size & final position have been determined). // // @param aParentReflowInput the flex container's reflow input. // @return true if such a reflow is needed, or false if we believe it can // simply be moved to its final position and skip the reflow. bool NeedsFinalReflow(const ReflowInput& aParentReflowInput) const; // Gets the block frame that contains the flex item's content. This is // Frame() itself or one of its descendants. nsBlockFrame* BlockFrame() const; protected: bool IsMinSizeAutoResolutionNeeded() const; uint32_t NumAutoMarginsInAxis(LogicalAxis aAxis) const; // Values that we already know in constructor, and remain unchanged: // The flex item's frame. nsIFrame* mFrame = nullptr; float mFlexGrow = 0.0f; float mFlexShrink = 0.0f; AspectRatio mAspectRatio; // The flex item's writing mode. WritingMode mWM; // The flex container's writing mode. WritingMode mCBWM; // The flex container's main axis in flex container's writing mode. LogicalAxis mMainAxis; // Stored in flex container's writing mode. LogicalMargin mBorderPadding; // Stored in flex container's writing mode. Its value can change when we // resolve "auto" marigns. LogicalMargin mMargin; // These are non-const so that we can lazily update them with the item's // intrinsic size (obtained via a "measuring" reflow), when necessary. // (e.g. for "flex-basis:auto;height:auto" & "min-height:auto") nscoord mFlexBaseSize = 0; nscoord mMainMinSize = 0; nscoord mMainMaxSize = 0; // mCrossMinSize and mCrossMaxSize are not changed after constructor. nscoord mCrossMinSize = 0; nscoord mCrossMaxSize = 0; // Values that we compute after constructor: nscoord mMainSize = 0; nscoord mMainPosn = 0; nscoord mCrossSize = 0; nscoord mCrossPosn = 0; // Mutable b/c it's set & resolved lazily, sometimes via const pointer. See // comment above SetAscent(). // We initialize this to ASK_FOR_BASELINE, and opportunistically fill it in // with a real value if we end up reflowing this flex item. (But if we don't // reflow this flex item, then this sentinel tells us that we don't know it // yet & anyone who cares will need to explicitly request it.) // // Both mAscent and mAscentForLast are distance from the frame's border-box // block-start edge. mutable nscoord mAscent = ReflowOutput::ASK_FOR_BASELINE; mutable nscoord mAscentForLast = ReflowOutput::ASK_FOR_BASELINE; // Temporary state, while we're resolving flexible widths (for our main size) // XXXdholbert To save space, we could use a union to make these variables // overlay the same memory as some other member vars that aren't touched // until after main-size has been resolved. In particular, these could share // memory with mMainPosn through mAscent, and mIsStretched. double mShareOfWeightSoFar = 0.0; bool mIsFrozen = false; bool mHadMinViolation = false; bool mHadMaxViolation = false; // Did this item get a preliminary reflow, to measure its desired height? bool mHadMeasuringReflow = false; // See IsStretched() documentation. bool mIsStretched = false; // Is this item a "strut" left behind by an element with visibility:collapse? bool mIsStrut = false; // See IsInlineAxisMainAxis() documentation. This is not changed after // constructor. bool mIsInlineAxisMainAxis = true; // Does this item need to resolve a min-[width|height]:auto (in main-axis)? // // Note: mNeedsMinSizeAutoResolution needs to be declared towards the end of // the member variables since it's initialized in a method that depends on // other members declared above such as mCBWM, mMainAxis, and // mIsInlineAxisMainAxis. bool mNeedsMinSizeAutoResolution = false; // Should we take care to treat this item's resolved BSize as indefinite? bool mTreatBSizeAsIndefinite = false; // Does this item have an auto margin in either main or cross axis? bool mHasAnyAutoMargin = false; // Does this item have a content-based flex base size (and is that a size in // its block-axis)? bool mIsFlexBaseSizeContentBSize = false; // Does this item have a content-based resolved auto min size (and is that a // size in its block-axis)? bool mIsMainMinSizeContentBSize = false; // If this item is {first,last}-baseline-aligned using 'align-self', which of // its FlexLine's baseline sharing groups does it participate in? BaselineSharingGroup mBaselineSharingGroup = BaselineSharingGroup::First; // My "align-self" computed value (with "auto" swapped out for parent"s // "align-items" value, in our constructor). StyleAlignSelf mAlignSelf{StyleAlignFlags::AUTO}; // Flags for 'align-self' (safe/unsafe/legacy). StyleAlignFlags mAlignSelfFlags{0}; }; /** * Represents a single flex line in a flex container. * Manages an array of the FlexItems that are in the line. */ class nsFlexContainerFrame::FlexLine final { public: explicit FlexLine(nscoord aMainGapSize) : mMainGapSize(aMainGapSize) {} nscoord SumOfGaps() const { return NumItems() > 0 ? (NumItems() - 1) * mMainGapSize : 0; } // Returns the sum of our FlexItems' outer hypothetical main sizes plus the // sum of main axis {row,column}-gaps between items. // ("outer" = margin-box, and "hypothetical" = before flexing) AuCoord64 TotalOuterHypotheticalMainSize() const { return mTotalOuterHypotheticalMainSize; } // Accessors for our FlexItems & information about them: // // Note: Callers must use IsEmpty() to ensure that the FlexLine is non-empty // before calling accessors that return FlexItem. FlexItem& FirstItem() { return mItems[0]; } const FlexItem& FirstItem() const { return mItems[0]; } FlexItem& LastItem() { return mItems.LastElement(); } const FlexItem& LastItem() const { return mItems.LastElement(); } // The "startmost"/"endmost" is from the perspective of the flex container's // writing-mode, not from the perspective of the flex-relative main axis. const FlexItem& StartmostItem(const FlexboxAxisTracker& aAxisTracker) const { return aAxisTracker.IsMainAxisReversed() ? LastItem() : FirstItem(); } const FlexItem& EndmostItem(const FlexboxAxisTracker& aAxisTracker) const { return aAxisTracker.IsMainAxisReversed() ? FirstItem() : LastItem(); } bool IsEmpty() const { return mItems.IsEmpty(); } uint32_t NumItems() const { return mItems.Length(); } nsTArray<FlexItem>& Items() { return mItems; } const nsTArray<FlexItem>& Items() const { return mItems; } // Adds the last flex item's hypothetical outer main-size and // margin/border/padding to our totals. This should be called exactly once for // each flex item, after we've determined that this line is the correct home // for that item. void AddLastItemToMainSizeTotals() { const FlexItem& lastItem = Items().LastElement(); // Update our various bookkeeping member-vars: if (lastItem.IsFrozen()) { mNumFrozenItems++; } mTotalItemMBP += lastItem.MarginBorderPaddingSizeInMainAxis(); mTotalOuterHypotheticalMainSize += lastItem.OuterMainSize(); // If the item added was not the first item in the line, we add in any gap // space as needed. if (NumItems() >= 2) { mTotalOuterHypotheticalMainSize += mMainGapSize; } } // Computes the cross-size and baseline position of this FlexLine, based on // its FlexItems. void ComputeCrossSizeAndBaseline(const FlexboxAxisTracker& aAxisTracker); // Returns the cross-size of this line. nscoord LineCrossSize() const { return mLineCrossSize; } // Setter for line cross-size -- needed for cases where the flex container // imposes a cross-size on the line. (e.g. for single-line flexbox, or for // multi-line flexbox with 'align-content: stretch') void SetLineCrossSize(nscoord aLineCrossSize) { mLineCrossSize = aLineCrossSize; } /** * Returns the offset within this line where any baseline-aligned FlexItems * should place their baseline. The return value represents a distance from * the line's cross-start edge. * * If there are no baseline-aligned FlexItems, returns nscoord_MIN. */ nscoord FirstBaselineOffset() const { return mFirstBaselineOffset; } /** * Returns the offset within this line where any last baseline-aligned * FlexItems should place their baseline. Opposite the case of the first * baseline offset, this represents a distance from the line's cross-end * edge (since last baseline-aligned items are flush to the cross-end edge). * * If there are no last baseline-aligned FlexItems, returns nscoord_MIN. */ nscoord LastBaselineOffset() const { return mLastBaselineOffset; } // Extract a baseline from this line, which would be suitable for use as the // flex container's 'aBaselineGroup' (i.e. first/last) baseline. // https://drafts.csswg.org/css-flexbox-1/#flex-baselines // // The return value always represents a distance from the line's cross-start // edge, even if we are querying last baseline. If this line has no flex items // in its aBaselineGroup group, this method falls back to trying the opposite // group. If this line has no baseline-aligned items at all, this returns // nscoord_MIN. nscoord ExtractBaselineOffset(BaselineSharingGroup aBaselineGroup) const; /** * Returns the gap size in the main axis for this line. Used for gap * calculations. */ nscoord MainGapSize() const { return mMainGapSize; } // Runs the "Resolving Flexible Lengths" algorithm from section 9.7 of the // CSS flexbox spec to distribute aFlexContainerMainSize among our flex items. // https://drafts.csswg.org/css-flexbox-1/#resolve-flexible-lengths void ResolveFlexibleLengths(nscoord aFlexContainerMainSize, ComputedFlexLineInfo* aLineInfo); void PositionItemsInMainAxis(const StyleContentDistribution& aJustifyContent, nscoord aContentBoxMainSize, const FlexboxAxisTracker& aAxisTracker); void PositionItemsInCrossAxis(nscoord aLineStartPosition, const FlexboxAxisTracker& aAxisTracker); private: // Helpers for ResolveFlexibleLengths(): void FreezeItemsEarly(bool aIsUsingFlexGrow, ComputedFlexLineInfo* aLineInfo); void FreezeOrRestoreEachFlexibleSize(const nscoord aTotalViolation, bool aIsFinalIteration); // Stores this line's flex items. nsTArray<FlexItem> mItems; // Number of *frozen* FlexItems in this line, based on FlexItem::IsFrozen(). // Mostly used for optimization purposes, e.g. to bail out early from loops // when we can tell they have nothing left to do. uint32_t mNumFrozenItems = 0; // Sum of margin/border/padding for the FlexItems in this FlexLine. nscoord mTotalItemMBP = 0; // Sum of FlexItems' outer hypothetical main sizes and all main-axis // {row,columnm}-gaps between items. // (i.e. their flex base sizes, clamped via their min/max-size properties, // plus their main-axis margin/border/padding, plus the sum of the gaps.) // // This variable uses a 64-bit coord type to avoid integer overflow in case // several of the individual items have huge hypothetical main sizes, which // can happen with percent-width table-layout:fixed descendants. We have to // avoid integer overflow in order to shrink items properly in that scenario. AuCoord64 mTotalOuterHypotheticalMainSize = 0; nscoord mLineCrossSize = 0; nscoord mFirstBaselineOffset = nscoord_MIN; nscoord mLastBaselineOffset = nscoord_MIN; // Maintain size of each {row,column}-gap in the main axis const nscoord mMainGapSize; }; // The "startmost"/"endmost" is from the perspective of the flex container's // writing-mode, not from the perspective of the flex-relative cross axis. const FlexLine& StartmostLine(const nsTArray<FlexLine>& aLines, const FlexboxAxisTracker& aAxisTracker) { return aAxisTracker.IsCrossAxisReversed() ? aLines.LastElement() : aLines[0]; } const FlexLine& EndmostLine(const nsTArray<FlexLine>& aLines, const FlexboxAxisTracker& aAxisTracker) { return aAxisTracker.IsCrossAxisReversed() ? aLines[0] : aLines.LastElement(); } // Information about a strut left behind by a FlexItem that's been collapsed // using "visibility:collapse". struct nsFlexContainerFrame::StrutInfo { StrutInfo(uint32_t aItemIdx, nscoord aStrutCrossSize) : mItemIdx(aItemIdx), mStrutCrossSize(aStrutCrossSize) {} uint32_t mItemIdx; // Index in the child list. nscoord mStrutCrossSize; // The cross-size of this strut. }; // Flex data shared by the flex container frames in a continuation chain, owned // by the first-in-flow. The data is initialized at the end of the // first-in-flow's Reflow(). struct nsFlexContainerFrame::SharedFlexData final { // The flex lines generated in DoFlexLayout() by our first-in-flow. nsTArray<FlexLine> mLines; // The final content main/cross size computed by DoFlexLayout. nscoord mContentBoxMainSize = NS_UNCONSTRAINEDSIZE; nscoord mContentBoxCrossSize = NS_UNCONSTRAINEDSIZE; // Update this struct. Called by the first-in-flow. void Update(FlexLayoutResult&& aFlr) { mLines = std::move(aFlr.mLines); mContentBoxMainSize = aFlr.mContentBoxMainSize; mContentBoxCrossSize = aFlr.mContentBoxCrossSize; } // The frame property under which this struct is stored. Set only on the // first-in-flow. NS_DECLARE_FRAME_PROPERTY_DELETABLE(Prop, SharedFlexData) }; // Flex data stored in every flex container's in-flow fragment (continuation). // // It's intended to prevent quadratic operations resulting from each fragment // having to walk its full prev-in-flow chain, and also serves as an argument to // the flex container next-in-flow's ReflowChildren(), to compute the position // offset for each flex item. struct nsFlexContainerFrame::PerFragmentFlexData final { // Suppose D is the distance from a flex container fragment's content-box // block-start edge to whichever is larger of either (a) the block-end edge of // its children, or (b) the available space's block-end edge. (Note: in case // (b), D is conceptually the sum of the block-size of the children, the // packing space before & in between them, and part of the packing space after // them.) // // This variable stores the sum of the D values for the current flex container // fragments and for all its previous fragments nscoord mCumulativeContentBoxBSize = 0; // This variable accumulates FirstLineOrFirstItemBAxisMetrics::mBEndEdgeShift, // for the current flex container fragment and for all its previous fragments. // See the comment of mBEndEdgeShift for its computation details. In short, // this value is the net block-end edge shift, accumulated for the children in // all the previous fragments. This number is non-negative. // // This value is also used to grow a flex container's block-size if the // container's computed block-size is unconstrained. For example: a tall item // may be pushed to the next page/column, which leaves some wasted area at the // bottom of the current flex container fragment, and causes the flex // container fragments to be (collectively) larger than the hypothetical // unfragmented size. Another example: a tall flex item may be broken into // multiple fragments, and those fragments may have a larger collective // block-size as compared to the item's original unfragmented size; the // container would need to increase its block-size to account for this. nscoord mCumulativeBEndEdgeShift = 0; // The frame property under which this struct is stored. Cached on every // in-flow fragment (continuation) at the end of the flex container's // Reflow(). NS_DECLARE_FRAME_PROPERTY_DELETABLE(Prop, PerFragmentFlexData) }; static void BuildStrutInfoFromCollapsedItems(const nsTArray<FlexLine>& aLines, nsTArray<StrutInfo>& aStruts) { MOZ_ASSERT(aStruts.IsEmpty(), "We should only build up StrutInfo once per reflow, so " "aStruts should be empty when this is called"); uint32_t itemIdxInContainer = 0; for (const FlexLine& line : aLines) { for (const FlexItem& item : line.Items()) { if (item.Frame()->StyleVisibility()->IsCollapse()) { // Note the cross size of the line as the item's strut size. aStruts.AppendElement( StrutInfo(itemIdxInContainer, line.LineCrossSize())); } itemIdxInContainer++; } } } static mozilla::StyleAlignFlags SimplifyAlignOrJustifyContentForOneItem( const StyleContentDistribution& aAlignmentVal, bool aIsAlign) { // Mask away any explicit fallback, to get the main (non-fallback) part of // the specified value: StyleAlignFlags specified = aAlignmentVal.primary; // XXX strip off <overflow-position> bits until we implement it (bug 1311892) specified &= ~StyleAlignFlags::FLAG_BITS; // FIRST: handle a special-case for "justify-content:stretch" (or equivalent), // which requires that we ignore any author-provided explicit fallback value. if (specified == StyleAlignFlags::NORMAL) { // In a flex container, *-content: "'normal' behaves as 'stretch'". // Do that conversion early, so it benefits from our 'stretch' special-case. // https://drafts.csswg.org/css-align-3/#distribution-flex specified = StyleAlignFlags::STRETCH; } if (!aIsAlign && specified == StyleAlignFlags::STRETCH) { // In a flex container, in "justify-content Axis: [...] 'stretch' behaves // as 'flex-start' (ignoring the specified fallback alignment, if any)." // https://drafts.csswg.org/css-align-3/#distribution-flex // So, we just directly return 'flex-start', & ignore explicit fallback.. return StyleAlignFlags::FLEX_START; } // TODO: Check for an explicit fallback value (and if it's present, use it) // here once we parse it, see https://github.com/w3c/csswg-drafts/issues/1002. // If there's no explicit fallback, use the implied fallback values for // space-{between,around,evenly} (since those values only make sense with // multiple alignment subjects), and otherwise just use the specified value: if (specified == StyleAlignFlags::SPACE_BETWEEN) { return StyleAlignFlags::FLEX_START; } if (specified == StyleAlignFlags::SPACE_AROUND || specified == StyleAlignFlags::SPACE_EVENLY) { return StyleAlignFlags::CENTER; } return specified; } bool nsFlexContainerFrame::DrainSelfOverflowList() { return DrainAndMergeSelfOverflowList(); } void nsFlexContainerFrame::AppendFrames(ChildListID aListID, nsFrameList&& aFrameList) { NoteNewChildren(aListID, aFrameList); nsContainerFrame::AppendFrames(aListID, std::move(aFrameList)); } void nsFlexContainerFrame::InsertFrames( ChildListID aListID, nsIFrame* aPrevFrame, const nsLineList::iterator* aPrevFrameLine, nsFrameList&& aFrameList) { NoteNewChildren(aListID, aFrameList); nsContainerFrame::InsertFrames(aListID, aPrevFrame, aPrevFrameLine, std::move(aFrameList)); } void nsFlexContainerFrame::RemoveFrame(DestroyContext& aContext, ChildListID aListID, nsIFrame* aOldFrame) { MOZ_ASSERT(aListID == FrameChildListID::Principal, "unexpected child list"); #ifdef DEBUG SetDidPushItemsBitIfNeeded(aListID, aOldFrame); #endif nsContainerFrame::RemoveFrame(aContext, aListID, aOldFrame); } StyleAlignFlags nsFlexContainerFrame::CSSAlignmentForAbsPosChild( const ReflowInput& aChildRI, LogicalAxis aLogicalAxis) const { const FlexboxAxisTracker axisTracker(this); // If we're row-oriented and the caller is asking about our inline axis (or // alternately, if we're column-oriented and the caller is asking about our // block axis), then the caller is really asking about our *main* axis. // Otherwise, the caller is asking about our cross axis. const bool isMainAxis = (axisTracker.IsRowOriented() == (aLogicalAxis == eLogicalAxisInline)); const nsStylePosition* containerStylePos = StylePosition(); const bool isAxisReversed = isMainAxis ? axisTracker.IsMainAxisReversed() : axisTracker.IsCrossAxisReversed(); StyleAlignFlags alignment{0}; StyleAlignFlags alignmentFlags{0}; if (isMainAxis) { // We're aligning in the main axis: align according to 'justify-content'. // (We don't care about justify-self; it has no effect on children of flex // containers, unless https://github.com/w3c/csswg-drafts/issues/7644 // changes that.) alignment = SimplifyAlignOrJustifyContentForOneItem( containerStylePos->mJustifyContent, /*aIsAlign = */ false); } else { // We're aligning in the cross axis: align according to 'align-self'. // (We don't care about align-content; it has no effect on abspos flex // children, per https://github.com/w3c/csswg-drafts/issues/7596 ) alignment = aChildRI.mStylePosition->UsedAlignSelf(Style())._0; // Extract and strip align flag bits alignmentFlags = alignment & StyleAlignFlags::FLAG_BITS; alignment &= ~StyleAlignFlags::FLAG_BITS; if (alignment == StyleAlignFlags::NORMAL) { // "the 'normal' keyword behaves as 'start' on replaced // absolutely-positioned boxes, and behaves as 'stretch' on all other // absolutely-positioned boxes." // https://drafts.csswg.org/css-align/#align-abspos alignment = aChildRI.mFrame->IsReplaced() ? StyleAlignFlags::START : StyleAlignFlags::STRETCH; } } if (alignment == StyleAlignFlags::STRETCH) { // The default fallback alignment for 'stretch' is 'flex-start'. alignment = StyleAlignFlags::FLEX_START; } // Resolve flex-start, flex-end, auto, left, right, baseline, last baseline; if (alignment == StyleAlignFlags::FLEX_START) { alignment = isAxisReversed ? StyleAlignFlags::END : StyleAlignFlags::START; } else if (alignment == StyleAlignFlags::FLEX_END) { alignment = isAxisReversed ? StyleAlignFlags::START : StyleAlignFlags::END; } else if (alignment == StyleAlignFlags::LEFT || alignment == StyleAlignFlags::RIGHT) { MOZ_ASSERT(isMainAxis, "Only justify-* can have 'left' and 'right'!"); alignment = axisTracker.ResolveJustifyLeftRight(alignment); } else if (alignment == StyleAlignFlags::BASELINE) { alignment = StyleAlignFlags::START; } else if (alignment == StyleAlignFlags::LAST_BASELINE) { alignment = StyleAlignFlags::END; } MOZ_ASSERT(alignment != StyleAlignFlags::STRETCH, "We should've converted 'stretch' to the fallback alignment!"); MOZ_ASSERT(alignment != StyleAlignFlags::FLEX_START && alignment != StyleAlignFlags::FLEX_END, "nsAbsoluteContainingBlock doesn't know how to handle " "flex-relative axis for flex containers!"); return (alignment | alignmentFlags); } void nsFlexContainerFrame::GenerateFlexItemForChild( FlexLine& aLine, nsIFrame* aChildFrame, const ReflowInput& aParentReflowInput, const FlexboxAxisTracker& aAxisTracker, const nscoord aTentativeContentBoxCrossSize) { const auto flexWM = aAxisTracker.GetWritingMode(); const auto childWM = aChildFrame->GetWritingMode(); // Note: we use GetStyleFrame() to access the sizing & flex properties here. // This lets us correctly handle table wrapper frames as flex items since // their inline-size and block-size properties are always 'auto'. In order for // 'flex-basis:auto' to actually resolve to the author's specified inline-size // or block-size, we need to dig through to the inner table. const auto* stylePos = nsLayoutUtils::GetStyleFrame(aChildFrame)->StylePosition(); // Construct a StyleSizeOverrides for this flex item so that its ReflowInput // below will use and resolve its flex base size rather than its corresponding // preferred main size property (only for modern CSS flexbox). StyleSizeOverrides sizeOverrides; if (!IsLegacyBox(this)) { Maybe<StyleSize> styleFlexBaseSize; // When resolving flex base size, flex items use their 'flex-basis' property // in place of their preferred main size (e.g. 'width') for sizing purposes, // *unless* they have 'flex-basis:auto' in which case they use their // preferred main size after all. const auto& flexBasis = stylePos->mFlexBasis; const auto& styleMainSize = stylePos->Size(aAxisTracker.MainAxis(), flexWM); if (IsUsedFlexBasisContent(flexBasis, styleMainSize)) { // If we get here, we're resolving the flex base size for a flex item, and // we fall into the flexbox spec section 9.2 step 3, substep C (if we have // a definite cross size) or E (if not). styleFlexBaseSize.emplace(StyleSize::MaxContent()); } else if (flexBasis.IsSize() && !flexBasis.IsAuto()) { // For all other non-'auto' flex-basis values, we just swap in the // flex-basis itself for the preferred main-size property. styleFlexBaseSize.emplace(flexBasis.AsSize()); } else { // else: flex-basis is 'auto', which is deferring to some explicit value // in the preferred main size. MOZ_ASSERT(flexBasis.IsAuto()); styleFlexBaseSize.emplace(styleMainSize); } MOZ_ASSERT(styleFlexBaseSize, "We should've emplace styleFlexBaseSize!"); // Provide the size override for the preferred main size property. if (aAxisTracker.IsInlineAxisMainAxis(childWM)) { sizeOverrides.mStyleISize = std::move(styleFlexBaseSize); } else { sizeOverrides.mStyleBSize = std::move(styleFlexBaseSize); } // 'flex-basis' should works on the inner table frame for a table flex item, // just like how 'height' works on a table element. sizeOverrides.mApplyOverridesVerbatim = true; } // Create temporary reflow input just for sizing -- to get hypothetical // main-size and the computed values of min / max main-size property. // (This reflow input will _not_ be used for reflow.) ReflowInput childRI(PresContext(), aParentReflowInput, aChildFrame, aParentReflowInput.ComputedSize(childWM), Nothing(), {}, sizeOverrides, {ComputeSizeFlag::ShrinkWrap}); // FLEX GROW & SHRINK WEIGHTS // -------------------------- float flexGrow, flexShrink; if (IsLegacyBox(this)) { flexGrow = flexShrink = aChildFrame->StyleXUL()->mBoxFlex; } else { flexGrow = stylePos->mFlexGrow; flexShrink = stylePos->mFlexShrink; } // MAIN SIZES (flex base size, min/max size) // ----------------------------------------- const LogicalSize computedSizeInFlexWM = childRI.ComputedSize(flexWM); const LogicalSize computedMinSizeInFlexWM = childRI.ComputedMinSize(flexWM); const LogicalSize computedMaxSizeInFlexWM = childRI.ComputedMaxSize(flexWM); const nscoord flexBaseSize = aAxisTracker.MainComponent(computedSizeInFlexWM); const nscoord mainMinSize = aAxisTracker.MainComponent(computedMinSizeInFlexWM); const nscoord mainMaxSize = aAxisTracker.MainComponent(computedMaxSizeInFlexWM); // This is enforced by the ReflowInput where these values come from: MOZ_ASSERT(mainMinSize <= mainMaxSize, "min size is larger than max size"); // CROSS SIZES (tentative cross size, min/max cross size) // ------------------------------------------------------ // Grab the cross size from the reflow input. This might be the right value, // or we might resolve it to something else in SizeItemInCrossAxis(); hence, // it's tentative. See comment under "Cross Size Determination" for more. const nscoord tentativeCrossSize = aAxisTracker.CrossComponent(computedSizeInFlexWM); const nscoord crossMinSize = aAxisTracker.CrossComponent(computedMinSizeInFlexWM); const nscoord crossMaxSize = aAxisTracker.CrossComponent(computedMaxSizeInFlexWM); // Construct the flex item! FlexItem& item = *aLine.Items().EmplaceBack( childRI, flexGrow, flexShrink, flexBaseSize, mainMinSize, mainMaxSize, tentativeCrossSize, crossMinSize, crossMaxSize, aAxisTracker); // We may be about to do computations based on our item's cross-size // (e.g. using it as a constraint when measuring our content in the // main axis, or using it with the preferred aspect ratio to obtain a main // size). BEFORE WE DO THAT, we need let the item "pre-stretch" its cross size // (if it's got 'align-self:stretch'), for a certain case where the spec says // the stretched cross size is considered "definite". That case is if we // have a single-line (nowrap) flex container which itself has a definite // cross-size. Otherwise, we'll wait to do stretching, since (in other // cases) we don't know how much the item should stretch yet. const bool isSingleLine = StyleFlexWrap::Nowrap == aParentReflowInput.mStylePosition->mFlexWrap; if (isSingleLine) { // Is container's cross size "definite"? // - If it's column-oriented, then "yes", because its cross size is its // inline-size which is always definite from its descendants' perspective. // - Otherwise (if it's row-oriented), then we check the actual size // and call it definite if it's not NS_UNCONSTRAINEDSIZE. if (aAxisTracker.IsColumnOriented() || aTentativeContentBoxCrossSize != NS_UNCONSTRAINEDSIZE) { // Container's cross size is "definite", so we can resolve the item's // stretched cross size using that. item.ResolveStretchedCrossSize(aTentativeContentBoxCrossSize); } } // Before thinking about freezing the item at its base size, we need to give // it a chance to recalculate the base size from its cross size and aspect // ratio (since its cross size might've *just* now become definite due to // 'stretch' above) item.ResolveFlexBaseSizeFromAspectRatio(childRI); // If we're inflexible, we can just freeze to our hypothetical main-size // up-front. if (flexGrow == 0.0f && flexShrink == 0.0f) { item.Freeze(); if (flexBaseSize < mainMinSize) { item.SetWasMinClamped(); } else if (flexBaseSize > mainMaxSize) { item.SetWasMaxClamped(); } } // Resolve "flex-basis:auto" and/or "min-[width|height]:auto" (which might // require us to reflow the item to measure content height) ResolveAutoFlexBasisAndMinSize(item, childRI, aAxisTracker); } // Static helper-functions for ResolveAutoFlexBasisAndMinSize(): // ------------------------------------------------------------- // Partially resolves "min-[width|height]:auto" and returns the resulting value. // By "partially", I mean we don't consider the min-content size (but we do // consider the main-size and main max-size properties, and the preferred aspect // ratio). The caller is responsible for computing & considering the min-content // size in combination with the partially-resolved value that this function // returns. // // Basically, this function gets the specified size suggestion; if not, the // transferred size suggestion; if both sizes do not exist, return nscoord_MAX. // // Spec reference: https://drafts.csswg.org/css-flexbox-1/#min-size-auto static nscoord PartiallyResolveAutoMinSize( const FlexItem& aFlexItem, const ReflowInput& aItemReflowInput, const FlexboxAxisTracker& aAxisTracker) { MOZ_ASSERT(aFlexItem.NeedsMinSizeAutoResolution(), "only call for FlexItems that need min-size auto resolution"); const auto itemWM = aFlexItem.GetWritingMode(); const auto cbWM = aAxisTracker.GetWritingMode(); const auto& mainStyleSize = aItemReflowInput.mStylePosition->Size(aAxisTracker.MainAxis(), cbWM); const auto& maxMainStyleSize = aItemReflowInput.mStylePosition->MaxSize(aAxisTracker.MainAxis(), cbWM); const auto boxSizingAdjust = aItemReflowInput.mStylePosition->mBoxSizing == StyleBoxSizing::Border ? aFlexItem.BorderPadding().Size(cbWM) : LogicalSize(cbWM); // If this flex item is a compressible replaced element list in CSS Sizing 3 // §5.2.2, CSS Sizing 3 §5.2.1c requires us to resolve the percentage part of // the preferred main size property against zero, yielding a definite // specified size suggestion. Here we can use a zero percentage basis to // fulfill this requirement. const auto percentBasis = aFlexItem.Frame()->IsPercentageResolvedAgainstZero(mainStyleSize, maxMainStyleSize) ? LogicalSize(cbWM, 0, 0) : aItemReflowInput.mContainingBlockSize.ConvertTo(cbWM, itemWM); // Compute the specified size suggestion, which is the main-size property if // it's definite. nscoord specifiedSizeSuggestion = nscoord_MAX; if (aAxisTracker.IsRowOriented()) { if (mainStyleSize.IsLengthPercentage()) { // NOTE: We ignore extremum inline-size. This is OK because the caller is // responsible for computing the min-content inline-size and min()'ing it // with the value we return. specifiedSizeSuggestion = aFlexItem.Frame()->ComputeISizeValue( cbWM, percentBasis, boxSizingAdjust, mainStyleSize.AsLengthPercentage()); } } else { if (!nsLayoutUtils::IsAutoBSize(mainStyleSize, percentBasis.BSize(cbWM))) { // NOTE: We ignore auto and extremum block-size. This is OK because the // caller is responsible for computing the min-content block-size and // min()'ing it with the value we return. specifiedSizeSuggestion = nsLayoutUtils::ComputeBSizeValue( percentBasis.BSize(cbWM), boxSizingAdjust.BSize(cbWM), mainStyleSize.AsLengthPercentage()); } } if (specifiedSizeSuggestion != nscoord_MAX) { // We have the specified size suggestion. Return it now since we don't need // to consider transferred size suggestion. FLEX_LOGV(" Specified size suggestion: %d", specifiedSizeSuggestion); return specifiedSizeSuggestion; } // Compute the transferred size suggestion, which is the cross size converted // through the aspect ratio (if the item is replaced, and it has an aspect // ratio and a definite cross size). if (const auto& aspectRatio = aFlexItem.GetAspectRatio(); aFlexItem.Frame()->IsReplaced() && aspectRatio && aFlexItem.IsCrossSizeDefinite(aItemReflowInput)) { // We have a usable aspect ratio. (not going to divide by 0) nscoord transferredSizeSuggestion = aspectRatio.ComputeRatioDependentSize( aFlexItem.MainAxis(), cbWM, aFlexItem.CrossSize(), boxSizingAdjust); // Clamp the transferred size suggestion by any definite min and max // cross size converted through the aspect ratio. transferredSizeSuggestion = aFlexItem.ClampMainSizeViaCrossAxisConstraints( transferredSizeSuggestion, aItemReflowInput); FLEX_LOGV(" Transferred size suggestion: %d", transferredSizeSuggestion); return transferredSizeSuggestion; } return nscoord_MAX; } // Note: If & when we handle "min-height: min-content" for flex items, // we may want to resolve that in this function, too. void nsFlexContainerFrame::ResolveAutoFlexBasisAndMinSize( FlexItem& aFlexItem, const ReflowInput& aItemReflowInput, const FlexboxAxisTracker& aAxisTracker) { // (Note: We can guarantee that the flex-basis will have already been // resolved if the main axis is the same as the item's inline // axis. Inline-axis values should always be resolvable without reflow.) const bool isMainSizeAuto = (!aFlexItem.IsInlineAxisMainAxis() && NS_UNCONSTRAINEDSIZE == aFlexItem.FlexBaseSize()); const bool isMainMinSizeAuto = aFlexItem.NeedsMinSizeAutoResolution(); if (!isMainSizeAuto && !isMainMinSizeAuto) { // Nothing to do; this function is only needed for flex items // with a used flex-basis of "auto" or a min-main-size of "auto". return; } FLEX_LOGV("Resolving auto main size or auto min main size for flex item %p", aFlexItem.Frame()); nscoord resolvedMinSize; // (only set/used if isMainMinSizeAuto==true) bool minSizeNeedsToMeasureContent = false; // assume the best if (isMainMinSizeAuto) { // Resolve the min-size, except for considering the min-content size. // (We'll consider that later, if we need to.) resolvedMinSize = PartiallyResolveAutoMinSize(aFlexItem, aItemReflowInput, aAxisTracker); if (resolvedMinSize > 0) { // If resolvedMinSize were already at 0, we could skip calculating content // size suggestion because it can't go any lower. minSizeNeedsToMeasureContent = true; } } const bool flexBasisNeedsToMeasureContent = isMainSizeAuto; // Measure content, if needed (w/ intrinsic-width method or a reflow) if (minSizeNeedsToMeasureContent || flexBasisNeedsToMeasureContent) { // Compute the content size suggestion, which is the min-content size in the // main axis. nscoord contentSizeSuggestion = nscoord_MAX; if (aFlexItem.IsInlineAxisMainAxis()) { if (minSizeNeedsToMeasureContent) { // Compute the flex item's content size suggestion, which is the // 'min-content' size on the main axis. // https://drafts.csswg.org/css-flexbox-1/#content-size-suggestion const auto cbWM = aAxisTracker.GetWritingMode(); const auto itemWM = aFlexItem.GetWritingMode(); const nscoord availISize = 0; // for min-content size StyleSizeOverrides sizeOverrides; sizeOverrides.mStyleISize.emplace(StyleSize::Auto()); const auto sizeInItemWM = aFlexItem.Frame()->ComputeSize( aItemReflowInput.mRenderingContext, itemWM, aItemReflowInput.mContainingBlockSize, availISize, aItemReflowInput.ComputedLogicalMargin(itemWM).Size(itemWM), aItemReflowInput.ComputedLogicalBorderPadding(itemWM).Size(itemWM), sizeOverrides, {ComputeSizeFlag::ShrinkWrap}); contentSizeSuggestion = aAxisTracker.MainComponent( sizeInItemWM.mLogicalSize.ConvertTo(cbWM, itemWM)); } NS_ASSERTION(!flexBasisNeedsToMeasureContent, "flex-basis:auto should have been resolved in the " "reflow input, for horizontal flexbox. It shouldn't need " "special handling here"); } else { // If this item is flexible (in its block axis)... // OR if we're measuring its 'auto' min-BSize, with its main-size (in its // block axis) being something non-"auto"... // THEN: we assume that the computed BSize that we're reflowing with now // could be different from the one we'll use for this flex item's // "actual" reflow later on. In that case, we need to be sure the flex // item treats this as a block-axis resize (regardless of whether there // are actually any ancestors being resized in that axis). // (Note: We don't have to do this for the inline axis, because // InitResizeFlags will always turn on mIsIResize on when it sees that // the computed ISize is different from current ISize, and that's all we // need.) bool forceBResizeForMeasuringReflow = !aFlexItem.IsFrozen() || // Is the item flexible? !flexBasisNeedsToMeasureContent; // Are we *only* measuring it for // 'min-block-size:auto'? const ReflowInput& flexContainerRI = *aItemReflowInput.mParentReflowInput; nscoord contentBSize = MeasureFlexItemContentBSize( aFlexItem, forceBResizeForMeasuringReflow, flexContainerRI); if (minSizeNeedsToMeasureContent) { contentSizeSuggestion = contentBSize; } if (flexBasisNeedsToMeasureContent) { aFlexItem.SetFlexBaseSizeAndMainSize(contentBSize); aFlexItem.SetIsFlexBaseSizeContentBSize(); } } if (minSizeNeedsToMeasureContent) { // Clamp the content size suggestion by any definite min and max cross // size converted through the aspect ratio. if (aFlexItem.HasAspectRatio()) { contentSizeSuggestion = aFlexItem.ClampMainSizeViaCrossAxisConstraints( contentSizeSuggestion, aItemReflowInput); } FLEX_LOGV(" Content size suggestion: %d", contentSizeSuggestion); resolvedMinSize = std::min(resolvedMinSize, contentSizeSuggestion); // Clamp the resolved min main size by the max main size if it's definite. if (aFlexItem.MainMaxSize() != NS_UNCONSTRAINEDSIZE) { resolvedMinSize = std::min(resolvedMinSize, aFlexItem.MainMaxSize()); } else if (MOZ_UNLIKELY(resolvedMinSize > nscoord_MAX)) { NS_WARNING("Bogus resolved auto min main size!"); // Our resolved min-size is bogus, probably due to some huge sizes in // the content. Clamp it to the valid nscoord range, so that we can at // least depend on it being <= the max-size (which is also the // nscoord_MAX sentinel value if we reach this point). resolvedMinSize = nscoord_MAX; } FLEX_LOGV(" Resolved auto min main size: %d", resolvedMinSize); if (resolvedMinSize == contentSizeSuggestion) { // When we are here, we've measured the item's content-based size, and // we used it as the resolved auto min main size. Record the fact so // that we can use it to determine whether we allow a flex item to grow // its block-size in ReflowFlexItem(). aFlexItem.SetIsMainMinSizeContentBSize(); } } } if (isMainMinSizeAuto) { aFlexItem.UpdateMainMinSize(resolvedMinSize); } } /** * A cached result for a flex item's block-axis measuring reflow. This cache * prevents us from doing exponential reflows in cases of deeply nested flex * and scroll frames. * * We store the cached value in the flex item's frame property table, for * simplicity. * * Right now, we cache the following as a "key", from the item's ReflowInput: * - its ComputedSize * - its min/max block size (in case its ComputedBSize is unconstrained) * - its AvailableBSize * ...and we cache the following as the "value", from the item's ReflowOutput: * - its final content-box BSize * * The assumption here is that a given flex item measurement from our "value" * won't change unless one of the pieces of the "key" change, or the flex * item's intrinsic size is marked as dirty (due to a style or DOM change). * (The latter will cause the cached value to be discarded, in * nsIFrame::MarkIntrinsicISizesDirty.) * * Note that the components of "Key" (mComputed{MinB,MaxB,}Size and * mAvailableBSize) are sufficient to catch any changes to the flex container's * size that the item may care about for its measuring reflow. Specifically: * - If the item cares about the container's size (e.g. if it has a percent * height and the container's height changes, in a horizontal-WM container) * then that'll be detectable via the item's ReflowInput's "ComputedSize()" * differing from the value in our Key. And the same applies for the * inline axis. * - If the item is fragmentable (pending bug 939897) and its measured BSize * depends on where it gets fragmented, then that sort of change can be * detected due to the item's ReflowInput's "AvailableBSize()" differing * from the value in our Key. * * One particular case to consider (& need to be sure not to break when * changing this class): the flex item's computed BSize may change between * measuring reflows due to how the mIsFlexContainerMeasuringBSize flag affects * size computation (see bug 1336708). This is one reason we need to use the * computed BSize as part of the key. */ class nsFlexContainerFrame::CachedBAxisMeasurement { struct Key { const LogicalSize mComputedSize; const nscoord mComputedMinBSize; const nscoord mComputedMaxBSize; const nscoord mAvailableBSize; explicit Key(const ReflowInput& aRI) : mComputedSize(aRI.ComputedSize()), mComputedMinBSize(aRI.ComputedMinBSize()), mComputedMaxBSize(aRI.ComputedMaxBSize()), mAvailableBSize(aRI.AvailableBSize()) {} bool operator==(const Key& aOther) const { return mComputedSize == aOther.mComputedSize && mComputedMinBSize == aOther.mComputedMinBSize && mComputedMaxBSize == aOther.mComputedMaxBSize && mAvailableBSize == aOther.mAvailableBSize; } }; const Key mKey; // This could/should be const, but it's non-const for now just because it's // assigned via a series of steps in the constructor body: nscoord mBSize; public: CachedBAxisMeasurement(const ReflowInput& aReflowInput, const ReflowOutput& aReflowOutput) : mKey(aReflowInput) { // To get content-box bsize, we have to subtract off border & padding // (and floor at 0 in case the border/padding are too large): WritingMode itemWM = aReflowInput.GetWritingMode(); nscoord borderBoxBSize = aReflowOutput.BSize(itemWM); mBSize = borderBoxBSize - aReflowInput.ComputedLogicalBorderPadding(itemWM).BStartEnd(itemWM); mBSize = std::max(0, mBSize); } /** * Returns true if this cached flex item measurement is valid for (i.e. can * be expected to match the output of) a measuring reflow whose input * parameters are given via aReflowInput. */ bool IsValidFor(const ReflowInput& aReflowInput) const { return mKey == Key(aReflowInput); } nscoord BSize() const { return mBSize; } }; /** * A cached copy of various metrics from a flex item's most recent final reflow. * It can be used to determine whether we can optimize away the flex item's * final reflow, when we perform an incremental reflow of its flex container. */ class CachedFinalReflowMetrics final { public: CachedFinalReflowMetrics(const ReflowInput& aReflowInput, const ReflowOutput& aReflowOutput) : CachedFinalReflowMetrics(aReflowInput.GetWritingMode(), aReflowInput, aReflowOutput) {} CachedFinalReflowMetrics(const FlexItem& aItem, const LogicalSize& aSize) : mBorderPadding(aItem.BorderPadding().ConvertTo( aItem.GetWritingMode(), aItem.ContainingBlockWM())), mSize(aSize), mTreatBSizeAsIndefinite(aItem.TreatBSizeAsIndefinite()) {} const LogicalSize& Size() const { return mSize; } const LogicalMargin& BorderPadding() const { return mBorderPadding; } bool TreatBSizeAsIndefinite() const { return mTreatBSizeAsIndefinite; } private: // A convenience constructor with a WritingMode argument. CachedFinalReflowMetrics(WritingMode aWM, const ReflowInput& aReflowInput, const ReflowOutput& aReflowOutput) : mBorderPadding(aReflowInput.ComputedLogicalBorderPadding(aWM)), mSize(aReflowOutput.Size(aWM) - mBorderPadding.Size(aWM)), mTreatBSizeAsIndefinite(aReflowInput.mFlags.mTreatBSizeAsIndefinite) {} // The flex item's border and padding, in its own writing-mode, that it used // used during its most recent "final reflow". LogicalMargin mBorderPadding; // The flex item's content-box size, in its own writing-mode, that it used // during its most recent "final reflow". LogicalSize mSize; // True if the flex item's BSize was considered "indefinite" in its most // recent "final reflow". (For a flex item "final reflow", this is fully // determined by the mTreatBSizeAsIndefinite flag in ReflowInput. See the // flag's documentation for more information.) bool mTreatBSizeAsIndefinite; }; /** * When we instantiate/update a CachedFlexItemData, this enum must be used to * indicate the sort of reflow whose results we're capturing. This impacts * what we cache & how we use the cached information. */ enum class FlexItemReflowType { // A reflow to measure the block-axis size of a flex item (as an input to the // flex layout algorithm). Measuring, // A reflow with the flex item's "final" size at the end of the flex layout // algorithm. Final, }; /** * This class stores information about the conditions and results for the most * recent ReflowChild call that we made on a given flex item. This information * helps us reason about whether we can assume that a subsequent ReflowChild() * invocation is unnecessary & skippable. */ class nsFlexContainerFrame::CachedFlexItemData { public: CachedFlexItemData(const ReflowInput& aReflowInput, const ReflowOutput& aReflowOutput, FlexItemReflowType aType) { Update(aReflowInput, aReflowOutput, aType); } // This method is intended to be called after we perform either a "measuring // reflow" or a "final reflow" for a given flex item. void Update(const ReflowInput& aReflowInput, const ReflowOutput& aReflowOutput, FlexItemReflowType aType) { if (aType == FlexItemReflowType::Measuring) { mBAxisMeasurement.reset(); mBAxisMeasurement.emplace(aReflowInput, aReflowOutput); // Clear any cached "last final reflow metrics", too, because now the most // recent reflow was *not* a "final reflow". mFinalReflowMetrics.reset(); return; } MOZ_ASSERT(aType == FlexItemReflowType::Final); mFinalReflowMetrics.reset(); mFinalReflowMetrics.emplace(aReflowInput, aReflowOutput); } // This method is intended to be called for situations where we decide to // skip a final reflow because we've just done a measuring reflow which left // us (and our descendants) with the correct sizes. In this scenario, we // still want to cache the size as if we did a final reflow (because we've // determined that the recent measuring reflow was sufficient). That way, // our flex container can still skip a final reflow for this item in the // future as long as conditions are right. void Update(const FlexItem& aItem, const LogicalSize& aSize) { MOZ_ASSERT(!mFinalReflowMetrics, "This version of the method is only intended to be called when " "the most recent reflow was a 'measuring reflow'; and that " "should have cleared out mFinalReflowMetrics"); mFinalReflowMetrics.reset(); // Just in case this assert^ fails. mFinalReflowMetrics.emplace(aItem, aSize); } // If the flex container needs a measuring reflow for the flex item, then the // resulting block-axis measurements can be cached here. If no measurement // has been needed so far, then this member will be Nothing(). Maybe<CachedBAxisMeasurement> mBAxisMeasurement; // The metrics that the corresponding flex item used in its most recent // "final reflow". (Note: the assumption here is that this reflow was this // item's most recent reflow of any type. If the item ends up undergoing a // subsequent measuring reflow, then this value needs to be cleared, because // at that point it's no longer an accurate way of reasoning about the // current state of the frame tree.) Maybe<CachedFinalReflowMetrics> mFinalReflowMetrics; // Instances of this class are stored under this frame property, on // frames that are flex items: NS_DECLARE_FRAME_PROPERTY_DELETABLE(Prop, CachedFlexItemData) }; void nsFlexContainerFrame::MarkCachedFlexMeasurementsDirty( nsIFrame* aItemFrame) { MOZ_ASSERT(aItemFrame->IsFlexItem()); if (auto* cache = aItemFrame->GetProperty(CachedFlexItemData::Prop())) { cache->mBAxisMeasurement.reset(); cache->mFinalReflowMetrics.reset(); } } const CachedBAxisMeasurement& nsFlexContainerFrame::MeasureBSizeForFlexItem( FlexItem& aItem, ReflowInput& aChildReflowInput) { auto* cachedData = aItem.Frame()->GetProperty(CachedFlexItemData::Prop()); if (cachedData && cachedData->mBAxisMeasurement) { if (!aItem.Frame()->IsSubtreeDirty() && cachedData->mBAxisMeasurement->IsValidFor(aChildReflowInput)) { FLEX_LOG("[perf] MeasureBSizeForFlexItem accepted cached value"); return *(cachedData->mBAxisMeasurement); } FLEX_LOG("[perf] MeasureBSizeForFlexItem rejected cached value"); } else { FLEX_LOG("[perf] MeasureBSizeForFlexItem didn't have a cached value"); } // CachedFlexItemData is stored in item's writing mode, so we pass // aChildReflowInput into ReflowOutput's constructor. ReflowOutput childReflowOutput(aChildReflowInput); nsReflowStatus childReflowStatus; const ReflowChildFlags flags = ReflowChildFlags::NoMoveFrame; const WritingMode outerWM = GetWritingMode(); const LogicalPoint dummyPosition(outerWM); const nsSize dummyContainerSize; // We use NoMoveFrame, so the position and container size used here are // unimportant. ReflowChild(aItem.Frame(), PresContext(), childReflowOutput, aChildReflowInput, outerWM, dummyPosition, dummyContainerSize, flags, childReflowStatus); aItem.SetHadMeasuringReflow(); // We always use unconstrained available block-size to measure flex items, // which means they should always complete. MOZ_ASSERT(childReflowStatus.IsComplete(), "We gave flex item unconstrained available block-size, so it " "should be complete"); // Tell the child we're done with its initial reflow. // (Necessary for e.g. GetBaseline() to work below w/out asserting) FinishReflowChild(aItem.Frame(), PresContext(), childReflowOutput, &aChildReflowInput, outerWM, dummyPosition, dummyContainerSize, flags); aItem.SetAscent(childReflowOutput.BlockStartAscent()); // Update (or add) our cached measurement, so that we can hopefully skip this // measuring reflow the next time around: if (cachedData) { cachedData->Update(aChildReflowInput, childReflowOutput, FlexItemReflowType::Measuring); } else { cachedData = new CachedFlexItemData(aChildReflowInput, childReflowOutput, FlexItemReflowType::Measuring); aItem.Frame()->SetProperty(CachedFlexItemData::Prop(), cachedData); } return *(cachedData->mBAxisMeasurement); } /* virtual */ void nsFlexContainerFrame::MarkIntrinsicISizesDirty() { mCachedMinISize = NS_INTRINSIC_ISIZE_UNKNOWN; mCachedPrefISize = NS_INTRINSIC_ISIZE_UNKNOWN; nsContainerFrame::MarkIntrinsicISizesDirty(); } nscoord nsFlexContainerFrame::MeasureFlexItemContentBSize( FlexItem& aFlexItem, bool aForceBResizeForMeasuringReflow, const ReflowInput& aParentReflowInput) { FLEX_LOG("Measuring flex item's content block-size"); // Set up a reflow input for measuring the flex item's content block-size: WritingMode wm = aFlexItem.Frame()->GetWritingMode(); LogicalSize availSize = aParentReflowInput.ComputedSize(wm); availSize.BSize(wm) = NS_UNCONSTRAINEDSIZE; StyleSizeOverrides sizeOverrides; if (aFlexItem.IsStretched()) { sizeOverrides.mStyleISize.emplace(aFlexItem.StyleCrossSize()); // Suppress any AspectRatio that we might have to prevent ComputeSize() from // transferring our inline-size override through the aspect-ratio to set the // block-size, because that would prevent us from measuring the content // block-size. sizeOverrides.mAspectRatio.emplace(AspectRatio()); FLEX_LOGV(" Cross size override: %d", aFlexItem.CrossSize()); } sizeOverrides.mStyleBSize.emplace(StyleSize::Auto()); ReflowInput childRIForMeasuringBSize( PresContext(), aParentReflowInput, aFlexItem.Frame(), availSize, Nothing(), {}, sizeOverrides, {ComputeSizeFlag::ShrinkWrap}); // When measuring flex item's content block-size, disregard the item's // min-block-size and max-block-size by resetting both to to their // unconstraining (extreme) values. The flexbox layout algorithm does still // explicitly clamp both sizes when resolving the target main size. childRIForMeasuringBSize.SetComputedMinBSize(0); childRIForMeasuringBSize.SetComputedMaxBSize(NS_UNCONSTRAINEDSIZE); if (aForceBResizeForMeasuringReflow) { childRIForMeasuringBSize.SetBResize(true); // Not 100% sure this is needed, but be conservative for now: childRIForMeasuringBSize.mFlags.mIsBResizeForPercentages = true; } const CachedBAxisMeasurement& measurement = MeasureBSizeForFlexItem(aFlexItem, childRIForMeasuringBSize); return measurement.BSize(); } FlexItem::FlexItem(ReflowInput& aFlexItemReflowInput, float aFlexGrow, float aFlexShrink, nscoord aFlexBaseSize, nscoord aMainMinSize, nscoord aMainMaxSize, nscoord aTentativeCrossSize, nscoord aCrossMinSize, nscoord aCrossMaxSize, const FlexboxAxisTracker& aAxisTracker) : mFrame(aFlexItemReflowInput.mFrame), mFlexGrow(aFlexGrow), mFlexShrink(aFlexShrink), mAspectRatio(mFrame->GetAspectRatio()), mWM(aFlexItemReflowInput.GetWritingMode()), mCBWM(aAxisTracker.GetWritingMode()), mMainAxis(aAxisTracker.MainAxis()), mBorderPadding(aFlexItemReflowInput.ComputedLogicalBorderPadding(mCBWM)), mMargin(aFlexItemReflowInput.ComputedLogicalMargin(mCBWM)), mMainMinSize(aMainMinSize), mMainMaxSize(aMainMaxSize), mCrossMinSize(aCrossMinSize), mCrossMaxSize(aCrossMaxSize), mCrossSize(aTentativeCrossSize), mIsInlineAxisMainAxis(aAxisTracker.IsInlineAxisMainAxis(mWM)), mNeedsMinSizeAutoResolution(IsMinSizeAutoResolutionNeeded()) // mAlignSelf, mHasAnyAutoMargin see below { MOZ_ASSERT(mFrame, "expecting a non-null child frame"); MOZ_ASSERT(!mFrame->IsPlaceholderFrame(), "placeholder frames should not be treated as flex items"); MOZ_ASSERT(!mFrame->HasAnyStateBits(NS_FRAME_OUT_OF_FLOW), "out-of-flow frames should not be treated as flex items"); MOZ_ASSERT(mIsInlineAxisMainAxis == nsFlexContainerFrame::IsItemInlineAxisMainAxis(mFrame), "public API should be consistent with internal state (about " "whether flex item's inline axis is flex container's main axis)"); const ReflowInput* containerRS = aFlexItemReflowInput.mParentReflowInput; if (IsLegacyBox(containerRS->mFrame)) { // For -webkit-{inline-}box and -moz-{inline-}box, we need to: // (1) Use prefixed "box-align" instead of "align-items" to determine the // container's cross-axis alignment behavior. // (2) Suppress the ability for flex items to override that with their own // cross-axis alignment. (The legacy box model doesn't support this.) // So, each FlexItem simply copies the container's converted "align-items" // value and disregards their own "align-self" property. const nsStyleXUL* containerStyleXUL = containerRS->mFrame->StyleXUL(); mAlignSelf = {ConvertLegacyStyleToAlignItems(containerStyleXUL)}; mAlignSelfFlags = {0}; } else { mAlignSelf = aFlexItemReflowInput.mStylePosition->UsedAlignSelf( containerRS->mFrame->Style()); if (MOZ_LIKELY(mAlignSelf._0 == StyleAlignFlags::NORMAL)) { mAlignSelf = {StyleAlignFlags::STRETCH}; } // Store and strip off the <overflow-position> bits mAlignSelfFlags = mAlignSelf._0 & StyleAlignFlags::FLAG_BITS; mAlignSelf._0 &= ~StyleAlignFlags::FLAG_BITS; } // Our main-size is considered definite if any of these are true: // (a) main axis is the item's inline axis. // (b) flex container has definite main size. // (c) flex item has a definite flex basis. // // Hence, we need to take care to treat the final main-size as *indefinite* // if none of these conditions are satisfied. if (mIsInlineAxisMainAxis) { // The item's block-axis is the flex container's cross axis. We don't need // any special handling to treat cross sizes as indefinite, because the // cases where we stomp on the cross size with a definite value are all... // - situations where the spec requires us to treat the cross size as // definite; specifically, `align-self:stretch` whose cross size is // definite. // - situations where definiteness doesn't matter (e.g. for an element with // an aspect ratio, which for now are all leaf nodes and hence // can't have any percent-height descendants that would care about the // definiteness of its size. (Once bug 1528375 is fixed, we might need to // be more careful about definite vs. indefinite sizing on flex items with // aspect ratios.) mTreatBSizeAsIndefinite = false; } else { // The item's block-axis is the flex container's main axis. So, the flex // item's main size is its BSize, and is considered definite under certain // conditions laid out for definite flex-item main-sizes in the spec. if (aAxisTracker.IsRowOriented() || (containerRS->ComputedBSize() != NS_UNCONSTRAINEDSIZE && !containerRS->mFlags.mTreatBSizeAsIndefinite)) { // The flex *container* has a definite main-size (either by being // row-oriented [and using its own inline size which is by definition // definite, or by being column-oriented and having a definite // block-size). The spec says this means all of the flex items' // post-flexing main sizes should *also* be treated as definite. mTreatBSizeAsIndefinite = false; } else if (aFlexBaseSize != NS_UNCONSTRAINEDSIZE) { // The flex item has a definite flex basis, which we'll treat as making // its main-size definite. mTreatBSizeAsIndefinite = false; } else { // Otherwise, we have to treat the item's BSize as indefinite. mTreatBSizeAsIndefinite = true; } } SetFlexBaseSizeAndMainSize(aFlexBaseSize); const nsStyleMargin* styleMargin = aFlexItemReflowInput.mStyleMargin; mHasAnyAutoMargin = styleMargin->HasInlineAxisAuto(mCBWM) || styleMargin->HasBlockAxisAuto(mCBWM); // Assert that any "auto" margin components are set to 0. // (We'll resolve them later; until then, we want to treat them as 0-sized.) #ifdef DEBUG { for (const auto side : AllLogicalSides()) { if (styleMargin->mMargin.Get(mCBWM, side).IsAuto()) { MOZ_ASSERT(GetMarginComponentForSide(side) == 0, "Someone else tried to resolve our auto margin"); } } } #endif // DEBUG if (mAlignSelf._0 == StyleAlignFlags::BASELINE || mAlignSelf._0 == StyleAlignFlags::LAST_BASELINE) { // Check which of the item's baselines we're meant to use (first vs. last) const bool usingItemFirstBaseline = (mAlignSelf._0 == StyleAlignFlags::BASELINE); if (IsBlockAxisCrossAxis()) { // The flex item wants to be aligned in the cross axis using one of its // baselines; and the cross axis is the item's block axis, so // baseline-alignment in that axis makes sense. // To determine the item's baseline sharing group, we check whether the // item's block axis has the same vs. opposite flow direction as the // corresponding LogicalAxis on the flex container. We do this by // getting the physical side that corresponds to these axes' "logical // start" sides, and we compare those physical sides to find out if // they're the same vs. opposite. mozilla::Side itemBlockStartSide = mWM.PhysicalSide(eLogicalSideBStart); // (Note: this is *not* the "flex-start" side; rather, it's the *logical* // i.e. WM-relative block-start or inline-start side.) mozilla::Side containerStartSideInCrossAxis = mCBWM.PhysicalSide( MakeLogicalSide(aAxisTracker.CrossAxis(), eLogicalEdgeStart)); // We already know these two Sides (the item's block-start and the // container's 'logical start' side for its cross axis) are in the same // physical axis, since we're inside of a check for // FlexItem::IsBlockAxisCrossAxis(). So these two Sides must be either // the same physical side or opposite from each other. If the Sides are // the same, then the flow direction is the same, which means the item's // {first,last} baseline participates in the {first,last} // baseline-sharing group in its FlexLine. Otherwise, the flow direction // is opposite, and so the item's {first,last} baseline participates in // the opposite i.e. {last,first} baseline-sharing group. This is // roughly per css-align-3 section 9.2, specifically the definition of // what makes baseline alignment preferences "compatible". bool itemBlockAxisFlowDirMatchesContainer = (itemBlockStartSide == containerStartSideInCrossAxis); mBaselineSharingGroup = (itemBlockAxisFlowDirMatchesContainer == usingItemFirstBaseline) ? BaselineSharingGroup::First : BaselineSharingGroup::Last; } else { // The flex item wants to be aligned in the cross axis using one of its // baselines, but we cannot get its baseline because the FlexItem's block // axis is *orthogonal* to the container's cross axis. To handle this, we // are supposed to synthesize a baseline from the item's border box and // using that for baseline alignment. mBaselineSharingGroup = usingItemFirstBaseline ? BaselineSharingGroup::First : BaselineSharingGroup::Last; } } } // Simplified constructor for creating a special "strut" FlexItem, for a child // with visibility:collapse. The strut has 0 main-size, and it only exists to // impose a minimum cross size on whichever FlexLine it ends up in. FlexItem::FlexItem(nsIFrame* aChildFrame, nscoord aCrossSize, WritingMode aContainerWM, const FlexboxAxisTracker& aAxisTracker) : mFrame(aChildFrame), mWM(aChildFrame->GetWritingMode()), mCBWM(aContainerWM), mMainAxis(aAxisTracker.MainAxis()), mBorderPadding(mCBWM), mMargin(mCBWM), mCrossSize(aCrossSize), // Struts don't do layout, so its WM doesn't matter at this point. So, we // just share container's WM for simplicity: mIsFrozen(true), mIsStrut(true), // (this is the constructor for making struts, after all) mAlignSelf({StyleAlignFlags::FLEX_START}) { MOZ_ASSERT(mFrame, "expecting a non-null child frame"); MOZ_ASSERT(mFrame->StyleVisibility()->IsCollapse(), "Should only make struts for children with 'visibility:collapse'"); MOZ_ASSERT(!mFrame->IsPlaceholderFrame(), "placeholder frames should not be treated as flex items"); MOZ_ASSERT(!mFrame->HasAnyStateBits(NS_FRAME_OUT_OF_FLOW), "out-of-flow frames should not be treated as flex items"); } bool FlexItem::IsMinSizeAutoResolutionNeeded() const { // We'll need special behavior for "min-[width|height]:auto" (whichever is in // the flex container's main axis) iff: // (a) its computed value is "auto", and // (b) the item is *not* a scroll container. (A scroll container's automatic // minimum size is zero.) // https://drafts.csswg.org/css-flexbox-1/#min-size-auto // // Note that the scroll container case is redefined to be looking at the // computed value instead, see https://github.com/w3c/csswg-drafts/issues/7714 const auto& mainMinSize = Frame()->StylePosition()->MinSize(MainAxis(), ContainingBlockWM()); return IsAutoOrEnumOnBSize(mainMinSize, IsInlineAxisMainAxis()) && !Frame()->StyleDisplay()->IsScrollableOverflow(); } Maybe<nscoord> FlexItem::MeasuredBSize() const { auto* cachedData = Frame()->FirstInFlow()->GetProperty(CachedFlexItemData::Prop()); if (!cachedData || !cachedData->mBAxisMeasurement) { return Nothing(); } return Some(cachedData->mBAxisMeasurement->BSize()); } nscoord FlexItem::BaselineOffsetFromOuterCrossEdge( mozilla::Side aStartSide, bool aUseFirstLineBaseline) const { // NOTE: // * We only use baselines for aligning in the flex container's cross axis. // * Baselines are a measurement in the item's block axis. if (IsBlockAxisMainAxis()) { // We get here if the item's block axis is *orthogonal* the container's // cross axis. For example, a flex item with writing-mode:horizontal-tb in a // column-oriented flex container. We need to synthesize the item's baseline // from its border-box edge. const bool isMainAxisHorizontal = mCBWM.PhysicalAxis(MainAxis()) == mozilla::eAxisHorizontal; // When the main axis is horizontal, the synthesized baseline is the bottom // edge of the item's border-box. Otherwise, when the main axis is vertical, // the left edge. This is for compatibility with Google Chrome. nscoord marginTopOrLeftToBaseline = isMainAxisHorizontal ? PhysicalMargin().top : PhysicalMargin().left; if (mCBWM.IsAlphabeticalBaseline()) { marginTopOrLeftToBaseline += (isMainAxisHorizontal ? CrossSize() : 0); } else { MOZ_ASSERT(mCBWM.IsCentralBaseline()); marginTopOrLeftToBaseline += CrossSize() / 2; } return aStartSide == mozilla::eSideTop || aStartSide == mozilla::eSideLeft ? marginTopOrLeftToBaseline : OuterCrossSize() - marginTopOrLeftToBaseline; } // We get here if the item's block axis is parallel (or antiparallel) to the // container's cross axis. We call ResolvedAscent() to get the item's // baseline. If the item has no baseline, the method will synthesize one from // the border-box edge. MOZ_ASSERT(IsBlockAxisCrossAxis(), "Only expecting to be doing baseline computations when the " "cross axis is the block axis"); mozilla::Side itemBlockStartSide = mWM.PhysicalSide(eLogicalSideBStart); nscoord marginBStartToBaseline = ResolvedAscent(aUseFirstLineBaseline) + PhysicalMargin().Side(itemBlockStartSide); return (aStartSide == itemBlockStartSide) ? marginBStartToBaseline : OuterCrossSize() - marginBStartToBaseline; } bool FlexItem::IsCrossSizeAuto() const { const nsStylePosition* stylePos = nsLayoutUtils::GetStyleFrame(mFrame)->StylePosition(); // Check whichever component is in the flex container's cross axis. // (IsInlineAxisCrossAxis() tells us whether that's our ISize or BSize, in // terms of our own WritingMode, mWM.) return IsInlineAxisCrossAxis() ? stylePos->ISize(mWM).IsAuto() : stylePos->BSize(mWM).IsAuto(); } bool FlexItem::IsCrossSizeDefinite(const ReflowInput& aItemReflowInput) const { if (IsStretched()) { // Definite cross-size, imposed via 'align-self:stretch' & flex container. return true; } const nsStylePosition* pos = aItemReflowInput.mStylePosition; const auto itemWM = GetWritingMode(); // The logic here should be similar to the logic for isAutoISize/isAutoBSize // in nsContainerFrame::ComputeSizeWithIntrinsicDimensions(). if (IsInlineAxisCrossAxis()) { return !pos->ISize(itemWM).IsAuto(); } nscoord cbBSize = aItemReflowInput.mContainingBlockSize.BSize(itemWM); return !nsLayoutUtils::IsAutoBSize(pos->BSize(itemWM), cbBSize); } void FlexItem::ResolveFlexBaseSizeFromAspectRatio( const ReflowInput& aItemReflowInput) { // This implements the Flex Layout Algorithm Step 3B: // https://drafts.csswg.org/css-flexbox-1/#algo-main-item // If the flex item has ... // - an aspect ratio, // - a [used] flex-basis of 'content', and // - a definite cross size // then the flex base size is calculated from its inner cross size and the // flex item's preferred aspect ratio. if (HasAspectRatio() && nsFlexContainerFrame::IsUsedFlexBasisContent( aItemReflowInput.mStylePosition->mFlexBasis, aItemReflowInput.mStylePosition->Size(MainAxis(), mCBWM)) && IsCrossSizeDefinite(aItemReflowInput)) { const LogicalSize contentBoxSizeToBoxSizingAdjust = aItemReflowInput.mStylePosition->mBoxSizing == StyleBoxSizing::Border ? BorderPadding().Size(mCBWM) : LogicalSize(mCBWM); const nscoord mainSizeFromRatio = mAspectRatio.ComputeRatioDependentSize( MainAxis(), mCBWM, CrossSize(), contentBoxSizeToBoxSizingAdjust); SetFlexBaseSizeAndMainSize(mainSizeFromRatio); } } uint32_t FlexItem::NumAutoMarginsInAxis(LogicalAxis aAxis) const { uint32_t numAutoMargins = 0; const auto& styleMargin = mFrame->StyleMargin()->mMargin; for (const auto edge : {eLogicalEdgeStart, eLogicalEdgeEnd}) { const auto side = MakeLogicalSide(aAxis, edge); if (styleMargin.Get(mCBWM, side).IsAuto()) { numAutoMargins++; } } // Mostly for clarity: MOZ_ASSERT(numAutoMargins <= 2, "We're just looking at one item along one dimension, so we " "should only have examined 2 margins"); return numAutoMargins; } bool FlexItem::CanMainSizeInfluenceCrossSize() const { if (mIsStretched) { // We've already had our cross-size stretched for "align-self:stretch"). // The container is imposing its cross size on us. return false; } if (mIsStrut) { // Struts (for visibility:collapse items) have a predetermined size; // no need to measure anything. return false; } if (HasAspectRatio()) { // For flex items that have an aspect ratio (and maintain it, i.e. are // not stretched, which we already checked above): changes to main-size // *do* influence the cross size. return true; } if (IsInlineAxisCrossAxis()) { // If we get here, this function is really asking: "can changes to this // item's block size have an influence on its inline size"? For blocks and // tables, the answer is "no". if (mFrame->IsBlockFrame() || mFrame->IsTableWrapperFrame()) { // XXXdholbert (Maybe use an IsFrameOfType query or something more // general to test this across all frame types? For now, I'm just // optimizing for block and table, since those are common containers that // can contain arbitrarily-large subtrees (and that reliably have ISize // being unaffected by BSize, per CSS2). So optimizing away needless // relayout is possible & especially valuable for these containers.) return false; } // Other opt-outs can go here, as they're identified as being useful // (particularly for containers where an extra reflow is expensive). But in // general, we have to assume that a flexed BSize *could* influence the // ISize. Some examples where this can definitely happen: // * Intrinsically-sized multicol with fixed-ISize columns, which adds // columns (i.e. grows in inline axis) depending on its block size. // * Intrinsically-sized multi-line column-oriented flex container, which // adds flex lines (i.e. grows in inline axis) depending on its block size. } // Default assumption, if we haven't proven otherwise: the resolved main size // *can* change the cross size. return true; } nscoord FlexItem::ClampMainSizeViaCrossAxisConstraints( nscoord aMainSize, const ReflowInput& aItemReflowInput) const { MOZ_ASSERT(HasAspectRatio(), "Caller should've checked the ratio is valid!"); const LogicalSize contentBoxSizeToBoxSizingAdjust = aItemReflowInput.mStylePosition->mBoxSizing == StyleBoxSizing::Border ? BorderPadding().Size(mCBWM) : LogicalSize(mCBWM); const nscoord mainMinSizeFromRatio = mAspectRatio.ComputeRatioDependentSize( MainAxis(), mCBWM, CrossMinSize(), contentBoxSizeToBoxSizingAdjust); nscoord clampedMainSize = std::max(aMainSize, mainMinSizeFromRatio); if (CrossMaxSize() != NS_UNCONSTRAINEDSIZE) { const nscoord mainMaxSizeFromRatio = mAspectRatio.ComputeRatioDependentSize( MainAxis(), mCBWM, CrossMaxSize(), contentBoxSizeToBoxSizingAdjust); clampedMainSize = std::min(clampedMainSize, mainMaxSizeFromRatio); } return clampedMainSize; } /** * Returns true if aFrame or any of its children have the * NS_FRAME_CONTAINS_RELATIVE_BSIZE flag set -- i.e. if any of these frames (or * their descendants) might have a relative-BSize dependency on aFrame (or its * ancestors). */ static bool FrameHasRelativeBSizeDependency(nsIFrame* aFrame) { if (aFrame->HasAnyStateBits(NS_FRAME_CONTAINS_RELATIVE_BSIZE)) { return true; } for (const auto& childList : aFrame->ChildLists()) { for (nsIFrame* childFrame : childList.mList) { if (childFrame->HasAnyStateBits(NS_FRAME_CONTAINS_RELATIVE_BSIZE)) { return true; } } } return false; } bool FlexItem::NeedsFinalReflow(const ReflowInput& aParentReflowInput) const { if (!StaticPrefs::layout_flexbox_item_final_reflow_optimization_enabled()) { FLEX_LOG( "[perf] Flex item %p needed a final reflow due to optimization being " "disabled via the preference", mFrame); return true; } // NOTE: We can have continuations from an earlier constrained reflow. if (mFrame->GetPrevInFlow() || mFrame->GetNextInFlow()) { // This is an item has continuation(s). Reflow it. FLEX_LOG("[frag] Flex item %p needed a final reflow due to continuation(s)", mFrame); return true; } // A flex item can grow its block-size in a fragmented context if there's any // force break within it (bug 1663079), or if it has a repeated table header // or footer (bug 1744363). We currently always reflow it. // // Bug 1815294: investigate if we can design a more specific condition to // prevent triggering O(n^2) behavior when printing a deeply-nested flex // container. if (aParentReflowInput.IsInFragmentedContext()) { FLEX_LOG( "[frag] Flex item %p needed both a measuring reflow and a final " "reflow due to being in a fragmented context.", mFrame); return true; } // Flex item's final content-box size (in terms of its own writing-mode): const LogicalSize finalSize = mIsInlineAxisMainAxis ? LogicalSize(mWM, mMainSize, mCrossSize) : LogicalSize(mWM, mCrossSize, mMainSize); if (HadMeasuringReflow()) { // We've already reflowed this flex item once, to measure it. In that // reflow, did its frame happen to end up with the correct final size // that the flex container would like it to have? if (finalSize != mFrame->ContentSize(mWM)) { // The measuring reflow left the item with a different size than its // final flexed size. So, we need to reflow to give it the correct size. FLEX_LOG( "[perf] Flex item %p needed both a measuring reflow and a final " "reflow due to measured size disagreeing with final size", mFrame); return true; } if (FrameHasRelativeBSizeDependency(mFrame)) { // This item has descendants with relative BSizes who may care that its // size may now be considered "definite" in the final reflow (whereas it // was indefinite during the measuring reflow). FLEX_LOG( "[perf] Flex item %p needed both a measuring reflow and a final " "reflow due to BSize potentially becoming definite", mFrame); return true; } // If we get here, then this flex item had a measuring reflow, it left us // with the correct size, none of its descendants care that its BSize may // now be considered definite, and it can fit into the available block-size. // So it doesn't need a final reflow. // // We now cache this size as if we had done a final reflow (because we've // determined that the measuring reflow was effectively equivalent). This // way, in our next time through flex layout, we may be able to skip both // the measuring reflow *and* the final reflow (if conditions are the same // as they are now). if (auto* cache = mFrame->GetProperty(CachedFlexItemData::Prop())) { cache->Update(*this, finalSize); } return false; } // This item didn't receive a measuring reflow (at least, not during this // reflow of our flex container). We may still be able to skip reflowing it // (i.e. return false from this function), if its subtree is clean & its most // recent "final reflow" had it at the correct content-box size & // definiteness. // Let's check for each condition that would still require us to reflow: if (mFrame->IsSubtreeDirty()) { FLEX_LOG( "[perf] Flex item %p needed a final reflow due to its subtree " "being dirty", mFrame); return true; } // Cool; this item & its subtree haven't experienced any style/content // changes that would automatically require a reflow. // Did we cache the metrics from its most recent "final reflow"? auto* cache = mFrame->GetProperty(CachedFlexItemData::Prop()); if (!cache || !cache->mFinalReflowMetrics) { FLEX_LOG( "[perf] Flex item %p needed a final reflow due to lacking a " "cached mFinalReflowMetrics (maybe cache was cleared)", mFrame); return true; } // Does the cached size match our current size? if (cache->mFinalReflowMetrics->Size() != finalSize) { FLEX_LOG( "[perf] Flex item %p needed a final reflow due to having a " "different content box size vs. its most recent final reflow", mFrame); return true; } // Does the cached border and padding match our current ones? // // Note: this is just to detect cases where we have a percent padding whose // basis has changed. Any other sort of change to BorderPadding() (e.g. a new // specified value) should result in the frame being marked dirty via proper // change hint (see nsStylePadding::CalcDifference()), which will force it to // reflow. if (cache->mFinalReflowMetrics->BorderPadding() != BorderPadding().ConvertTo(mWM, mCBWM)) { FLEX_LOG( "[perf] Flex item %p needed a final reflow due to having a " "different border and padding vs. its most recent final reflow", mFrame); return true; } // The flex container is giving this flex item the same size that the item // had on its most recent "final reflow". But if its definiteness changed and // one of the descendants cares, then it would still need a reflow. if (cache->mFinalReflowMetrics->TreatBSizeAsIndefinite() != mTreatBSizeAsIndefinite && FrameHasRelativeBSizeDependency(mFrame)) { FLEX_LOG( "[perf] Flex item %p needed a final reflow due to having " "its BSize change definiteness & having a rel-BSize child", mFrame); return true; } // If we get here, we can skip the final reflow! (The item's subtree isn't // dirty, and our current conditions are sufficiently similar to the most // recent "final reflow" that it should have left our subtree in the correct // state.) FLEX_LOG("[perf] Flex item %p didn't need a final reflow", mFrame); return false; } // Keeps track of our position along a particular axis (where a '0' position // corresponds to the 'start' edge of that axis). // This class shouldn't be instantiated directly -- rather, it should only be // instantiated via its subclasses defined below. class MOZ_STACK_CLASS PositionTracker { public: // Accessor for the current value of the position that we're tracking. inline nscoord Position() const { return mPosition; } inline LogicalAxis Axis() const { return mAxis; } inline LogicalSide StartSide() { return MakeLogicalSide( mAxis, mIsAxisReversed ? eLogicalEdgeEnd : eLogicalEdgeStart); } inline LogicalSide EndSide() { return MakeLogicalSide( mAxis, mIsAxisReversed ? eLogicalEdgeStart : eLogicalEdgeEnd); } // Advances our position across the start edge of the given margin, in the // axis we're tracking. void EnterMargin(const LogicalMargin& aMargin) { mPosition += aMargin.Side(StartSide(), mWM); } // Advances our position across the end edge of the given margin, in the axis // we're tracking. void ExitMargin(const LogicalMargin& aMargin) { mPosition += aMargin.Side(EndSide(), mWM); } // Advances our current position from the start side of a child frame's // border-box to the frame's upper or left edge (depending on our axis). // (Note that this is a no-op if our axis grows in the same direction as // the corresponding logical axis.) void EnterChildFrame(nscoord aChildFrameSize) { if (mIsAxisReversed) { mPosition += aChildFrameSize; } } // Advances our current position from a frame's upper or left border-box edge // (whichever is in the axis we're tracking) to the 'end' side of the frame // in the axis that we're tracking. (Note that this is a no-op if our axis // is reversed with respect to the corresponding logical axis.) void ExitChildFrame(nscoord aChildFrameSize) { if (!mIsAxisReversed) { mPosition += aChildFrameSize; } } // Delete copy-constructor & reassignment operator, to prevent accidental // (unnecessary) copying. PositionTracker(const PositionTracker&) = delete; PositionTracker& operator=(const PositionTracker&) = delete; protected: // Protected constructor, to be sure we're only instantiated via a subclass. PositionTracker(WritingMode aWM, LogicalAxis aAxis, bool aIsAxisReversed) : mWM(aWM), mAxis(aAxis), mIsAxisReversed(aIsAxisReversed) {} // Member data: // The position we're tracking. nscoord mPosition = 0; // The flex container's writing mode. const WritingMode mWM; // The axis along which we're moving. const LogicalAxis mAxis = eLogicalAxisInline; // Is the axis along which we're moving reversed (e.g. LTR vs RTL) with // respect to the corresponding axis on the flex container's WM? const bool mIsAxisReversed = false; }; // Tracks our position in the main axis, when we're laying out flex items. // The "0" position represents the main-start edge of the flex container's // content-box. class MOZ_STACK_CLASS MainAxisPositionTracker : public PositionTracker { public: MainAxisPositionTracker(const FlexboxAxisTracker& aAxisTracker, const FlexLine* aLine, const StyleContentDistribution& aJustifyContent, nscoord aContentBoxMainSize); ~MainAxisPositionTracker() { MOZ_ASSERT(mNumPackingSpacesRemaining == 0, "miscounted the number of packing spaces"); MOZ_ASSERT(mNumAutoMarginsInMainAxis == 0, "miscounted the number of auto margins"); } // Advances past the gap space (if any) between two flex items void TraverseGap(nscoord aGapSize) { mPosition += aGapSize; } // Advances past the packing space (if any) between two flex items void TraversePackingSpace(); // If aItem has any 'auto' margins in the main axis, this method updates the // corresponding values in its margin. void ResolveAutoMarginsInMainAxis(FlexItem& aItem); private: nscoord mPackingSpaceRemaining = 0; uint32_t mNumAutoMarginsInMainAxis = 0; uint32_t mNumPackingSpacesRemaining = 0; StyleContentDistribution mJustifyContent = {StyleAlignFlags::AUTO}; }; // Utility class for managing our position along the cross axis along // the whole flex container (at a higher level than a single line). // The "0" position represents the cross-start edge of the flex container's // content-box. class MOZ_STACK_CLASS CrossAxisPositionTracker : public PositionTracker { public: CrossAxisPositionTracker(nsTArray<FlexLine>& aLines, const ReflowInput& aReflowInput, nscoord aContentBoxCrossSize, bool aIsCrossSizeDefinite, const FlexboxAxisTracker& aAxisTracker, const nscoord aCrossGapSize); // Advances past the gap (if any) between two flex lines void TraverseGap() { mPosition += mCrossGapSize; } // Advances past the packing space (if any) between two flex lines void TraversePackingSpace(); // Advances past the given FlexLine void TraverseLine(FlexLine& aLine) { mPosition += aLine.LineCrossSize(); } // Redeclare the frame-related methods from PositionTracker with // = delete, to be sure (at compile time) that no client code can invoke // them. (Unlike the other PositionTracker derived classes, this class here // deals with FlexLines, not with individual FlexItems or frames.) void EnterMargin(const LogicalMargin& aMargin) = delete; void ExitMargin(const LogicalMargin& aMargin) = delete; void EnterChildFrame(nscoord aChildFrameSize) = delete; void ExitChildFrame(nscoord aChildFrameSize) = delete; private: nscoord mPackingSpaceRemaining = 0; uint32_t mNumPackingSpacesRemaining = 0; StyleContentDistribution mAlignContent = {StyleAlignFlags::AUTO}; const nscoord mCrossGapSize; }; // Utility class for managing our position along the cross axis, *within* a // single flex line. class MOZ_STACK_CLASS SingleLineCrossAxisPositionTracker : public PositionTracker { public: explicit SingleLineCrossAxisPositionTracker( const FlexboxAxisTracker& aAxisTracker); void ResolveAutoMarginsInCrossAxis(const FlexLine& aLine, FlexItem& aItem); void EnterAlignPackingSpace(const FlexLine& aLine, const FlexItem& aItem, const FlexboxAxisTracker& aAxisTracker); // Resets our position to the cross-start edge of this line. inline void ResetPosition() { mPosition = 0; } }; //---------------------------------------------------------------------- // Frame class boilerplate // ======================= NS_QUERYFRAME_HEAD(nsFlexContainerFrame) NS_QUERYFRAME_ENTRY(nsFlexContainerFrame) NS_QUERYFRAME_TAIL_INHERITING(nsContainerFrame) NS_IMPL_FRAMEARENA_HELPERS(nsFlexContainerFrame) nsContainerFrame* NS_NewFlexContainerFrame(PresShell* aPresShell, ComputedStyle* aStyle) { return new (aPresShell) nsFlexContainerFrame(aStyle, aPresShell->GetPresContext()); } //---------------------------------------------------------------------- // nsFlexContainerFrame Method Implementations // =========================================== /* virtual */ nsFlexContainerFrame::~nsFlexContainerFrame() = default; /* virtual */ void nsFlexContainerFrame::Init(nsIContent* aContent, nsContainerFrame* aParent, nsIFrame* aPrevInFlow) { nsContainerFrame::Init(aContent, aParent, aPrevInFlow); if (HasAnyStateBits(NS_FRAME_FONT_INFLATION_CONTAINER)) { AddStateBits(NS_FRAME_FONT_INFLATION_FLOW_ROOT); } auto displayInside = StyleDisplay()->DisplayInside(); // If this frame is for a scrollable element, then it will actually have // "display:block", and its *parent frame* will have the real // flex-flavored display value. So in that case, check the parent frame to // find out if we're legacy. // // TODO(emilio): Maybe ::-moz-scrolled-content and co should inherit `display` // (or a blockified version thereof, to not hit bug 456484). if (displayInside == StyleDisplayInside::Flow) { MOZ_ASSERT(StyleDisplay()->mDisplay == StyleDisplay::Block); MOZ_ASSERT(Style()->GetPseudoType() == PseudoStyleType::buttonContent || Style()->GetPseudoType() == PseudoStyleType::scrolledContent, "The only way a nsFlexContainerFrame can have 'display:block' " "should be if it's the inner part of a scrollable or button " "element"); displayInside = GetParent()->StyleDisplay()->DisplayInside(); } // Figure out if we should set a frame state bit to indicate that this frame // represents a legacy -moz-{inline-}box or -webkit-{inline-}box container. if (displayInside == StyleDisplayInside::WebkitBox) { AddStateBits(NS_STATE_FLEX_IS_EMULATING_LEGACY_WEBKIT_BOX); } } #ifdef DEBUG_FRAME_DUMP nsresult nsFlexContainerFrame::GetFrameName(nsAString& aResult) const { return MakeFrameName(u"FlexContainer"_ns, aResult); } #endif void nsFlexContainerFrame::BuildDisplayList(nsDisplayListBuilder* aBuilder, const nsDisplayListSet& aLists) { nsDisplayListCollection tempLists(aBuilder); DisplayBorderBackgroundOutline(aBuilder, tempLists); if (GetPrevInFlow()) { DisplayOverflowContainers(aBuilder, tempLists); } // Our children are all block-level, so their borders/backgrounds all go on // the BlockBorderBackgrounds list. nsDisplayListSet childLists(tempLists, tempLists.BlockBorderBackgrounds()); CSSOrderAwareFrameIterator iter( this, FrameChildListID::Principal, CSSOrderAwareFrameIterator::ChildFilter::IncludeAll, OrderStateForIter(this), OrderingPropertyForIter(this)); const auto flags = DisplayFlagsForFlexOrGridItem(); for (; !iter.AtEnd(); iter.Next()) { nsIFrame* childFrame = *iter; BuildDisplayListForChild(aBuilder, childFrame, childLists, flags); } tempLists.MoveTo(aLists); } void FlexLine::FreezeItemsEarly(bool aIsUsingFlexGrow, ComputedFlexLineInfo* aLineInfo) { // After we've established the type of flexing we're doing (growing vs. // shrinking), and before we try to flex any items, we freeze items that // obviously *can't* flex. // // Quoting the spec: // # Freeze, setting its target main size to its hypothetical main size... // # - any item that has a flex factor of zero // # - if using the flex grow factor: any item that has a flex base size // # greater than its hypothetical main size // # - if using the flex shrink factor: any item that has a flex base size // # smaller than its hypothetical main size // https://drafts.csswg.org/css-flexbox/#resolve-flexible-lengths // // (NOTE: At this point, item->MainSize() *is* the item's hypothetical // main size, since SetFlexBaseSizeAndMainSize() sets it up that way, and the // item hasn't had a chance to flex away from that yet.) // Since this loop only operates on unfrozen flex items, we can break as // soon as we have seen all of them. uint32_t numUnfrozenItemsToBeSeen = NumItems() - mNumFrozenItems; for (FlexItem& item : Items()) { if (numUnfrozenItemsToBeSeen == 0) { break; } if (!item.IsFrozen()) { numUnfrozenItemsToBeSeen--; bool shouldFreeze = (0.0f == item.GetFlexFactor(aIsUsingFlexGrow)); if (!shouldFreeze) { if (aIsUsingFlexGrow) { if (item.FlexBaseSize() > item.MainSize()) { shouldFreeze = true; } } else { // using flex-shrink if (item.FlexBaseSize() < item.MainSize()) { shouldFreeze = true; } } } if (shouldFreeze) { // Freeze item! (at its hypothetical main size) item.Freeze(); if (item.FlexBaseSize() < item.MainSize()) { item.SetWasMinClamped(); } else if (item.FlexBaseSize() > item.MainSize()) { item.SetWasMaxClamped(); } mNumFrozenItems++; } } } MOZ_ASSERT(numUnfrozenItemsToBeSeen == 0, "miscounted frozen items?"); } // Based on the sign of aTotalViolation, this function freezes a subset of our // flexible sizes, and restores the remaining ones to their initial pref sizes. void FlexLine::FreezeOrRestoreEachFlexibleSize(const nscoord aTotalViolation, bool aIsFinalIteration) { enum FreezeType { eFreezeEverything, eFreezeMinViolations, eFreezeMaxViolations }; FreezeType freezeType; if (aTotalViolation == 0) { freezeType = eFreezeEverything; } else if (aTotalViolation > 0) { freezeType = eFreezeMinViolations; } else { // aTotalViolation < 0 freezeType = eFreezeMaxViolations; } // Since this loop only operates on unfrozen flex items, we can break as // soon as we have seen all of them. uint32_t numUnfrozenItemsToBeSeen = NumItems() - mNumFrozenItems; for (FlexItem& item : Items()) { if (numUnfrozenItemsToBeSeen == 0) { break; } if (!item.IsFrozen()) { numUnfrozenItemsToBeSeen--; MOZ_ASSERT(!item.HadMinViolation() || !item.HadMaxViolation(), "Can have either min or max violation, but not both"); bool hadMinViolation = item.HadMinViolation(); bool hadMaxViolation = item.HadMaxViolation(); if (eFreezeEverything == freezeType || (eFreezeMinViolations == freezeType && hadMinViolation) || (eFreezeMaxViolations == freezeType && hadMaxViolation)) { MOZ_ASSERT(item.MainSize() >= item.MainMinSize(), "Freezing item at a size below its minimum"); MOZ_ASSERT(item.MainSize() <= item.MainMaxSize(), "Freezing item at a size above its maximum"); item.Freeze(); if (hadMinViolation) { item.SetWasMinClamped(); } else if (hadMaxViolation) { item.SetWasMaxClamped(); } mNumFrozenItems++; } else if (MOZ_UNLIKELY(aIsFinalIteration)) { // XXXdholbert If & when bug 765861 is fixed, we should upgrade this // assertion to be fatal except in documents with enormous lengths. NS_ERROR( "Final iteration still has unfrozen items, this shouldn't" " happen unless there was nscoord under/overflow."); item.Freeze(); mNumFrozenItems++; } // else, we'll reset this item's main size to its flex base size on the // next iteration of this algorithm. if (!item.IsFrozen()) { // Clear this item's violation(s), now that we've dealt with them item.ClearViolationFlags(); } } } MOZ_ASSERT(numUnfrozenItemsToBeSeen == 0, "miscounted frozen items?"); } void FlexLine::ResolveFlexibleLengths(nscoord aFlexContainerMainSize, ComputedFlexLineInfo* aLineInfo) { // In this function, we use 64-bit coord type to avoid integer overflow in // case several of the individual items have huge hypothetical main sizes, // which can happen with percent-width table-layout:fixed descendants. Here we // promote the container's main size to 64-bit to make the arithmetic // convenient. AuCoord64 flexContainerMainSize(aFlexContainerMainSize); // Before we start resolving sizes: if we have an aLineInfo structure to fill // out, we inform it of each item's base size, and we initialize the "delta" // for each item to 0. (And if the flex algorithm wants to grow or shrink the // item, we'll update this delta further down.) if (aLineInfo) { uint32_t itemIndex = 0; for (FlexItem& item : Items()) { aLineInfo->mItems[itemIndex].mMainBaseSize = item.FlexBaseSize(); aLineInfo->mItems[itemIndex].mMainDeltaSize = 0; ++itemIndex; } } // Determine whether we're going to be growing or shrinking items. const bool isUsingFlexGrow = (mTotalOuterHypotheticalMainSize < flexContainerMainSize); if (aLineInfo) { aLineInfo->mGrowthState = isUsingFlexGrow ? mozilla::dom::FlexLineGrowthState::Growing : mozilla::dom::FlexLineGrowthState::Shrinking; } // Do an "early freeze" for flex items that obviously can't flex in the // direction we've chosen: FreezeItemsEarly(isUsingFlexGrow, aLineInfo); if ((mNumFrozenItems == NumItems()) && !aLineInfo) { // All our items are frozen, so we have no flexible lengths to resolve, // and we aren't being asked to generate computed line info. FLEX_LOG("No flexible length to resolve"); return; } MOZ_ASSERT(!IsEmpty() || aLineInfo, "empty lines should take the early-return above"); FLEX_LOG("Resolving flexible lengths for items"); // Subtract space occupied by our items' margins/borders/padding/gaps, so // we can just be dealing with the space available for our flex items' content // boxes. const AuCoord64 totalItemMBPAndGaps = mTotalItemMBP + SumOfGaps(); const AuCoord64 spaceAvailableForFlexItemsContentBoxes = flexContainerMainSize - totalItemMBPAndGaps; Maybe<AuCoord64> origAvailableFreeSpace; // NOTE: I claim that this chunk of the algorithm (the looping part) needs to // run the loop at MOST NumItems() times. This claim should hold up // because we'll freeze at least one item on each loop iteration, and once // we've run out of items to freeze, there's nothing left to do. However, // in most cases, we'll break out of this loop long before we hit that many // iterations. for (uint32_t iterationCounter = 0; iterationCounter < NumItems(); iterationCounter++) { // Set every not-yet-frozen item's used main size to its // flex base size, and subtract all the used main sizes from our // total amount of space to determine the 'available free space' // (positive or negative) to be distributed among our flexible items. AuCoord64 availableFreeSpace = spaceAvailableForFlexItemsContentBoxes; for (FlexItem& item : Items()) { if (!item.IsFrozen()) { item.SetMainSize(item.FlexBaseSize()); } availableFreeSpace -= item.MainSize(); } FLEX_LOG(" available free space: %" PRId64 "; flex items should \"%s\"", availableFreeSpace.value, isUsingFlexGrow ? "grow" : "shrink"); // The sign of our free space should agree with the type of flexing // (grow/shrink) that we're doing. Any disagreement should've made us use // the other type of flexing, or should've been resolved in // FreezeItemsEarly. // // Note: it's possible that an individual flex item has huge // margin/border/padding that makes either its // MarginBorderPaddingSizeInMainAxis() or OuterMainSize() negative due to // integer overflow. If that happens, the accumulated // mTotalOuterHypotheticalMainSize or mTotalItemMBP could be negative due to // that one item's negative (overflowed) size. Likewise, a huge main gap // size between flex items can also make our accumulated SumOfGaps() // negative. In these case, we throw up our hands and don't require // isUsingFlexGrow to agree with availableFreeSpace. Luckily, we won't get // stuck in the algorithm below, and just distribute the wrong // availableFreeSpace with the wrong grow/shrink factors. MOZ_ASSERT(!(mTotalOuterHypotheticalMainSize >= 0 && mTotalItemMBP >= 0 && totalItemMBPAndGaps >= 0) || (isUsingFlexGrow && availableFreeSpace >= 0) || (!isUsingFlexGrow && availableFreeSpace <= 0), "availableFreeSpace's sign should match isUsingFlexGrow"); // If we have any free space available, give each flexible item a portion // of availableFreeSpace. if (availableFreeSpace != AuCoord64(0)) { // The first time we do this, we initialize origAvailableFreeSpace. if (!origAvailableFreeSpace) { origAvailableFreeSpace.emplace(availableFreeSpace); } // STRATEGY: On each item, we compute & store its "share" of the total // weight that we've seen so far: // curWeight / weightSum // // Then, when we go to actually distribute the space (in the next loop), // we can simply walk backwards through the elements and give each item // its "share" multiplied by the remaining available space. // // SPECIAL CASE: If the sum of the weights is larger than the // maximum representable double (overflowing to infinity), then we can't // sensibly divide out proportional shares anymore. In that case, we // simply treat the flex item(s) with the largest weights as if // their weights were infinite (dwarfing all the others), and we // distribute all of the available space among them. double weightSum = 0.0; double flexFactorSum = 0.0; double largestWeight = 0.0; uint32_t numItemsWithLargestWeight = 0; // Since this loop only operates on unfrozen flex items, we can break as // soon as we have seen all of them. uint32_t numUnfrozenItemsToBeSeen = NumItems() - mNumFrozenItems; for (FlexItem& item : Items()) { if (numUnfrozenItemsToBeSeen == 0) { break; } if (!item.IsFrozen()) { numUnfrozenItemsToBeSeen--; const double curWeight = item.GetWeight(isUsingFlexGrow); const double curFlexFactor = item.GetFlexFactor(isUsingFlexGrow); MOZ_ASSERT(curWeight >= 0.0, "weights are non-negative"); MOZ_ASSERT(curFlexFactor >= 0.0, "flex factors are non-negative"); weightSum += curWeight; flexFactorSum += curFlexFactor; if (std::isfinite(weightSum)) { if (curWeight == 0.0) { item.SetShareOfWeightSoFar(0.0); } else { item.SetShareOfWeightSoFar(curWeight / weightSum); } } // else, the sum of weights overflows to infinity, in which // case we don't bother with "SetShareOfWeightSoFar" since // we know we won't use it. (instead, we'll just give every // item with the largest weight an equal share of space.) // Update our largest-weight tracking vars if (curWeight > largestWeight) { largestWeight = curWeight; numItemsWithLargestWeight = 1; } else if (curWeight == largestWeight) { numItemsWithLargestWeight++; } } } MOZ_ASSERT(numUnfrozenItemsToBeSeen == 0, "miscounted frozen items?"); if (weightSum != 0.0) { MOZ_ASSERT(flexFactorSum != 0.0, "flex factor sum can't be 0, if a weighted sum " "of its components (weightSum) is nonzero"); if (flexFactorSum < 1.0) { // Our unfrozen flex items don't want all of the original free space! // (Their flex factors add up to something less than 1.) // Hence, make sure we don't distribute any more than the portion of // our original free space that these items actually want. auto totalDesiredPortionOfOrigFreeSpace = AuCoord64::FromRound(*origAvailableFreeSpace * flexFactorSum); // Clamp availableFreeSpace to be no larger than that ^^. // (using min or max, depending on sign). // This should not change the sign of availableFreeSpace (except // possibly by setting it to 0), as enforced by this assertion: NS_ASSERTION(totalDesiredPortionOfOrigFreeSpace == AuCoord64(0) || ((totalDesiredPortionOfOrigFreeSpace > 0) == (availableFreeSpace > 0)), "When we reduce available free space for flex " "factors < 1, we shouldn't change the sign of the " "free space..."); if (availableFreeSpace > 0) { availableFreeSpace = std::min(availableFreeSpace, totalDesiredPortionOfOrigFreeSpace); } else { availableFreeSpace = std::max(availableFreeSpace, totalDesiredPortionOfOrigFreeSpace); } } FLEX_LOG(" Distributing available space:"); // Since this loop only operates on unfrozen flex items, we can break as // soon as we have seen all of them. numUnfrozenItemsToBeSeen = NumItems() - mNumFrozenItems; // NOTE: It's important that we traverse our items in *reverse* order // here, for correct width distribution according to the items' // "ShareOfWeightSoFar" progressively-calculated values. for (FlexItem& item : Reversed(Items())) { if (numUnfrozenItemsToBeSeen == 0) { break; } if (!item.IsFrozen()) { numUnfrozenItemsToBeSeen--; // To avoid rounding issues, we compute the change in size for this // item, and then subtract it from the remaining available space. AuCoord64 sizeDelta = 0; if (std::isfinite(weightSum)) { double myShareOfRemainingSpace = item.ShareOfWeightSoFar(); MOZ_ASSERT(myShareOfRemainingSpace >= 0.0 && myShareOfRemainingSpace <= 1.0, "my share should be nonnegative fractional amount"); if (myShareOfRemainingSpace == 1.0) { // (We special-case 1.0 to avoid float error from converting // availableFreeSpace from integer*1.0 --> double --> integer) sizeDelta = availableFreeSpace; } else if (myShareOfRemainingSpace > 0.0) { sizeDelta = AuCoord64::FromRound(availableFreeSpace * myShareOfRemainingSpace); } } else if (item.GetWeight(isUsingFlexGrow) == largestWeight) { // Total flexibility is infinite, so we're just distributing // the available space equally among the items that are tied for // having the largest weight (and this is one of those items). sizeDelta = AuCoord64::FromRound( availableFreeSpace / double(numItemsWithLargestWeight)); numItemsWithLargestWeight--; } availableFreeSpace -= sizeDelta; item.SetMainSize(item.MainSize() + nscoord(sizeDelta.ToMinMaxClamped())); FLEX_LOG(" flex item %p receives %" PRId64 ", for a total of %d", item.Frame(), sizeDelta.value, item.MainSize()); } } MOZ_ASSERT(numUnfrozenItemsToBeSeen == 0, "miscounted frozen items?"); // If we have an aLineInfo structure to fill out, capture any // size changes that may have occurred in the previous loop. // We don't do this inside the previous loop, because we don't // want to burden layout when aLineInfo is null. if (aLineInfo) { uint32_t itemIndex = 0; for (FlexItem& item : Items()) { if (!item.IsFrozen()) { // Calculate a deltaSize that represents how much the flex sizing // algorithm "wants" to stretch or shrink this item during this // pass through the algorithm. Later passes through the algorithm // may overwrite this, until this item is frozen. Note that this // value may not reflect how much the size of the item is // actually changed, since the size of the item will be clamped // to min and max values later in this pass. That's intentional, // since we want to report the value that the sizing algorithm // tried to stretch or shrink the item. nscoord deltaSize = item.MainSize() - aLineInfo->mItems[itemIndex].mMainBaseSize; aLineInfo->mItems[itemIndex].mMainDeltaSize = deltaSize; } ++itemIndex; } } } } // Fix min/max violations: nscoord totalViolation = 0; // keeps track of adjustments for min/max FLEX_LOG(" Checking for violations:"); // Since this loop only operates on unfrozen flex items, we can break as // soon as we have seen all of them. uint32_t numUnfrozenItemsToBeSeen = NumItems() - mNumFrozenItems; for (FlexItem& item : Items()) { if (numUnfrozenItemsToBeSeen == 0) { break; } if (!item.IsFrozen()) { numUnfrozenItemsToBeSeen--; if (item.MainSize() < item.MainMinSize()) { // min violation totalViolation += item.MainMinSize() - item.MainSize(); item.SetMainSize(item.MainMinSize()); item.SetHadMinViolation(); } else if (item.MainSize() > item.MainMaxSize()) { // max violation totalViolation += item.MainMaxSize() - item.MainSize(); item.SetMainSize(item.MainMaxSize()); item.SetHadMaxViolation(); } } } MOZ_ASSERT(numUnfrozenItemsToBeSeen == 0, "miscounted frozen items?"); FreezeOrRestoreEachFlexibleSize(totalViolation, iterationCounter + 1 == NumItems()); FLEX_LOG(" Total violation: %d", totalViolation); if (mNumFrozenItems == NumItems()) { break; } MOZ_ASSERT(totalViolation != 0, "Zero violation should've made us freeze all items & break"); } #ifdef DEBUG // Post-condition: all items should've been frozen. // Make sure the counts match: MOZ_ASSERT(mNumFrozenItems == NumItems(), "All items should be frozen"); // For good measure, check each item directly, in case our counts are busted: for (const FlexItem& item : Items()) { MOZ_ASSERT(item.IsFrozen(), "All items should be frozen"); } #endif // DEBUG } MainAxisPositionTracker::MainAxisPositionTracker( const FlexboxAxisTracker& aAxisTracker, const FlexLine* aLine, const StyleContentDistribution& aJustifyContent, nscoord aContentBoxMainSize) : PositionTracker(aAxisTracker.GetWritingMode(), aAxisTracker.MainAxis(), aAxisTracker.IsMainAxisReversed()), // we chip away at this below mPackingSpaceRemaining(aContentBoxMainSize), mJustifyContent(aJustifyContent) { // Extract the flag portion of mJustifyContent and strip off the flag bits // NOTE: This must happen before any assignment to mJustifyContent to // avoid overwriting the flag bits. StyleAlignFlags justifyContentFlags = mJustifyContent.primary & StyleAlignFlags::FLAG_BITS; mJustifyContent.primary &= ~StyleAlignFlags::FLAG_BITS; // 'normal' behaves as 'stretch', and 'stretch' behaves as 'flex-start', // in the main axis // https://drafts.csswg.org/css-align-3/#propdef-justify-content if (mJustifyContent.primary == StyleAlignFlags::NORMAL || mJustifyContent.primary == StyleAlignFlags::STRETCH) { mJustifyContent.primary = StyleAlignFlags::FLEX_START; } // mPackingSpaceRemaining is initialized to the container's main size. Now // we'll subtract out the main sizes of our flex items, so that it ends up // with the *actual* amount of packing space. for (const FlexItem& item : aLine->Items()) { mPackingSpaceRemaining -= item.OuterMainSize(); mNumAutoMarginsInMainAxis += item.NumAutoMarginsInMainAxis(); } // Subtract space required for row/col gap from the remaining packing space mPackingSpaceRemaining -= aLine->SumOfGaps(); if (mPackingSpaceRemaining <= 0) { // No available packing space to use for resolving auto margins. mNumAutoMarginsInMainAxis = 0; // If packing space is negative and <overflow-position> is set to 'safe' // all justify options fall back to 'start' if (justifyContentFlags & StyleAlignFlags::SAFE) { mJustifyContent.primary = StyleAlignFlags::START; } } // If packing space is negative or we only have one item, 'space-between' // falls back to 'flex-start', and 'space-around' & 'space-evenly' fall back // to 'center'. In those cases, it's simplest to just pretend we have a // different 'justify-content' value and share code. if (mPackingSpaceRemaining < 0 || aLine->NumItems() == 1) { if (mJustifyContent.primary == StyleAlignFlags::SPACE_BETWEEN) { mJustifyContent.primary = StyleAlignFlags::FLEX_START; } else if (mJustifyContent.primary == StyleAlignFlags::SPACE_AROUND || mJustifyContent.primary == StyleAlignFlags::SPACE_EVENLY) { mJustifyContent.primary = StyleAlignFlags::CENTER; } } // Map 'left'/'right' to 'start'/'end' if (mJustifyContent.primary == StyleAlignFlags::LEFT || mJustifyContent.primary == StyleAlignFlags::RIGHT) { mJustifyContent.primary = aAxisTracker.ResolveJustifyLeftRight(mJustifyContent.primary); } // Map 'start'/'end' to 'flex-start'/'flex-end'. if (mJustifyContent.primary == StyleAlignFlags::START) { mJustifyContent.primary = aAxisTracker.IsMainAxisReversed() ? StyleAlignFlags::FLEX_END : StyleAlignFlags::FLEX_START; } else if (mJustifyContent.primary == StyleAlignFlags::END) { mJustifyContent.primary = aAxisTracker.IsMainAxisReversed() ? StyleAlignFlags::FLEX_START : StyleAlignFlags::FLEX_END; } // Figure out how much space we'll set aside for auto margins or // packing spaces, and advance past any leading packing-space. if (mNumAutoMarginsInMainAxis == 0 && mPackingSpaceRemaining != 0 && !aLine->IsEmpty()) { if (mJustifyContent.primary == StyleAlignFlags::FLEX_START) { // All packing space should go at the end --> nothing to do here. } else if (mJustifyContent.primary == StyleAlignFlags::FLEX_END) { // All packing space goes at the beginning mPosition += mPackingSpaceRemaining; } else if (mJustifyContent.primary == StyleAlignFlags::CENTER) { // Half the packing space goes at the beginning mPosition += mPackingSpaceRemaining / 2; } else if (mJustifyContent.primary == StyleAlignFlags::SPACE_BETWEEN || mJustifyContent.primary == StyleAlignFlags::SPACE_AROUND || mJustifyContent.primary == StyleAlignFlags::SPACE_EVENLY) { nsFlexContainerFrame::CalculatePackingSpace( aLine->NumItems(), mJustifyContent, &mPosition, &mNumPackingSpacesRemaining, &mPackingSpaceRemaining); } else { MOZ_ASSERT_UNREACHABLE("Unexpected justify-content value"); } } MOZ_ASSERT(mNumPackingSpacesRemaining == 0 || mNumAutoMarginsInMainAxis == 0, "extra space should either go to packing space or to " "auto margins, but not to both"); } void MainAxisPositionTracker::ResolveAutoMarginsInMainAxis(FlexItem& aItem) { if (mNumAutoMarginsInMainAxis) { const auto& styleMargin = aItem.Frame()->StyleMargin()->mMargin; for (const auto side : {StartSide(), EndSide()}) { if (styleMargin.Get(mWM, side).IsAuto()) { // NOTE: This integer math will skew the distribution of remainder // app-units towards the end, which is fine. nscoord curAutoMarginSize = mPackingSpaceRemaining / mNumAutoMarginsInMainAxis; MOZ_ASSERT(aItem.GetMarginComponentForSide(side) == 0, "Expecting auto margins to have value '0' before we " "resolve them"); aItem.SetMarginComponentForSide(side, curAutoMarginSize); mNumAutoMarginsInMainAxis--; mPackingSpaceRemaining -= curAutoMarginSize; } } } } void MainAxisPositionTracker::TraversePackingSpace() { if (mNumPackingSpacesRemaining) { MOZ_ASSERT(mJustifyContent.primary == StyleAlignFlags::SPACE_BETWEEN || mJustifyContent.primary == StyleAlignFlags::SPACE_AROUND || mJustifyContent.primary == StyleAlignFlags::SPACE_EVENLY, "mNumPackingSpacesRemaining only applies for " "space-between/space-around/space-evenly"); MOZ_ASSERT(mPackingSpaceRemaining >= 0, "ran out of packing space earlier than we expected"); // NOTE: This integer math will skew the distribution of remainder // app-units towards the end, which is fine. nscoord curPackingSpace = mPackingSpaceRemaining / mNumPackingSpacesRemaining; mPosition += curPackingSpace; mNumPackingSpacesRemaining--; mPackingSpaceRemaining -= curPackingSpace; } } CrossAxisPositionTracker::CrossAxisPositionTracker( nsTArray<FlexLine>& aLines, const ReflowInput& aReflowInput, nscoord aContentBoxCrossSize, bool aIsCrossSizeDefinite, const FlexboxAxisTracker& aAxisTracker, const nscoord aCrossGapSize) : PositionTracker(aAxisTracker.GetWritingMode(), aAxisTracker.CrossAxis(), aAxisTracker.IsCrossAxisReversed()), mAlignContent(aReflowInput.mStylePosition->mAlignContent), mCrossGapSize(aCrossGapSize) { // Extract and strip the flag bits from alignContent StyleAlignFlags alignContentFlags = mAlignContent.primary & StyleAlignFlags::FLAG_BITS; mAlignContent.primary &= ~StyleAlignFlags::FLAG_BITS; // 'normal' behaves as 'stretch' if (mAlignContent.primary == StyleAlignFlags::NORMAL) { mAlignContent.primary = StyleAlignFlags::STRETCH; } const bool isSingleLine = StyleFlexWrap::Nowrap == aReflowInput.mStylePosition->mFlexWrap; if (isSingleLine) { MOZ_ASSERT(aLines.Length() == 1, "If we're styled as single-line, we should only have 1 line"); // "If the flex container is single-line and has a definite cross size, the // cross size of the flex line is the flex container's inner cross size." // // SOURCE: https://drafts.csswg.org/css-flexbox/#algo-cross-line // NOTE: This means (by definition) that there's no packing space, which // means we don't need to be concerned with "align-content" at all and we // can return early. This is handy, because this is the usual case (for // single-line flexbox). if (aIsCrossSizeDefinite) { aLines[0].SetLineCrossSize(aContentBoxCrossSize); return; } // "If the flex container is single-line, then clamp the line's // cross-size to be within the container's computed min and max cross-size // properties." aLines[0].SetLineCrossSize( aReflowInput.ApplyMinMaxBSize(aLines[0].LineCrossSize())); } // NOTE: The rest of this function should essentially match // MainAxisPositionTracker's constructor, though with FlexLines instead of // FlexItems, and with the additional value "stretch" (and of course with // cross sizes instead of main sizes.) // Figure out how much packing space we have (container's cross size minus // all the lines' cross sizes). Also, share this loop to count how many // lines we have. (We need that count in some cases below.) mPackingSpaceRemaining = aContentBoxCrossSize; uint32_t numLines = 0; for (FlexLine& line : aLines) { mPackingSpaceRemaining -= line.LineCrossSize(); numLines++; } // Subtract space required for row/col gap from the remaining packing space MOZ_ASSERT(numLines >= 1, "GenerateFlexLines should've produced at least 1 line"); mPackingSpaceRemaining -= aCrossGapSize * (numLines - 1); // If <overflow-position> is 'safe' and packing space is negative // all align options fall back to 'start' if ((alignContentFlags & StyleAlignFlags::SAFE) && mPackingSpaceRemaining < 0) { mAlignContent.primary = StyleAlignFlags::START; } // If packing space is negative, 'space-between' and 'stretch' behave like // 'flex-start', and 'space-around' and 'space-evenly' behave like 'center'. // In those cases, it's simplest to just pretend we have a different // 'align-content' value and share code. (If we only have one line, all of // the 'space-*' keywords fall back as well, but 'stretch' doesn't because // even a single line can still stretch.) if (mPackingSpaceRemaining < 0 && mAlignContent.primary == StyleAlignFlags::STRETCH) { mAlignContent.primary = StyleAlignFlags::FLEX_START; } else if (mPackingSpaceRemaining < 0 || numLines == 1) { if (mAlignContent.primary == StyleAlignFlags::SPACE_BETWEEN) { mAlignContent.primary = StyleAlignFlags::FLEX_START; } else if (mAlignContent.primary == StyleAlignFlags::SPACE_AROUND || mAlignContent.primary == StyleAlignFlags::SPACE_EVENLY) { mAlignContent.primary = StyleAlignFlags::CENTER; } } // Map 'start'/'end' to 'flex-start'/'flex-end'. if (mAlignContent.primary == StyleAlignFlags::START) { mAlignContent.primary = aAxisTracker.IsCrossAxisReversed() ? StyleAlignFlags::FLEX_END : StyleAlignFlags::FLEX_START; } else if (mAlignContent.primary == StyleAlignFlags::END) { mAlignContent.primary = aAxisTracker.IsCrossAxisReversed() ? StyleAlignFlags::FLEX_START : StyleAlignFlags::FLEX_END; } // Figure out how much space we'll set aside for packing spaces, and advance // past any leading packing-space. if (mPackingSpaceRemaining != 0) { if (mAlignContent.primary == StyleAlignFlags::BASELINE || mAlignContent.primary == StyleAlignFlags::LAST_BASELINE) { // TODO: Bug 1480850 will implement 'align-content: [first/last] baseline' // for flexbox. Until then, behaves as if align-content is 'flex-start' by // doing nothing. } else if (mAlignContent.primary == StyleAlignFlags::FLEX_START) { // All packing space should go at the end --> nothing to do here. } else if (mAlignContent.primary == StyleAlignFlags::FLEX_END) { // All packing space goes at the beginning mPosition += mPackingSpaceRemaining; } else if (mAlignContent.primary == StyleAlignFlags::CENTER) { // Half the packing space goes at the beginning mPosition += mPackingSpaceRemaining / 2; } else if (mAlignContent.primary == StyleAlignFlags::SPACE_BETWEEN || mAlignContent.primary == StyleAlignFlags::SPACE_AROUND || mAlignContent.primary == StyleAlignFlags::SPACE_EVENLY) { nsFlexContainerFrame::CalculatePackingSpace( numLines, mAlignContent, &mPosition, &mNumPackingSpacesRemaining, &mPackingSpaceRemaining); } else if (mAlignContent.primary == StyleAlignFlags::STRETCH) { // Split space equally between the lines: MOZ_ASSERT(mPackingSpaceRemaining > 0, "negative packing space should make us use 'flex-start' " "instead of 'stretch' (and we shouldn't bother with this " "code if we have 0 packing space)"); uint32_t numLinesLeft = numLines; for (FlexLine& line : aLines) { // Our share is the amount of space remaining, divided by the number // of lines remainig. MOZ_ASSERT(numLinesLeft > 0, "miscalculated num lines"); nscoord shareOfExtraSpace = mPackingSpaceRemaining / numLinesLeft; nscoord newSize = line.LineCrossSize() + shareOfExtraSpace; line.SetLineCrossSize(newSize); mPackingSpaceRemaining -= shareOfExtraSpace; numLinesLeft--; } MOZ_ASSERT(numLinesLeft == 0, "miscalculated num lines"); } else { MOZ_ASSERT_UNREACHABLE("Unexpected align-content value"); } } } void CrossAxisPositionTracker::TraversePackingSpace() { if (mNumPackingSpacesRemaining) { MOZ_ASSERT(mAlignContent.primary == StyleAlignFlags::SPACE_BETWEEN || mAlignContent.primary == StyleAlignFlags::SPACE_AROUND || mAlignContent.primary == StyleAlignFlags::SPACE_EVENLY, "mNumPackingSpacesRemaining only applies for " "space-between/space-around/space-evenly"); MOZ_ASSERT(mPackingSpaceRemaining >= 0, "ran out of packing space earlier than we expected"); // NOTE: This integer math will skew the distribution of remainder // app-units towards the end, which is fine. nscoord curPackingSpace = mPackingSpaceRemaining / mNumPackingSpacesRemaining; mPosition += curPackingSpace; mNumPackingSpacesRemaining--; mPackingSpaceRemaining -= curPackingSpace; } } SingleLineCrossAxisPositionTracker::SingleLineCrossAxisPositionTracker( const FlexboxAxisTracker& aAxisTracker) : PositionTracker(aAxisTracker.GetWritingMode(), aAxisTracker.CrossAxis(), aAxisTracker.IsCrossAxisReversed()) {} void FlexLine::ComputeCrossSizeAndBaseline( const FlexboxAxisTracker& aAxisTracker) { // NOTE: in these "cross{Start,End}ToFurthest{First,Last}Baseline" variables, // the "first/last" term is referring to the flex *line's* baseline-sharing // groups, which may or may not match any flex *item's* exact align-self // value. See the code that sets FlexItem::mBaselineSharingGroup for more // details. nscoord crossStartToFurthestFirstBaseline = nscoord_MIN; nscoord crossEndToFurthestFirstBaseline = nscoord_MIN; nscoord crossStartToFurthestLastBaseline = nscoord_MIN; nscoord crossEndToFurthestLastBaseline = nscoord_MIN; nscoord largestOuterCrossSize = 0; for (const FlexItem& item : Items()) { nscoord curOuterCrossSize = item.OuterCrossSize(); if ((item.AlignSelf()._0 == StyleAlignFlags::BASELINE || item.AlignSelf()._0 == StyleAlignFlags::LAST_BASELINE) && item.NumAutoMarginsInCrossAxis() == 0) { const bool usingItemFirstBaseline = (item.AlignSelf()._0 == StyleAlignFlags::BASELINE); // Find distance from our item's cross-start and cross-end margin-box // edges to its baseline. // // Here's a diagram of a flex-item that we might be doing this on. // "mmm" is the margin-box, "bbb" is the border-box. The bottom of // the text "BASE" is the baseline. // // ---(cross-start)--- // ___ ___ ___ // mmmmmmmmmmmm | |margin-start | // m m | _|_ ___ | // m bbbbbbbb m |curOuterCrossSize | |crossStartToBaseline // m b b m | |ascent | // m b BASE b m | _|_ _|_ // m b b m | | // m bbbbbbbb m | |crossEndToBaseline // m m | | // mmmmmmmmmmmm _|_ _|_ // // ---(cross-end)--- // // We already have the curOuterCrossSize, margin-start, and the ascent. // * We can get crossStartToBaseline by adding margin-start + ascent. // * If we subtract that from the curOuterCrossSize, we get // crossEndToBaseline. nscoord crossStartToBaseline = item.BaselineOffsetFromOuterCrossEdge( aAxisTracker.CrossAxisPhysicalStartSide(), usingItemFirstBaseline); nscoord crossEndToBaseline = curOuterCrossSize - crossStartToBaseline; // Now, update our "largest" values for these (across all the flex items // in this flex line), so we can use them in computing the line's cross // size below: if (item.ItemBaselineSharingGroup() == BaselineSharingGroup::First) { crossStartToFurthestFirstBaseline = std::max(crossStartToFurthestFirstBaseline, crossStartToBaseline); crossEndToFurthestFirstBaseline = std::max(crossEndToFurthestFirstBaseline, crossEndToBaseline); } else { crossStartToFurthestLastBaseline = std::max(crossStartToFurthestLastBaseline, crossStartToBaseline); crossEndToFurthestLastBaseline = std::max(crossEndToFurthestLastBaseline, crossEndToBaseline); } } else { largestOuterCrossSize = std::max(largestOuterCrossSize, curOuterCrossSize); } } // The line's baseline offset is the distance from the line's edge to the // furthest item-baseline. The item(s) with that baseline will be exactly // aligned with the line's edge. mFirstBaselineOffset = crossStartToFurthestFirstBaseline; mLastBaselineOffset = crossEndToFurthestLastBaseline; // The line's cross-size is the larger of: // (a) [largest cross-start-to-baseline + largest baseline-to-cross-end] of // all baseline-aligned items with no cross-axis auto margins... // and // (b) [largest cross-start-to-baseline + largest baseline-to-cross-end] of // all last baseline-aligned items with no cross-axis auto margins... // and // (c) largest cross-size of all other children. mLineCrossSize = std::max( std::max( crossStartToFurthestFirstBaseline + crossEndToFurthestFirstBaseline, crossStartToFurthestLastBaseline + crossEndToFurthestLastBaseline), largestOuterCrossSize); } nscoord FlexLine::ExtractBaselineOffset( BaselineSharingGroup aBaselineGroup) const { auto LastBaselineOffsetFromStartEdge = [this]() { // Convert the distance to be relative from the line's cross-start edge. const nscoord offset = LastBaselineOffset(); return offset != nscoord_MIN ? LineCrossSize() - offset : offset; }; auto PrimaryBaseline = [=]() { return aBaselineGroup == BaselineSharingGroup::First ? FirstBaselineOffset() : LastBaselineOffsetFromStartEdge(); }; auto SecondaryBaseline = [=]() { return aBaselineGroup == BaselineSharingGroup::First ? LastBaselineOffsetFromStartEdge() : FirstBaselineOffset(); }; const nscoord primaryBaseline = PrimaryBaseline(); if (primaryBaseline != nscoord_MIN) { return primaryBaseline; } return SecondaryBaseline(); } void FlexItem::ResolveStretchedCrossSize(nscoord aLineCrossSize) { // We stretch IFF we are align-self:stretch, have no auto margins in // cross axis, and have cross-axis size property == "auto". If any of those // conditions don't hold up, we won't stretch. if (mAlignSelf._0 != StyleAlignFlags::STRETCH || NumAutoMarginsInCrossAxis() != 0 || !IsCrossSizeAuto()) { return; } // If we've already been stretched, we can bail out early, too. // No need to redo the calculation. if (mIsStretched) { return; } // Reserve space for margins & border & padding, and then use whatever // remains as our item's cross-size (clamped to its min/max range). nscoord stretchedSize = aLineCrossSize - MarginBorderPaddingSizeInCrossAxis(); stretchedSize = NS_CSS_MINMAX(stretchedSize, mCrossMinSize, mCrossMaxSize); // Update the cross-size & make a note that it's stretched, so we know to // override the reflow input's computed cross-size in our final reflow. SetCrossSize(stretchedSize); mIsStretched = true; } static nsBlockFrame* FindFlexItemBlockFrame(nsIFrame* aFrame) { if (nsBlockFrame* block = do_QueryFrame(aFrame)) { return block; } for (nsIFrame* f : aFrame->PrincipalChildList()) { if (nsBlockFrame* block = FindFlexItemBlockFrame(f)) { return block; } } return nullptr; } nsBlockFrame* FlexItem::BlockFrame() const { return FindFlexItemBlockFrame(Frame()); } void SingleLineCrossAxisPositionTracker::ResolveAutoMarginsInCrossAxis( const FlexLine& aLine, FlexItem& aItem) { // Subtract the space that our item is already occupying, to see how much // space (if any) is available for its auto margins. nscoord spaceForAutoMargins = aLine.LineCrossSize() - aItem.OuterCrossSize(); if (spaceForAutoMargins <= 0) { return; // No available space --> nothing to do } uint32_t numAutoMargins = aItem.NumAutoMarginsInCrossAxis(); if (numAutoMargins == 0) { return; // No auto margins --> nothing to do. } // OK, we have at least one auto margin and we have some available space. // Give each auto margin a share of the space. const auto& styleMargin = aItem.Frame()->StyleMargin()->mMargin; for (const auto side : {StartSide(), EndSide()}) { if (styleMargin.Get(mWM, side).IsAuto()) { MOZ_ASSERT(aItem.GetMarginComponentForSide(side) == 0, "Expecting auto margins to have value '0' before we " "update them"); // NOTE: integer divison is fine here; numAutoMargins is either 1 or 2. // If it's 2 & spaceForAutoMargins is odd, 1st margin gets smaller half. nscoord curAutoMarginSize = spaceForAutoMargins / numAutoMargins; aItem.SetMarginComponentForSide(side, curAutoMarginSize); numAutoMargins--; spaceForAutoMargins -= curAutoMarginSize; } } } void SingleLineCrossAxisPositionTracker::EnterAlignPackingSpace( const FlexLine& aLine, const FlexItem& aItem, const FlexboxAxisTracker& aAxisTracker) { // We don't do align-self alignment on items that have auto margins // in the cross axis. if (aItem.NumAutoMarginsInCrossAxis()) { return; } StyleAlignFlags alignSelf = aItem.AlignSelf()._0; // NOTE: 'stretch' behaves like 'flex-start' once we've stretched any // auto-sized items (which we've already done). if (alignSelf == StyleAlignFlags::STRETCH) { alignSelf = StyleAlignFlags::FLEX_START; } // Map 'self-start'/'self-end' to 'start'/'end' if (alignSelf == StyleAlignFlags::SELF_START || alignSelf == StyleAlignFlags::SELF_END) { const LogicalAxis logCrossAxis = aAxisTracker.IsRowOriented() ? eLogicalAxisBlock : eLogicalAxisInline; const WritingMode cWM = aAxisTracker.GetWritingMode(); const bool sameStart = cWM.ParallelAxisStartsOnSameSide(logCrossAxis, aItem.GetWritingMode()); alignSelf = sameStart == (alignSelf == StyleAlignFlags::SELF_START) ? StyleAlignFlags::START : StyleAlignFlags::END; } // Map 'start'/'end' to 'flex-start'/'flex-end'. if (alignSelf == StyleAlignFlags::START) { alignSelf = aAxisTracker.IsCrossAxisReversed() ? StyleAlignFlags::FLEX_END : StyleAlignFlags::FLEX_START; } else if (alignSelf == StyleAlignFlags::END) { alignSelf = aAxisTracker.IsCrossAxisReversed() ? StyleAlignFlags::FLEX_START : StyleAlignFlags::FLEX_END; } // 'align-self' falls back to 'flex-start' if it is 'center'/'flex-end' and we // have cross axis overflow // XXX we should really be falling back to 'start' as of bug 1472843 if (aLine.LineCrossSize() < aItem.OuterCrossSize() && (aItem.AlignSelfFlags() & StyleAlignFlags::SAFE)) { alignSelf = StyleAlignFlags::FLEX_START; } if (alignSelf == StyleAlignFlags::FLEX_START) { // No space to skip over -- we're done. } else if (alignSelf == StyleAlignFlags::FLEX_END) { mPosition += aLine.LineCrossSize() - aItem.OuterCrossSize(); } else if (alignSelf == StyleAlignFlags::CENTER) { // Note: If cross-size is odd, the "after" space will get the extra unit. mPosition += (aLine.LineCrossSize() - aItem.OuterCrossSize()) / 2; } else if (alignSelf == StyleAlignFlags::BASELINE || alignSelf == StyleAlignFlags::LAST_BASELINE) { const bool usingItemFirstBaseline = (alignSelf == StyleAlignFlags::BASELINE); // The first-baseline sharing group gets (collectively) aligned to the // FlexLine's cross-start side, and similarly the last-baseline sharing // group gets snapped to the cross-end side. const bool isFirstBaselineSharingGroup = aItem.ItemBaselineSharingGroup() == BaselineSharingGroup::First; const mozilla::Side alignSide = isFirstBaselineSharingGroup ? aAxisTracker.CrossAxisPhysicalStartSide() : aAxisTracker.CrossAxisPhysicalEndSide(); // To compute the aligned position for our flex item, we determine: // (1) The distance from the item's alignSide edge to the item's relevant // baseline. nscoord itemBaselineOffset = aItem.BaselineOffsetFromOuterCrossEdge( alignSide, usingItemFirstBaseline); // (2) The distance between the FlexLine's alignSide edge and the relevant // baseline-sharing-group's baseline position. nscoord lineBaselineOffset = isFirstBaselineSharingGroup ? aLine.FirstBaselineOffset() : aLine.LastBaselineOffset(); NS_ASSERTION(lineBaselineOffset >= itemBaselineOffset, "failed at finding largest baseline offset"); // (3) The difference between the above offsets, which tells us how far we // need to shift the item away from the FlexLine's alignSide edge so // that its baseline is at the proper position for its group. nscoord itemOffsetFromLineEdge = lineBaselineOffset - itemBaselineOffset; if (isFirstBaselineSharingGroup) { // alignSide is the line's cross-start edge. mPosition is already there. // From there, we step *forward* by the baseline adjustment: mPosition += itemOffsetFromLineEdge; } else { // alignSide is the line's cross-end edge. Advance mPosition to align // item with that edge (as in FLEX_END case)... mPosition += aLine.LineCrossSize() - aItem.OuterCrossSize(); // ...and step *back* by the baseline adjustment: mPosition -= itemOffsetFromLineEdge; } } else { MOZ_ASSERT_UNREACHABLE("Unexpected align-self value"); } } FlexboxAxisInfo::FlexboxAxisInfo(const nsIFrame* aFlexContainer) { MOZ_ASSERT(aFlexContainer && aFlexContainer->IsFlexContainerFrame(), "Only flex containers may be passed to this constructor!"); if (IsLegacyBox(aFlexContainer)) { InitAxesFromLegacyProps(aFlexContainer); } else { InitAxesFromModernProps(aFlexContainer); } } void FlexboxAxisInfo::InitAxesFromLegacyProps(const nsIFrame* aFlexContainer) { const nsStyleXUL* styleXUL = aFlexContainer->StyleXUL(); const bool boxOrientIsVertical = styleXUL->mBoxOrient == StyleBoxOrient::Vertical; const bool wmIsVertical = aFlexContainer->GetWritingMode().IsVertical(); // If box-orient agrees with our writing-mode, then we're "row-oriented" // (i.e. the flexbox main axis is the same as our writing mode's inline // direction). Otherwise, we're column-oriented (i.e. the flexbox's main // axis is perpendicular to the writing-mode's inline direction). mIsRowOriented = (boxOrientIsVertical == wmIsVertical); // Legacy flexbox can use "-webkit-box-direction: reverse" to reverse the // main axis (so it runs in the reverse direction of the inline axis): mIsMainAxisReversed = styleXUL->mBoxDirection == StyleBoxDirection::Reverse; // Legacy flexbox does not support reversing the cross axis -- it has no // equivalent of modern flexbox's "flex-wrap: wrap-reverse". mIsCrossAxisReversed = false; } void FlexboxAxisInfo::InitAxesFromModernProps(const nsIFrame* aFlexContainer) { const nsStylePosition* stylePos = aFlexContainer->StylePosition(); StyleFlexDirection flexDirection = stylePos->mFlexDirection; // Determine main axis: switch (flexDirection) { case StyleFlexDirection::Row: mIsRowOriented = true; mIsMainAxisReversed = false; break; case StyleFlexDirection::RowReverse: mIsRowOriented = true; mIsMainAxisReversed = true; break; case StyleFlexDirection::Column: mIsRowOriented = false; mIsMainAxisReversed = false; break; case StyleFlexDirection::ColumnReverse: mIsRowOriented = false; mIsMainAxisReversed = true; break; } // "flex-wrap: wrap-reverse" reverses our cross axis. mIsCrossAxisReversed = stylePos->mFlexWrap == StyleFlexWrap::WrapReverse; } FlexboxAxisTracker::FlexboxAxisTracker( const nsFlexContainerFrame* aFlexContainer) : mWM(aFlexContainer->GetWritingMode()), mAxisInfo(aFlexContainer) {} LogicalSide FlexboxAxisTracker::MainAxisStartSide() const { return MakeLogicalSide( MainAxis(), IsMainAxisReversed() ? eLogicalEdgeEnd : eLogicalEdgeStart); } LogicalSide FlexboxAxisTracker::CrossAxisStartSide() const { return MakeLogicalSide( CrossAxis(), IsCrossAxisReversed() ? eLogicalEdgeEnd : eLogicalEdgeStart); } void nsFlexContainerFrame::GenerateFlexLines( const ReflowInput& aReflowInput, const nscoord aTentativeContentBoxMainSize, const nscoord aTentativeContentBoxCrossSize, const nsTArray<StrutInfo>& aStruts, const FlexboxAxisTracker& aAxisTracker, nscoord aMainGapSize, nsTArray<nsIFrame*>& aPlaceholders, nsTArray<FlexLine>& aLines, bool& aHasCollapsedItems) { MOZ_ASSERT(aLines.IsEmpty(), "Expecting outparam to start out empty"); auto ConstructNewFlexLine = [&aLines, aMainGapSize]() { return aLines.EmplaceBack(aMainGapSize); }; const bool isSingleLine = StyleFlexWrap::Nowrap == aReflowInput.mStylePosition->mFlexWrap; // We have at least one FlexLine. Even an empty flex container has a single // (empty) flex line. FlexLine* curLine = ConstructNewFlexLine(); nscoord wrapThreshold; if (isSingleLine) { // Not wrapping. Set threshold to sentinel value that tells us not to wrap. wrapThreshold = NS_UNCONSTRAINEDSIZE; } else { // Wrapping! Set wrap threshold to flex container's content-box main-size. wrapThreshold = aTentativeContentBoxMainSize; // If the flex container doesn't have a definite content-box main-size // (e.g. if main axis is vertical & 'height' is 'auto'), make sure we at // least wrap when we hit its max main-size. if (wrapThreshold == NS_UNCONSTRAINEDSIZE) { const nscoord flexContainerMaxMainSize = aAxisTracker.MainComponent(aReflowInput.ComputedMaxSize()); wrapThreshold = flexContainerMaxMainSize; } } // Tracks the index of the next strut, in aStruts (and when this hits // aStruts.Length(), that means there are no more struts): uint32_t nextStrutIdx = 0; // Overall index of the current flex item in the flex container. (This gets // checked against entries in aStruts.) uint32_t itemIdxInContainer = 0; CSSOrderAwareFrameIterator iter( this, FrameChildListID::Principal, CSSOrderAwareFrameIterator::ChildFilter::IncludeAll, CSSOrderAwareFrameIterator::OrderState::Unknown, OrderingPropertyForIter(this)); AddOrRemoveStateBits(NS_STATE_FLEX_NORMAL_FLOW_CHILDREN_IN_CSS_ORDER, iter.ItemsAreAlreadyInOrder()); const bool useMozBoxCollapseBehavior = StyleVisibility()->UseLegacyCollapseBehavior(); for (; !iter.AtEnd(); iter.Next()) { nsIFrame* childFrame = *iter; // Don't create flex items / lines for placeholder frames: if (childFrame->IsPlaceholderFrame()) { aPlaceholders.AppendElement(childFrame); continue; } const bool collapsed = childFrame->StyleVisibility()->IsCollapse(); aHasCollapsedItems = aHasCollapsedItems || collapsed; if (useMozBoxCollapseBehavior && collapsed) { // Legacy visibility:collapse behavior: make a 0-sized strut. (No need to // bother with aStruts and remembering cross size.) curLine->Items().EmplaceBack(childFrame, 0, aReflowInput.GetWritingMode(), aAxisTracker); } else if (nextStrutIdx < aStruts.Length() && aStruts[nextStrutIdx].mItemIdx == itemIdxInContainer) { // Use the simplified "strut" FlexItem constructor: curLine->Items().EmplaceBack(childFrame, aStruts[nextStrutIdx].mStrutCrossSize, aReflowInput.GetWritingMode(), aAxisTracker); nextStrutIdx++; } else { GenerateFlexItemForChild(*curLine, childFrame, aReflowInput, aAxisTracker, aTentativeContentBoxCrossSize); } // Check if we need to wrap the newly appended item to a new line, i.e. if // its outer hypothetical main size pushes our line over the threshold. // But we don't wrap if the line-length is unconstrained, nor do we wrap if // this was the first item on the line. if (wrapThreshold != NS_UNCONSTRAINEDSIZE && curLine->Items().Length() > 1) { // If the line will be longer than wrapThreshold or at least as long as // nscoord_MAX because of the newly appended item, then wrap and move the // item to a new line. auto newOuterSize = curLine->TotalOuterHypotheticalMainSize(); newOuterSize += curLine->Items().LastElement().OuterMainSize(); // Account for gap between this line's previous item and this item. newOuterSize += aMainGapSize; if (newOuterSize >= nscoord_MAX || newOuterSize > wrapThreshold) { curLine = ConstructNewFlexLine(); // Get the previous line after adding a new line because the address can // change if nsTArray needs to reallocate a new space for the new line. FlexLine& prevLine = aLines[aLines.Length() - 2]; // Move the item from the end of prevLine to the end of curLine. curLine->Items().AppendElement(prevLine.Items().PopLastElement()); } } // Update the line's bookkeeping about how large its items collectively are. curLine->AddLastItemToMainSizeTotals(); itemIdxInContainer++; } } nsFlexContainerFrame::FlexLayoutResult nsFlexContainerFrame::GenerateFlexLayoutResult() { MOZ_ASSERT(GetPrevInFlow(), "This should be called by non-first-in-flows!"); auto* data = FirstInFlow()->GetProperty(SharedFlexData::Prop()); MOZ_ASSERT(data, "SharedFlexData should be set by our first-in-flow!"); FlexLayoutResult flr; // The order state of the children is consistent across entire continuation // chain due to calling nsContainerFrame::NormalizeChildLists() at the // beginning of Reflow(), so we can align our state bit with our // prev-in-flow's state. Setup here before calling OrderStateForIter() below. AddOrRemoveStateBits(NS_STATE_FLEX_NORMAL_FLOW_CHILDREN_IN_CSS_ORDER, GetPrevInFlow()->HasAnyStateBits( NS_STATE_FLEX_NORMAL_FLOW_CHILDREN_IN_CSS_ORDER)); // Construct flex items for this flex container fragment from existing flex // items in SharedFlexData. CSSOrderAwareFrameIterator iter( this, FrameChildListID::Principal, CSSOrderAwareFrameIterator::ChildFilter::SkipPlaceholders, OrderStateForIter(this), OrderingPropertyForIter(this)); auto ConstructNewFlexLine = [&flr]() { // Use zero main gap size since it doesn't matter in flex container's // next-in-flows. We've computed flex items' positions in first-in-flow. return flr.mLines.EmplaceBack(0); }; // We have at least one FlexLine. Even an empty flex container has a single // (empty) flex line. FlexLine* currentLine = ConstructNewFlexLine(); if (!iter.AtEnd()) { nsIFrame* child = *iter; nsIFrame* childFirstInFlow = child->FirstInFlow(); // We are iterating nested for-loops over the FlexLines and FlexItems // generated by GenerateFlexLines() and cached in flex container's // first-in-flow. For each flex item, check if its frame (must be a // first-in-flow) is the first-in-flow of the first child frame in this flex // container continuation. If so, clone the data from that FlexItem into a // FlexLine. When we find a match for the item, we know that the next child // frame might have its first-in-flow as the next item in the same original // line. In this case, we'll put the cloned data in the same line here as // well. for (const FlexLine& line : data->mLines) { // If currentLine is empty, either it is the first line, or all the items // in the previous line have been placed in our prev-in-flows. No need to // construct a new line. if (!currentLine->IsEmpty()) { currentLine = ConstructNewFlexLine(); } for (const FlexItem& item : line.Items()) { if (item.Frame() == childFirstInFlow) { currentLine->Items().AppendElement(item.CloneFor(child)); iter.Next(); if (iter.AtEnd()) { // We've constructed flex items for all children. No need to check // rest of the items. child = childFirstInFlow = nullptr; break; } child = *iter; childFirstInFlow = child->FirstInFlow(); } } if (iter.AtEnd()) { // We've constructed flex items for all children. No need to check // rest of the lines. break; } } } flr.mContentBoxMainSize = data->mContentBoxMainSize; flr.mContentBoxCrossSize = data->mContentBoxCrossSize; return flr; } // Returns the largest outer hypothetical main-size of any line in |aLines|. // (i.e. the hypothetical main-size of the largest line) static AuCoord64 GetLargestLineMainSize(nsTArray<FlexLine>& aLines) { AuCoord64 largestLineOuterSize = 0; for (const FlexLine& line : aLines) { largestLineOuterSize = std::max(largestLineOuterSize, line.TotalOuterHypotheticalMainSize()); } return largestLineOuterSize; } nscoord nsFlexContainerFrame::ComputeMainSize( const ReflowInput& aReflowInput, const FlexboxAxisTracker& aAxisTracker, const nscoord aTentativeContentBoxMainSize, nsTArray<FlexLine>& aLines) const { if (aAxisTracker.IsRowOriented()) { // Row-oriented --> our main axis is the inline axis, so our main size // is our inline size (which should already be resolved). return aTentativeContentBoxMainSize; } const bool shouldApplyAutomaticMinimumOnBlockAxis = aReflowInput.ShouldApplyAutomaticMinimumOnBlockAxis(); if (aTentativeContentBoxMainSize != NS_UNCONSTRAINEDSIZE && !shouldApplyAutomaticMinimumOnBlockAxis) { // Column-oriented case, with fixed BSize: // Just use our fixed block-size because we always assume the available // block-size is unconstrained, and the reflow input has already done the // appropriate min/max-BSize clamping. return aTentativeContentBoxMainSize; } // Column-oriented case, with size-containment in block axis: // Behave as if we had no content and just use our MinBSize. if (Maybe<nscoord> containBSize = aReflowInput.mFrame->ContainIntrinsicBSize()) { return aReflowInput.ApplyMinMaxBSize(*containBSize); } const AuCoord64 largestLineMainSize = GetLargestLineMainSize(aLines); const nscoord contentBSize = aReflowInput.ApplyMinMaxBSize( nscoord(largestLineMainSize.ToMinMaxClamped())); // If the clamped largest FlexLine length is larger than the tentative main // size (which is resolved by aspect-ratio), we extend it to contain the // entire FlexLine. // https://drafts.csswg.org/css-sizing-4/#aspect-ratio-minimum if (shouldApplyAutomaticMinimumOnBlockAxis) { // Column-oriented case, with auto BSize which is resolved by // aspect-ratio. return std::max(contentBSize, aTentativeContentBoxMainSize); } // Column-oriented case, with auto BSize: // Resolve auto BSize to the largest FlexLine length, clamped to our // computed min/max main-size properties. return contentBSize; } nscoord nsFlexContainerFrame::ComputeCrossSize( const ReflowInput& aReflowInput, const FlexboxAxisTracker& aAxisTracker, const nscoord aTentativeContentBoxCrossSize, nscoord aSumLineCrossSizes, bool* aIsDefinite) const { MOZ_ASSERT(aIsDefinite, "outparam pointer must be non-null"); if (aAxisTracker.IsColumnOriented()) { // Column-oriented --> our cross axis is the inline axis, so our cross size // is our inline size (which should already be resolved). *aIsDefinite = true; // FIXME: Bug 1661847 - there are cases where aTentativeContentBoxCrossSize // (i.e. aReflowInput.ComputedISize()) might not be the right thing to // return here. Specifically: if our cross size is an intrinsic size, and we // have flex items that are flexible and have aspect ratios, then we may // need to take their post-flexing main sizes into account (multiplied // through their aspect ratios to get their cross sizes), in order to // determine their flex line's size & the flex container's cross size (e.g. // as `aSumLineCrossSizes`). return aTentativeContentBoxCrossSize; } const bool shouldApplyAutomaticMinimumOnBlockAxis = aReflowInput.ShouldApplyAutomaticMinimumOnBlockAxis(); const nscoord computedBSize = aReflowInput.ComputedBSize(); if (computedBSize != NS_UNCONSTRAINEDSIZE && !shouldApplyAutomaticMinimumOnBlockAxis) { // Row-oriented case (cross axis is block-axis), with fixed BSize: *aIsDefinite = true; // Just use our fixed block-size because we always assume the available // block-size is unconstrained, and the reflow input has already done the // appropriate min/max-BSize clamping. return computedBSize; } // Row-oriented case, with size-containment in block axis: // Behave as if we had no content and just use our MinBSize. if (Maybe<nscoord> containBSize = aReflowInput.mFrame->ContainIntrinsicBSize()) { *aIsDefinite = true; return aReflowInput.ApplyMinMaxBSize(*containBSize); } // The cross size must not be definite in the following cases. *aIsDefinite = false; const nscoord contentBSize = aReflowInput.ApplyMinMaxBSize(aSumLineCrossSizes); // If the content block-size is larger than the effective computed // block-size, we extend the block-size to contain all the content. // https://drafts.csswg.org/css-sizing-4/#aspect-ratio-minimum if (shouldApplyAutomaticMinimumOnBlockAxis) { // Row-oriented case (cross axis is block-axis), with auto BSize which is // resolved by aspect-ratio or content size. return std::max(contentBSize, computedBSize); } // Row-oriented case (cross axis is block axis), with auto BSize: // Shrink-wrap our line(s), subject to our min-size / max-size // constraints in that (block) axis. return contentBSize; } LogicalSize nsFlexContainerFrame::ComputeAvailableSizeForItems( const ReflowInput& aReflowInput, const mozilla::LogicalMargin& aBorderPadding) const { const WritingMode wm = GetWritingMode(); nscoord availableBSize = aReflowInput.AvailableBSize(); if (availableBSize != NS_UNCONSTRAINEDSIZE) { // Available block-size is constrained. Subtract block-start border and // padding from it. availableBSize -= aBorderPadding.BStart(wm); if (aReflowInput.mStyleBorder->mBoxDecorationBreak == StyleBoxDecorationBreak::Clone) { // We have box-decoration-break:clone. Subtract block-end border and // padding from the available block-size as well. availableBSize -= aBorderPadding.BEnd(wm); } // Available block-size can became negative after subtracting block-axis // border and padding. Per spec, to guarantee progress, fragmentainers are // assumed to have a minimum block size of 1px regardless of their used // size. https://drafts.csswg.org/css-break/#breaking-rules availableBSize = std::max(nsPresContext::CSSPixelsToAppUnits(1), availableBSize); } return LogicalSize(wm, aReflowInput.ComputedISize(), availableBSize); } void FlexLine::PositionItemsInMainAxis( const StyleContentDistribution& aJustifyContent, nscoord aContentBoxMainSize, const FlexboxAxisTracker& aAxisTracker) { MainAxisPositionTracker mainAxisPosnTracker( aAxisTracker, this, aJustifyContent, aContentBoxMainSize); for (FlexItem& item : Items()) { nscoord itemMainBorderBoxSize = item.MainSize() + item.BorderPaddingSizeInMainAxis(); // Resolve any main-axis 'auto' margins on aChild to an actual value. mainAxisPosnTracker.ResolveAutoMarginsInMainAxis(item); // Advance our position tracker to child's upper-left content-box corner, // and use that as its position in the main axis. mainAxisPosnTracker.EnterMargin(item.Margin()); mainAxisPosnTracker.EnterChildFrame(itemMainBorderBoxSize); item.SetMainPosition(mainAxisPosnTracker.Position()); mainAxisPosnTracker.ExitChildFrame(itemMainBorderBoxSize); mainAxisPosnTracker.ExitMargin(item.Margin()); mainAxisPosnTracker.TraversePackingSpace(); if (&item != &Items().LastElement()) { mainAxisPosnTracker.TraverseGap(mMainGapSize); } } } void nsFlexContainerFrame::SizeItemInCrossAxis(ReflowInput& aChildReflowInput, FlexItem& aItem) { // If cross axis is the item's inline axis, just use ISize from reflow input, // and don't bother with a full reflow. if (aItem.IsInlineAxisCrossAxis()) { aItem.SetCrossSize(aChildReflowInput.ComputedISize()); return; } MOZ_ASSERT(!aItem.HadMeasuringReflow(), "We shouldn't need more than one measuring reflow"); if (aItem.AlignSelf()._0 == StyleAlignFlags::STRETCH) { // This item's got "align-self: stretch", so we probably imposed a // stretched computed cross-size on it during its previous // reflow. We're not imposing that BSize for *this* "measuring" reflow, so // we need to tell it to treat this reflow as a resize in its block axis // (regardless of whether any of its ancestors are actually being resized). // (Note: we know that the cross axis is the item's *block* axis -- if it // weren't, then we would've taken the early-return above.) aChildReflowInput.SetBResize(true); // Not 100% sure this is needed, but be conservative for now: aChildReflowInput.mFlags.mIsBResizeForPercentages = true; } // Potentially reflow the item, and get the sizing info. const CachedBAxisMeasurement& measurement = MeasureBSizeForFlexItem(aItem, aChildReflowInput); // Save the sizing info that we learned from this reflow // ----------------------------------------------------- // Tentatively store the child's desired content-box cross-size. aItem.SetCrossSize(measurement.BSize()); } void FlexLine::PositionItemsInCrossAxis( nscoord aLineStartPosition, const FlexboxAxisTracker& aAxisTracker) { SingleLineCrossAxisPositionTracker lineCrossAxisPosnTracker(aAxisTracker); for (FlexItem& item : Items()) { // First, stretch the item's cross size (if appropriate), and resolve any // auto margins in this axis. item.ResolveStretchedCrossSize(mLineCrossSize); lineCrossAxisPosnTracker.ResolveAutoMarginsInCrossAxis(*this, item); // Compute the cross-axis position of this item nscoord itemCrossBorderBoxSize = item.CrossSize() + item.BorderPaddingSizeInCrossAxis(); lineCrossAxisPosnTracker.EnterAlignPackingSpace(*this, item, aAxisTracker); lineCrossAxisPosnTracker.EnterMargin(item.Margin()); lineCrossAxisPosnTracker.EnterChildFrame(itemCrossBorderBoxSize); item.SetCrossPosition(aLineStartPosition + lineCrossAxisPosnTracker.Position()); // Back out to cross-axis edge of the line. lineCrossAxisPosnTracker.ResetPosition(); } } void nsFlexContainerFrame::Reflow(nsPresContext* aPresContext, ReflowOutput& aReflowOutput, const ReflowInput& aReflowInput, nsReflowStatus& aStatus) { if (IsHiddenByContentVisibilityOfInFlowParentForLayout()) { return; } MarkInReflow(); DO_GLOBAL_REFLOW_COUNT("nsFlexContainerFrame"); DISPLAY_REFLOW(aPresContext, this, aReflowInput, aReflowOutput, aStatus); MOZ_ASSERT(aStatus.IsEmpty(), "Caller should pass a fresh reflow status!"); MOZ_ASSERT(aPresContext == PresContext()); NS_WARNING_ASSERTION( aReflowInput.ComputedISize() != NS_UNCONSTRAINEDSIZE, "Unconstrained inline size; this should only result from huge sizes " "(not intrinsic sizing w/ orthogonal flows)"); FLEX_LOG("Reflow() for nsFlexContainerFrame %p", this); if (IsFrameTreeTooDeep(aReflowInput, aReflowOutput, aStatus)) { return; } NormalizeChildLists(); #ifdef DEBUG mDidPushItemsBitMayLie = false; SanityCheckChildListsBeforeReflow(); #endif // DEBUG // We (and our children) can only depend on our ancestor's bsize if we have // a percent-bsize, or if we're positioned and we have "block-start" and // "block-end" set and have block-size:auto. (There are actually other cases, // too -- e.g. if our parent is itself a block-dir flex container and we're // flexible -- but we'll let our ancestors handle those sorts of cases.) // // TODO(emilio): the !bsize.IsLengthPercentage() preserves behavior, but it's // too conservative. min/max-content don't really depend on the container. WritingMode wm = aReflowInput.GetWritingMode(); const nsStylePosition* stylePos = StylePosition(); const auto& bsize = stylePos->BSize(wm); if (bsize.HasPercent() || (StyleDisplay()->IsAbsolutelyPositionedStyle() && (bsize.IsAuto() || !bsize.IsLengthPercentage()) && !stylePos->mOffset.GetBStart(wm).IsAuto() && !stylePos->mOffset.GetBEnd(wm).IsAuto())) { AddStateBits(NS_FRAME_CONTAINS_RELATIVE_BSIZE); } const FlexboxAxisTracker axisTracker(this); // Check to see if we need to create a computed info structure, to // be filled out for use by devtools. ComputedFlexContainerInfo* containerInfo = CreateOrClearFlexContainerInfo(); FlexLayoutResult flr; PerFragmentFlexData fragmentData; const nsIFrame* prevInFlow = GetPrevInFlow(); if (!prevInFlow) { const LogicalSize tentativeContentBoxSize = aReflowInput.ComputedSize(); const nscoord tentativeContentBoxMainSize = axisTracker.MainComponent(tentativeContentBoxSize); const nscoord tentativeContentBoxCrossSize = axisTracker.CrossComponent(tentativeContentBoxSize); // Calculate gap sizes for main and cross axis. We only need them in // DoFlexLayout in the first-in-flow, so no need to worry about consumed // block-size. const auto& mainGapStyle = axisTracker.IsRowOriented() ? stylePos->mColumnGap : stylePos->mRowGap; const auto& crossGapStyle = axisTracker.IsRowOriented() ? stylePos->mRowGap : stylePos->mColumnGap; const nscoord mainGapSize = nsLayoutUtils::ResolveGapToLength( mainGapStyle, tentativeContentBoxMainSize); const nscoord crossGapSize = nsLayoutUtils::ResolveGapToLength( crossGapStyle, tentativeContentBoxCrossSize); // When fragmenting a flex container, we run the flex algorithm without // regards to pagination in order to compute the flex container's desired // content-box size. https://drafts.csswg.org/css-flexbox-1/#pagination-algo // // Note: For a multi-line column-oriented flex container, the sample // algorithm suggests we wrap the flex line at the block-end edge of a // column/page, but we do not implement it intentionally. This brings the // layout result closer to the one as if there's no fragmentation. AutoTArray<StrutInfo, 1> struts; flr = DoFlexLayout(aReflowInput, tentativeContentBoxMainSize, tentativeContentBoxCrossSize, axisTracker, mainGapSize, crossGapSize, struts, containerInfo); if (!struts.IsEmpty()) { // We're restarting flex layout, with new knowledge of collapsed items. flr.mLines.Clear(); flr.mPlaceholders.Clear(); flr = DoFlexLayout(aReflowInput, tentativeContentBoxMainSize, tentativeContentBoxCrossSize, axisTracker, mainGapSize, crossGapSize, struts, containerInfo); } } else { flr = GenerateFlexLayoutResult(); auto* fragmentDataProp = prevInFlow->GetProperty(PerFragmentFlexData::Prop()); MOZ_ASSERT(fragmentDataProp, "PerFragmentFlexData should be set in our prev-in-flow!"); fragmentData = *fragmentDataProp; } LogicalSize contentBoxSize = axisTracker.LogicalSizeFromFlexRelativeSizes( flr.mContentBoxMainSize, flr.mContentBoxCrossSize); const nscoord consumedBSize = CalcAndCacheConsumedBSize(); const nscoord effectiveContentBSize = contentBoxSize.BSize(wm) - consumedBSize; LogicalMargin borderPadding = aReflowInput.ComputedLogicalBorderPadding(wm); if (MOZ_UNLIKELY(aReflowInput.AvailableBSize() != NS_UNCONSTRAINEDSIZE)) { // We assume we are the last fragment by using // PreReflowBlockLevelLogicalSkipSides(), and skip block-end border and // padding if needed. borderPadding.ApplySkipSides(PreReflowBlockLevelLogicalSkipSides()); } // Determine this frame's tentative border-box size. This is used for logical // to physical coordinate conversion when positioning children. // // Note that vertical-rl writing-mode is the only case where the block flow // direction progresses in a negative physical direction, and therefore block // direction coordinate conversion depends on knowing the width of the // coordinate space in order to translate between the logical and physical // origins. As a result, if our final border-box block-size is different from // this tentative one, and we are in vertical-rl writing mode, we need to // adjust our children's position after reflowing them. const LogicalSize tentativeBorderBoxSize( wm, contentBoxSize.ISize(wm) + borderPadding.IStartEnd(wm), std::min(effectiveContentBSize + borderPadding.BStartEnd(wm), aReflowInput.AvailableBSize())); const nsSize containerSize = tentativeBorderBoxSize.GetPhysicalSize(wm); OverflowAreas ocBounds; nsReflowStatus ocStatus; if (prevInFlow) { ReflowOverflowContainerChildren( aPresContext, aReflowInput, ocBounds, ReflowChildFlags::Default, ocStatus, MergeSortedFrameListsFor, Some(containerSize)); } const LogicalSize availableSizeForItems = ComputeAvailableSizeForItems(aReflowInput, borderPadding); const auto [childrenBEndEdge, childrenStatus] = ReflowChildren(aReflowInput, containerSize, availableSizeForItems, borderPadding, axisTracker, flr, fragmentData); bool mayNeedNextInFlow = false; if (aReflowInput.IsInFragmentedContext()) { // This fragment's contribution to the flex container's cumulative // content-box block-size, if it turns out that this is the final vs. // non-final fragment: // // * If it turns out we *are* the final fragment, then this fragment's // content-box contribution is the distance from the start of our content // box to the block-end edge of our children (note the borderPadding // subtraction is just to get us to a content-box-relative offset here): const nscoord bSizeContributionIfFinalFragment = childrenBEndEdge - borderPadding.BStart(wm); // * If it turns out we're *not* the final fragment, then this fragment's // content-box extends to the edge of the availableSizeForItems (at least), // regardless of whether we actually have items at that location: const nscoord bSizeContributionIfNotFinalFragment = std::max( bSizeContributionIfFinalFragment, availableSizeForItems.BSize(wm)); // mCumulativeBEndEdgeShift was updated in ReflowChildren(), and our // children's block-size may grow in fragmented context. If our block-size // and max-block-size are unconstrained, then we allow the flex container to // grow to accommodate any children whose sizes grew as a result of // fragmentation. if (aReflowInput.ComputedBSize() == NS_UNCONSTRAINEDSIZE) { contentBoxSize.BSize(wm) = aReflowInput.ApplyMinMaxBSize( contentBoxSize.BSize(wm) + fragmentData.mCumulativeBEndEdgeShift); if (childrenStatus.IsComplete()) { // All of the children fit! We know that we're using a content-based // block-size, and we know our children's block-size may have grown due // to fragmentation. So we allow ourselves to grow our block-size here // to contain the block-end edge of our last child (subject to our // min/max constraints). contentBoxSize.BSize(wm) = aReflowInput.ApplyMinMaxBSize(std::max( contentBoxSize.BSize(wm), fragmentData.mCumulativeContentBoxBSize + bSizeContributionIfFinalFragment)); } else { // As in the if-branch above, we extend our block-size, but in this case // we know that a child didn't fit and might overshot our available // size, so we assume this fragment won't be the final fragment, and // hence it should contribute bSizeContributionIfNotFinalFragment // (subject to our min/max constraints). contentBoxSize.BSize(wm) = aReflowInput.ApplyMinMaxBSize(std::max( contentBoxSize.BSize(wm), fragmentData.mCumulativeContentBoxBSize + bSizeContributionIfNotFinalFragment)); if (aReflowInput.ComputedMaxBSize() == NS_UNCONSTRAINEDSIZE) { mayNeedNextInFlow = true; } else { // The definite max-block-size can be the upper bound of our // content-box block-size. We should check whether we need a // next-in-flow. mayNeedNextInFlow = contentBoxSize.BSize(wm) - consumedBSize > availableSizeForItems.BSize(wm); } } } else { mayNeedNextInFlow = contentBoxSize.BSize(wm) - consumedBSize > availableSizeForItems.BSize(wm); } fragmentData.mCumulativeContentBoxBSize += bSizeContributionIfNotFinalFragment; // If we may need a next-in-flow, we'll need to skip block-end border and // padding. if (mayNeedNextInFlow && aReflowInput.mStyleBorder->mBoxDecorationBreak == StyleBoxDecorationBreak::Slice) { borderPadding.BEnd(wm) = 0; } } PopulateReflowOutput(aReflowOutput, aReflowInput, aStatus, contentBoxSize, borderPadding, consumedBSize, mayNeedNextInFlow, childrenBEndEdge, childrenStatus, axisTracker, flr); if (wm.IsVerticalRL()) { // If the final border-box block-size is different from the tentative one, // adjust our children's position. const nscoord deltaBCoord = tentativeBorderBoxSize.BSize(wm) - aReflowOutput.Size(wm).BSize(wm); if (deltaBCoord != 0) { const LogicalPoint delta(wm, 0, deltaBCoord); for (const FlexLine& line : flr.mLines) { for (const FlexItem& item : line.Items()) { item.Frame()->MovePositionBy(wm, delta); } } } } // Overflow area = union(my overflow area, children's overflow areas) aReflowOutput.SetOverflowAreasToDesiredBounds(); UnionInFlowChildOverflow(aReflowOutput.mOverflowAreas); // Merge overflow container bounds and status. aReflowOutput.mOverflowAreas.UnionWith(ocBounds); aStatus.MergeCompletionStatusFrom(ocStatus); FinishReflowWithAbsoluteFrames(PresContext(), aReflowOutput, aReflowInput, aStatus); // Finally update our line and item measurements in our containerInfo. if (MOZ_UNLIKELY(containerInfo)) { UpdateFlexLineAndItemInfo(*containerInfo, flr.mLines); } // If we are the first-in-flow, we want to store data for our next-in-flows, // or clear the existing data if it is not needed. if (!prevInFlow) { SharedFlexData* sharedData = GetProperty(SharedFlexData::Prop()); if (!aStatus.IsFullyComplete()) { if (!sharedData) { sharedData = new SharedFlexData; SetProperty(SharedFlexData::Prop(), sharedData); } sharedData->Update(std::move(flr)); } else if (sharedData && !GetNextInFlow()) { // We are fully-complete, so no next-in-flow is needed. However, if we // report SetInlineLineBreakBeforeAndReset() in an incremental reflow, our // next-in-flow might still exist. It can be reflowed again before us if // it is an overflow container. Delete the existing data only if we don't // have a next-in-flow. RemoveProperty(SharedFlexData::Prop()); } } PerFragmentFlexData* fragmentDataProp = GetProperty(PerFragmentFlexData::Prop()); if (!aStatus.IsFullyComplete()) { if (!fragmentDataProp) { fragmentDataProp = new PerFragmentFlexData; SetProperty(PerFragmentFlexData::Prop(), fragmentDataProp); } *fragmentDataProp = fragmentData; } else if (fragmentDataProp && !GetNextInFlow()) { // Similar to the condition to remove SharedFlexData, delete the // existing data only if we don't have a next-in-flow. RemoveProperty(PerFragmentFlexData::Prop()); } } Maybe<nscoord> nsFlexContainerFrame::GetNaturalBaselineBOffset( WritingMode aWM, BaselineSharingGroup aBaselineGroup, BaselineExportContext) const { if (StyleDisplay()->IsContainLayout() || HasAnyStateBits(NS_STATE_FLEX_SYNTHESIZE_BASELINE)) { return Nothing{}; } return Some(aBaselineGroup == BaselineSharingGroup::First ? mFirstBaseline : mLastBaseline); } void nsFlexContainerFrame::UnionInFlowChildOverflow( OverflowAreas& aOverflowAreas) { // The CSS Overflow spec [1] requires that a scrollable container's // scrollable overflow should include the following areas. // // a) "the box's own content and padding areas": we treat the *content* as // the scrolled inner frame's theoretical content-box that's intrinsically // sized to the union of all the flex items' margin boxes, _without_ // relative positioning applied. The *padding areas* is just inflation on // top of the theoretical content-box by the flex container's padding. // // b) "the margin areas of grid item and flex item boxes for which the box // establishes a containing block": a) already includes the flex items' // normal-positioned margin boxes into the scrollable overflow, but their // relative-positioned margin boxes should also be included because relpos // children are still flex items. // // [1] https://drafts.csswg.org/css-overflow-3/#scrollable. const bool isScrolledContent = Style()->GetPseudoType() == PseudoStyleType::scrolledContent; bool anyScrolledContentItem = false; // Union of normal-positioned margin boxes for all the items. nsRect itemMarginBoxes; // Union of relative-positioned margin boxes for the relpos items only. nsRect relPosItemMarginBoxes; const bool useMozBoxCollapseBehavior = StyleVisibility()->UseLegacyCollapseBehavior(); for (nsIFrame* f : mFrames) { if (useMozBoxCollapseBehavior && f->StyleVisibility()->IsCollapse()) { continue; } ConsiderChildOverflow(aOverflowAreas, f); if (!isScrolledContent) { continue; } if (f->IsPlaceholderFrame()) { continue; } anyScrolledContentItem = true; if (MOZ_UNLIKELY(f->IsRelativelyOrStickyPositioned())) { const nsRect marginRect = f->GetMarginRectRelativeToSelf(); itemMarginBoxes = itemMarginBoxes.Union(marginRect + f->GetNormalPosition()); relPosItemMarginBoxes = relPosItemMarginBoxes.Union(marginRect + f->GetPosition()); } else { itemMarginBoxes = itemMarginBoxes.Union(f->GetMarginRect()); } } if (anyScrolledContentItem) { itemMarginBoxes.Inflate(GetUsedPadding()); aOverflowAreas.UnionAllWith(itemMarginBoxes); aOverflowAreas.UnionAllWith(relPosItemMarginBoxes); } } void nsFlexContainerFrame::UnionChildOverflow(OverflowAreas& aOverflowAreas) { UnionInFlowChildOverflow(aOverflowAreas); // Union with child frames, skipping the principal list since we already // handled those above. nsLayoutUtils::UnionChildOverflow(this, aOverflowAreas, {FrameChildListID::Principal}); } void nsFlexContainerFrame::CalculatePackingSpace( uint32_t aNumThingsToPack, const StyleContentDistribution& aAlignVal, nscoord* aFirstSubjectOffset, uint32_t* aNumPackingSpacesRemaining, nscoord* aPackingSpaceRemaining) { StyleAlignFlags val = aAlignVal.primary; MOZ_ASSERT(val == StyleAlignFlags::SPACE_BETWEEN || val == StyleAlignFlags::SPACE_AROUND || val == StyleAlignFlags::SPACE_EVENLY, "Unexpected alignment value"); MOZ_ASSERT(*aPackingSpaceRemaining >= 0, "Should not be called with negative packing space"); // Note: In the aNumThingsToPack==1 case, the fallback behavior for // 'space-between' depends on precise information about the axes that we // don't have here. So, for that case, we just depend on the caller to // explicitly convert 'space-{between,around,evenly}' keywords to the // appropriate fallback alignment and skip this function. MOZ_ASSERT(aNumThingsToPack > 1, "Should not be called unless there's more than 1 thing to pack"); // Packing spaces between items: *aNumPackingSpacesRemaining = aNumThingsToPack - 1; if (val == StyleAlignFlags::SPACE_BETWEEN) { // No need to reserve space at beginning/end, so we're done. return; } // We need to add 1 or 2 packing spaces, split between beginning/end, for // space-around / space-evenly: size_t numPackingSpacesForEdges = val == StyleAlignFlags::SPACE_AROUND ? 1 : 2; // How big will each "full" packing space be: nscoord packingSpaceSize = *aPackingSpaceRemaining / (*aNumPackingSpacesRemaining + numPackingSpacesForEdges); // How much packing-space are we allocating to the edges: nscoord totalEdgePackingSpace = numPackingSpacesForEdges * packingSpaceSize; // Use half of that edge packing space right now: *aFirstSubjectOffset += totalEdgePackingSpace / 2; // ...but we need to subtract all of it right away, so that we won't // hand out any of it to intermediate packing spaces. *aPackingSpaceRemaining -= totalEdgePackingSpace; } ComputedFlexContainerInfo* nsFlexContainerFrame::CreateOrClearFlexContainerInfo() { if (!HasAnyStateBits(NS_STATE_FLEX_COMPUTED_INFO)) { return nullptr; } // The flag that sets ShouldGenerateComputedInfo() will never be cleared. // That's acceptable because it's only set in a Chrome API invoked by // devtools, and won't impact normal browsing. // Re-use the ComputedFlexContainerInfo, if it exists. ComputedFlexContainerInfo* info = GetProperty(FlexContainerInfo()); if (info) { // We can reuse, as long as we clear out old data. info->mLines.Clear(); } else { info = new ComputedFlexContainerInfo(); SetProperty(FlexContainerInfo(), info); } return info; } nscoord nsFlexContainerFrame::FlexItemConsumedBSize(const FlexItem& aItem) { nsSplittableFrame* f = do_QueryFrame(aItem.Frame()); return f ? ConsumedBSize(f) : 0; } void nsFlexContainerFrame::CreateFlexLineAndFlexItemInfo( ComputedFlexContainerInfo& aContainerInfo, const nsTArray<FlexLine>& aLines) { for (const FlexLine& line : aLines) { ComputedFlexLineInfo* lineInfo = aContainerInfo.mLines.AppendElement(); // Most of the remaining lineInfo properties will be filled out in // UpdateFlexLineAndItemInfo (some will be provided by other functions), // when we have real values. But we still add all the items here, so // we can capture computed data for each item as we proceed. for (const FlexItem& item : line.Items()) { nsIFrame* frame = item.Frame(); // The frame may be for an element, or it may be for an // anonymous flex item, e.g. wrapping one or more text nodes. // DevTools wants the content node for the actual child in // the DOM tree, so we descend through anonymous boxes. nsIFrame* targetFrame = GetFirstNonAnonBoxInSubtree(frame); nsIContent* content = targetFrame->GetContent(); // Skip over content that is only whitespace, which might // have been broken off from a text node which is our real // target. while (content && content->TextIsOnlyWhitespace()) { // If content is only whitespace, try the frame sibling. targetFrame = targetFrame->GetNextSibling(); if (targetFrame) { content = targetFrame->GetContent(); } else { content = nullptr; } } ComputedFlexItemInfo* itemInfo = lineInfo->mItems.AppendElement(); itemInfo->mNode = content; // itemInfo->mMainBaseSize and mMainDeltaSize will be filled out // in ResolveFlexibleLengths(). Other measurements will be captured in // UpdateFlexLineAndItemInfo. } } } void nsFlexContainerFrame::ComputeFlexDirections( ComputedFlexContainerInfo& aContainerInfo, const FlexboxAxisTracker& aAxisTracker) { auto ConvertPhysicalStartSideToFlexPhysicalDirection = [](mozilla::Side aStartSide) { switch (aStartSide) { case eSideLeft: return dom::FlexPhysicalDirection::Horizontal_lr; case eSideRight: return dom::FlexPhysicalDirection::Horizontal_rl; case eSideTop: return dom::FlexPhysicalDirection::Vertical_tb; case eSideBottom: return dom::FlexPhysicalDirection::Vertical_bt; } MOZ_ASSERT_UNREACHABLE("We should handle all sides!"); return dom::FlexPhysicalDirection::Horizontal_lr; }; aContainerInfo.mMainAxisDirection = ConvertPhysicalStartSideToFlexPhysicalDirection( aAxisTracker.MainAxisPhysicalStartSide()); aContainerInfo.mCrossAxisDirection = ConvertPhysicalStartSideToFlexPhysicalDirection( aAxisTracker.CrossAxisPhysicalStartSide()); } void nsFlexContainerFrame::UpdateFlexLineAndItemInfo( ComputedFlexContainerInfo& aContainerInfo, const nsTArray<FlexLine>& aLines) { uint32_t lineIndex = 0; for (const FlexLine& line : aLines) { ComputedFlexLineInfo& lineInfo = aContainerInfo.mLines[lineIndex]; lineInfo.mCrossSize = line.LineCrossSize(); lineInfo.mFirstBaselineOffset = line.FirstBaselineOffset(); lineInfo.mLastBaselineOffset = line.LastBaselineOffset(); uint32_t itemIndex = 0; for (const FlexItem& item : line.Items()) { ComputedFlexItemInfo& itemInfo = lineInfo.mItems[itemIndex]; itemInfo.mFrameRect = item.Frame()->GetRect(); itemInfo.mMainMinSize = item.MainMinSize(); itemInfo.mMainMaxSize = item.MainMaxSize(); itemInfo.mCrossMinSize = item.CrossMinSize(); itemInfo.mCrossMaxSize = item.CrossMaxSize(); itemInfo.mClampState = item.WasMinClamped() ? mozilla::dom::FlexItemClampState::Clamped_to_min : (item.WasMaxClamped() ? mozilla::dom::FlexItemClampState::Clamped_to_max : mozilla::dom::FlexItemClampState::Unclamped); ++itemIndex; } ++lineIndex; } } nsFlexContainerFrame* nsFlexContainerFrame::GetFlexFrameWithComputedInfo( nsIFrame* aFrame) { // Prepare a lambda function that we may need to call multiple times. auto GetFlexContainerFrame = [](nsIFrame* aFrame) { // Return the aFrame's content insertion frame, iff it is // a flex container frame. nsFlexContainerFrame* flexFrame = nullptr; if (aFrame) { nsIFrame* inner = aFrame; if (MOZ_UNLIKELY(aFrame->IsFieldSetFrame())) { inner = static_cast<nsFieldSetFrame*>(aFrame)->GetInner(); } // Since "Get" methods like GetInner and GetContentInsertionFrame can // return null, we check the return values before dereferencing. Our // calling pattern makes this unlikely, but we're being careful. nsIFrame* insertionFrame = inner ? inner->GetContentInsertionFrame() : nullptr; nsIFrame* possibleFlexFrame = insertionFrame ? insertionFrame : aFrame; flexFrame = possibleFlexFrame->IsFlexContainerFrame() ? static_cast<nsFlexContainerFrame*>(possibleFlexFrame) : nullptr; } return flexFrame; }; nsFlexContainerFrame* flexFrame = GetFlexContainerFrame(aFrame); if (!flexFrame) { return nullptr; } // Generate the FlexContainerInfo data, if it's not already there. if (flexFrame->HasProperty(FlexContainerInfo())) { return flexFrame; } // Trigger a reflow that generates additional flex property data. // Hold onto aFrame while we do this, in case reflow destroys it. AutoWeakFrame weakFrameRef(aFrame); RefPtr<mozilla::PresShell> presShell = flexFrame->PresShell(); flexFrame->AddStateBits(NS_STATE_FLEX_COMPUTED_INFO); presShell->FrameNeedsReflow(flexFrame, IntrinsicDirty::None, NS_FRAME_IS_DIRTY); presShell->FlushPendingNotifications(FlushType::Layout); // Since the reflow may have side effects, get the flex frame // again. But if the weakFrameRef is no longer valid, then we // must bail out. if (!weakFrameRef.IsAlive()) { return nullptr; } flexFrame = GetFlexContainerFrame(weakFrameRef.GetFrame()); NS_WARNING_ASSERTION( !flexFrame || flexFrame->HasProperty(FlexContainerInfo()), "The state bit should've made our forced-reflow " "generate a FlexContainerInfo object"); return flexFrame; } /* static */ bool nsFlexContainerFrame::IsItemInlineAxisMainAxis(nsIFrame* aFrame) { MOZ_ASSERT(aFrame && aFrame->IsFlexItem(), "expecting arg to be a flex item"); const WritingMode flexItemWM = aFrame->GetWritingMode(); const nsIFrame* flexContainer = aFrame->GetParent(); if (IsLegacyBox(flexContainer)) { // For legacy boxes, the main axis is determined by "box-orient", and we can // just directly check if that's vertical, and compare that to whether the // item's WM is also vertical: bool boxOrientIsVertical = flexContainer->StyleXUL()->mBoxOrient == StyleBoxOrient::Vertical; return flexItemWM.IsVertical() == boxOrientIsVertical; } // For modern CSS flexbox, we get our return value by asking two questions // and comparing their answers. // Question 1: does aFrame have the same inline axis as its flex container? bool itemInlineAxisIsParallelToParent = !flexItemWM.IsOrthogonalTo(flexContainer->GetWritingMode()); // Question 2: is aFrame's flex container row-oriented? (This tells us // whether the flex container's main axis is its inline axis.) auto flexDirection = flexContainer->StylePosition()->mFlexDirection; bool flexContainerIsRowOriented = flexDirection == StyleFlexDirection::Row || flexDirection == StyleFlexDirection::RowReverse; // aFrame's inline axis is its flex container's main axis IFF the above // questions have the same answer. return flexContainerIsRowOriented == itemInlineAxisIsParallelToParent; } /* static */ bool nsFlexContainerFrame::IsUsedFlexBasisContent( const StyleFlexBasis& aFlexBasis, const StyleSize& aMainSize) { // We have a used flex-basis of 'content' if flex-basis explicitly has that // value, OR if flex-basis is 'auto' (deferring to the main-size property) // and the main-size property is also 'auto'. // See https://drafts.csswg.org/css-flexbox-1/#valdef-flex-basis-auto if (aFlexBasis.IsContent()) { return true; } return aFlexBasis.IsAuto() && aMainSize.IsAuto(); } nsFlexContainerFrame::FlexLayoutResult nsFlexContainerFrame::DoFlexLayout( const ReflowInput& aReflowInput, const nscoord aTentativeContentBoxMainSize, const nscoord aTentativeContentBoxCrossSize, const FlexboxAxisTracker& aAxisTracker, nscoord aMainGapSize, nscoord aCrossGapSize, nsTArray<StrutInfo>& aStruts, ComputedFlexContainerInfo* const aContainerInfo) { FlexLayoutResult flr; GenerateFlexLines(aReflowInput, aTentativeContentBoxMainSize, aTentativeContentBoxCrossSize, aStruts, aAxisTracker, aMainGapSize, flr.mPlaceholders, flr.mLines, flr.mHasCollapsedItems); if ((flr.mLines.Length() == 1 && flr.mLines[0].IsEmpty()) || aReflowInput.mStyleDisplay->IsContainLayout()) { // We have no flex items, or we're layout-contained. So, we have no // baseline, and our parent should synthesize a baseline if needed. AddStateBits(NS_STATE_FLEX_SYNTHESIZE_BASELINE); } else { RemoveStateBits(NS_STATE_FLEX_SYNTHESIZE_BASELINE); } // Construct our computed info if we've been asked to do so. This is // necessary to do now so we can capture some computed values for // FlexItems during layout that would not otherwise be saved (like // size adjustments). We'll later fix up the line properties, // because the correct values aren't available yet. if (aContainerInfo) { MOZ_ASSERT(HasAnyStateBits(NS_STATE_FLEX_COMPUTED_INFO), "We should only have the info struct if we should generate it"); if (!aStruts.IsEmpty()) { // We restarted DoFlexLayout, and may have stale mLines to clear: aContainerInfo->mLines.Clear(); } else { MOZ_ASSERT(aContainerInfo->mLines.IsEmpty(), "Shouldn't have lines yet."); } CreateFlexLineAndFlexItemInfo(*aContainerInfo, flr.mLines); ComputeFlexDirections(*aContainerInfo, aAxisTracker); } flr.mContentBoxMainSize = ComputeMainSize( aReflowInput, aAxisTracker, aTentativeContentBoxMainSize, flr.mLines); uint32_t lineIndex = 0; for (FlexLine& line : flr.mLines) { ComputedFlexLineInfo* lineInfo = aContainerInfo ? &aContainerInfo->mLines[lineIndex] : nullptr; line.ResolveFlexibleLengths(flr.mContentBoxMainSize, lineInfo); ++lineIndex; } // Cross Size Determination - Flexbox spec section 9.4 // https://drafts.csswg.org/css-flexbox-1/#cross-sizing // =================================================== // Calculate the hypothetical cross size of each item: // 'sumLineCrossSizes' includes the size of all gaps between lines. We // initialize it with the sum of all the gaps, and add each line's cross size // at the end of the following for-loop. nscoord sumLineCrossSizes = aCrossGapSize * (flr.mLines.Length() - 1); for (FlexLine& line : flr.mLines) { for (FlexItem& item : line.Items()) { // The item may already have the correct cross-size; only recalculate // if the item's main size resolution (flexing) could have influenced it: if (item.CanMainSizeInfluenceCrossSize()) { StyleSizeOverrides sizeOverrides; if (item.IsInlineAxisMainAxis()) { sizeOverrides.mStyleISize.emplace(item.StyleMainSize()); } else { sizeOverrides.mStyleBSize.emplace(item.StyleMainSize()); } FLEX_LOG("Sizing flex item %p in cross axis", item.Frame()); FLEX_LOGV(" Main size override: %d", item.MainSize()); const WritingMode wm = item.GetWritingMode(); LogicalSize availSize = aReflowInput.ComputedSize(wm); availSize.BSize(wm) = NS_UNCONSTRAINEDSIZE; ReflowInput childReflowInput(PresContext(), aReflowInput, item.Frame(), availSize, Nothing(), {}, sizeOverrides, {ComputeSizeFlag::ShrinkWrap}); if (item.IsBlockAxisMainAxis() && item.TreatBSizeAsIndefinite()) { childReflowInput.mFlags.mTreatBSizeAsIndefinite = true; } SizeItemInCrossAxis(childReflowInput, item); } } // Now that we've finished with this line's items, size the line itself: line.ComputeCrossSizeAndBaseline(aAxisTracker); sumLineCrossSizes += line.LineCrossSize(); } bool isCrossSizeDefinite; flr.mContentBoxCrossSize = ComputeCrossSize( aReflowInput, aAxisTracker, aTentativeContentBoxCrossSize, sumLineCrossSizes, &isCrossSizeDefinite); // Set up state for cross-axis alignment, at a high level (outside the // scope of a particular flex line) CrossAxisPositionTracker crossAxisPosnTracker( flr.mLines, aReflowInput, flr.mContentBoxCrossSize, isCrossSizeDefinite, aAxisTracker, aCrossGapSize); // Now that we know the cross size of each line (including // "align-content:stretch" adjustments, from the CrossAxisPositionTracker // constructor), we can create struts for any flex items with // "visibility: collapse" (and restart flex layout). // Make sure to only do this if we had no struts. if (aStruts.IsEmpty() && flr.mHasCollapsedItems && !StyleVisibility()->UseLegacyCollapseBehavior()) { BuildStrutInfoFromCollapsedItems(flr.mLines, aStruts); if (!aStruts.IsEmpty()) { // Restart flex layout, using our struts. return flr; } } // If the flex container is row-oriented, it should derive its first/last // baseline from the WM-relative startmost/endmost FlexLine if any items in // the line participate in baseline alignment. // https://drafts.csswg.org/css-flexbox-1/#flex-baselines // // Initialize the relevant variables here so that we can establish baselines // while iterating FlexLine later (while crossAxisPosnTracker is conveniently // pointing at the cross-start edge of that line, which the line's baseline // offset is measured from). const FlexLine* lineForFirstBaseline = nullptr; const FlexLine* lineForLastBaseline = nullptr; if (aAxisTracker.IsRowOriented()) { lineForFirstBaseline = &StartmostLine(flr.mLines, aAxisTracker); lineForLastBaseline = &EndmostLine(flr.mLines, aAxisTracker); } else { // For column-oriented flex container, use sentinel value to prompt us to // get baselines from the startmost/endmost items. flr.mAscent = nscoord_MIN; flr.mAscentForLast = nscoord_MIN; } const auto justifyContent = IsLegacyBox(aReflowInput.mFrame) ? ConvertLegacyStyleToJustifyContent(StyleXUL()) : aReflowInput.mStylePosition->mJustifyContent; lineIndex = 0; for (FlexLine& line : flr.mLines) { // Main-Axis Alignment - Flexbox spec section 9.5 // https://drafts.csswg.org/css-flexbox-1/#main-alignment // ============================================== line.PositionItemsInMainAxis(justifyContent, flr.mContentBoxMainSize, aAxisTracker); // See if we need to extract some computed info for this line. if (MOZ_UNLIKELY(aContainerInfo)) { ComputedFlexLineInfo& lineInfo = aContainerInfo->mLines[lineIndex]; lineInfo.mCrossStart = crossAxisPosnTracker.Position(); } // Cross-Axis Alignment - Flexbox spec section 9.6 // https://drafts.csswg.org/css-flexbox-1/#cross-alignment // =============================================== line.PositionItemsInCrossAxis(crossAxisPosnTracker.Position(), aAxisTracker); // Flex Container Baselines - Flexbox spec section 8.5 // https://drafts.csswg.org/css-flexbox-1/#flex-baselines auto ComputeAscentFromLine = [&](const FlexLine& aLine, BaselineSharingGroup aBaselineGroup) { MOZ_ASSERT(aAxisTracker.IsRowOriented(), "This makes sense only if we are row-oriented!"); // baselineOffsetInLine is a distance from the line's cross-start edge. const nscoord baselineOffsetInLine = aLine.ExtractBaselineOffset(aBaselineGroup); if (baselineOffsetInLine == nscoord_MIN) { // No "first baseline"-aligned or "last baseline"-aligned items in // aLine. Return a sentinel value to prompt us to get baseline from the // startmost or endmost FlexItem after we've reflowed it. return nscoord_MIN; } // This "ascent" variable is a distance from the flex container's // content-box block-start edge. const nscoord ascent = aAxisTracker.LogicalAscentFromFlexRelativeAscent( crossAxisPosnTracker.Position() + baselineOffsetInLine, flr.mContentBoxCrossSize); // Convert "ascent" variable to a distance from border-box start or end // edge, per documentation for FlexLayoutResult ascent members. const auto wm = aAxisTracker.GetWritingMode(); if (aBaselineGroup == BaselineSharingGroup::First) { return ascent + aReflowInput.ComputedLogicalBorderPadding(wm).BStart(wm); } return flr.mContentBoxCrossSize - ascent + aReflowInput.ComputedLogicalBorderPadding(wm).BEnd(wm); }; if (lineForFirstBaseline && lineForFirstBaseline == &line) { flr.mAscent = ComputeAscentFromLine(line, BaselineSharingGroup::First); } if (lineForLastBaseline && lineForLastBaseline == &line) { flr.mAscentForLast = ComputeAscentFromLine(line, BaselineSharingGroup::Last); } crossAxisPosnTracker.TraverseLine(line); crossAxisPosnTracker.TraversePackingSpace(); if (&line != &flr.mLines.LastElement()) { crossAxisPosnTracker.TraverseGap(); } ++lineIndex; } return flr; } // This data structure is used in fragmentation, storing the block coordinate // metrics when reflowing 1) the BStart-most line in each fragment of a // row-oriented flex container or, 2) the BStart-most item in each fragment of a // single-line column-oriented flex container. // // When we lay out a row-oriented flex container fragment, its first line might // contain one or more monolithic items that were pushed from the previous // fragment specifically to avoid having those monolithic items overlap the // page/column break. The situation is similar for single-row column-oriented // flex container fragments, but a bit simpler; only their first item might have // been pushed to avoid overlapping a page/column break. // // We'll have to place any such pushed items at the block-start edge of the // current fragment's content-box, which is as close as we can get them to their // theoretical/unfragmented position (without slicing them); but it does // represent a shift away from their theoretical/unfragmented position (which // was somewhere in the previous fragment). // // When that happens, we need to record the maximum such shift that we had to // perform so that we can apply the same block-endwards shift to "downstream" // items (items towards the block-end edge) that we could otherwise collide // with. We also potentially apply the same shift when computing the block-end // edge of this flex container fragment's content-box so that we don't // inadvertently shift the last item (or line-of-items) to overlap the flex // container's border, or content beyond the flex container. // // We use this structure to keep track of several metrics, in service of this // goal. This structure is also necessary to adjust PerFragmentFlexData at the // end of ReflowChildren(). // // Note: "First" in the struct name means "BStart-most", not the order in the // flex line array or flex item array. struct FirstLineOrFirstItemBAxisMetrics final { // This value stores the block-end edge shift for 1) the BStart-most line in // the current fragment of a row-oriented flex container, or 2) the // BStart-most item in the current fragment of a single-line column-oriented // flex container. This number is non-negative. // // This value may become positive when any item is a first-in-flow and also // satisfies either the above condition 1) or 2), since that's a hint that it // could be monolithic or have a monolithic first descendant, and therefore an // item that might incur a page/column-break-dodging position-shift that this // variable needs to track. // // This value also stores the fragmentation-imposed growth in the block-size // of a) the BStart-most line in the current fragment of a row-oriented flex // container, or b) the BStart-most item in the current fragment of a // single-line column-oriented flex container. This number is non-negative. nscoord mBEndEdgeShift = 0; // The first and second value in the pair store the max block-end edges for // items before and after applying the per-item position-shift in the block // axis. We only record the block-end edges for items with first-in-flow // frames placed in the current flex container fragment. This is used only by // row-oriented flex containers. Maybe<std::pair<nscoord, nscoord>> mMaxBEndEdge; }; std::tuple<nscoord, nsReflowStatus> nsFlexContainerFrame::ReflowChildren( const ReflowInput& aReflowInput, const nsSize& aContainerSize, const LogicalSize& aAvailableSizeForItems, const LogicalMargin& aBorderPadding, const FlexboxAxisTracker& aAxisTracker, FlexLayoutResult& aFlr, PerFragmentFlexData& aFragmentData) { if (HidesContentForLayout()) { return {0, nsReflowStatus()}; } // Before giving each child a final reflow, calculate the origin of the // flex container's content box (with respect to its border-box), so that // we can compute our flex item's final positions. WritingMode flexWM = aReflowInput.GetWritingMode(); const LogicalPoint containerContentBoxOrigin = aBorderPadding.StartOffset(flexWM); // The block-end of children is relative to the flex container's border-box. nscoord maxBlockEndEdgeOfChildren = containerContentBoxOrigin.B(flexWM); FirstLineOrFirstItemBAxisMetrics bAxisMetrics; FrameHashtable pushedItems; FrameHashtable incompleteItems; FrameHashtable overflowIncompleteItems; const bool isSingleLine = StyleFlexWrap::Nowrap == aReflowInput.mStylePosition->mFlexWrap; // FINAL REFLOW: Give each child frame another chance to reflow, now that // we know its final size and position. const FlexLine& startmostLine = StartmostLine(aFlr.mLines, aAxisTracker); const FlexItem* startmostItem = startmostLine.IsEmpty() ? nullptr : &startmostLine.StartmostItem(aAxisTracker); const size_t numLines = aFlr.mLines.Length(); for (size_t lineIdx = 0; lineIdx < numLines; ++lineIdx) { // Iterate flex lines from the startmost to endmost (relative to flex // container's writing-mode). const auto& line = aFlr.mLines[aAxisTracker.IsCrossAxisReversed() ? numLines - lineIdx - 1 : lineIdx]; MOZ_ASSERT(lineIdx != 0 || &line == &startmostLine, "Logic for finding startmost line should be consistent!"); const size_t numItems = line.Items().Length(); for (size_t itemIdx = 0; itemIdx < numItems; ++itemIdx) { // Iterate flex items from the startmost to endmost (relative to flex // container's writing-mode). const FlexItem& item = line.Items()[aAxisTracker.IsMainAxisReversed() ? numItems - itemIdx - 1 : itemIdx]; MOZ_ASSERT(lineIdx != 0 || itemIdx != 0 || &item == startmostItem, "Logic for finding startmost item should be consistent!"); LogicalPoint framePos = aAxisTracker.LogicalPointFromFlexRelativePoint( item.MainPosition(), item.CrossPosition(), aFlr.mContentBoxMainSize, aFlr.mContentBoxCrossSize); // This variable records the item's block-end edge before we give it a // per-item-position-shift, if the item is a first-in-flow in the // startmost line of a row-oriented flex container fragment. It is used to // determine the block-end edge shift for the startmost line at the end of // the outer loop. Maybe<nscoord> frameBPosBeforePerItemShift; if (item.Frame()->GetPrevInFlow()) { // The item is a continuation. Lay it out at the beginning of the // available space. framePos.B(flexWM) = 0; } else if (GetPrevInFlow()) { // The item we're placing is not a continuation; though we're placing it // into a flex container fragment which *is* a continuation. To compute // the item's correct position in this fragment, we adjust the item's // theoretical/unfragmented block-direction position by subtracting the // cumulative content-box block-size for all the previous fragments and // adding the cumulative block-end edge shift. // // Note that the item's position in this fragment has not been finalized // yet. At this point, we've adjusted the item's // theoretical/unfragmented position to be relative to the block-end // edge of the previous container fragment's content-box. Later, we'll // compute per-item position-shift to finalize its position. framePos.B(flexWM) -= aFragmentData.mCumulativeContentBoxBSize; framePos.B(flexWM) += aFragmentData.mCumulativeBEndEdgeShift; // This helper gets the per-item position-shift in the block-axis. auto GetPerItemPositionShiftToBEnd = [&]() { if (framePos.B(flexWM) >= 0) { // The item final position might be in current flex container // fragment or in any of the later fragments. No adjustment needed. return 0; } // The item's block position is negative, but we want to place it at // the content-box block-start edge of this container fragment. To // achieve this, return a negated (positive) value to make the final // block position zero. // // This scenario occurs when fragmenting a row-oriented flex container // where this item is pushed to this container fragment. return -framePos.B(flexWM); }; if (aAxisTracker.IsRowOriented()) { if (&line == &startmostLine) { frameBPosBeforePerItemShift.emplace(framePos.B(flexWM)); framePos.B(flexWM) += GetPerItemPositionShiftToBEnd(); } else { // We've computed two things for the startmost line during the outer // loop's first iteration: 1) how far the block-end edge had to // shift and 2) how large the block-size needed to grow. Here, we // just shift all items in the rest of the lines the same amount. framePos.B(flexWM) += bAxisMetrics.mBEndEdgeShift; } } else { MOZ_ASSERT(aAxisTracker.IsColumnOriented()); if (isSingleLine) { if (&item == startmostItem) { bAxisMetrics.mBEndEdgeShift = GetPerItemPositionShiftToBEnd(); } framePos.B(flexWM) += bAxisMetrics.mBEndEdgeShift; } else { // Bug 1806717: We need a more sophisticated solution for multi-line // column-oriented flex container when each line has a different // position-shift value. For now, we don't shift them. } } } // Adjust available block-size for the item. (We compute it here because // framePos is still relative to the container's content-box.) // // Note: The available block-size can become negative if item's // block-direction position is below available space's block-end. const nscoord availableBSizeForItem = aAvailableSizeForItems.BSize(flexWM) == NS_UNCONSTRAINEDSIZE ? NS_UNCONSTRAINEDSIZE : aAvailableSizeForItems.BSize(flexWM) - framePos.B(flexWM); // Adjust framePos to be relative to the container's border-box // (i.e. its frame rect), instead of the container's content-box: framePos += containerContentBoxOrigin; // Check if we actually need to reflow the item -- if the item's position // is below the available space's block-end, push it to our next-in-flow; // if it does need a reflow, and we already reflowed it with the right // content-box size. const bool childBPosExceedAvailableSpaceBEnd = availableBSizeForItem != NS_UNCONSTRAINEDSIZE && availableBSizeForItem <= 0; bool itemInPushedItems = false; if (childBPosExceedAvailableSpaceBEnd) { // Note: Even if all of our items are beyond the available space & get // pushed here, we'll be guaranteed to place at least one of them (and // make progress) in one of the flex container's *next* fragment. It's // because ComputeAvailableSizeForItems() always reserves at least 1px // available block-size for its children, and we consume all available // block-size and add it to // PerFragmentFlexData::mCumulativeContentBoxBSize even if we are not // laying out any child. FLEX_LOG( "[frag] Flex item %p needed to be pushed to container's " "next-in-flow due to position below available space's block-end", item.Frame()); pushedItems.Insert(item.Frame()); itemInPushedItems = true; } else if (item.NeedsFinalReflow(aReflowInput)) { // The available size must be in item's writing-mode. const WritingMode itemWM = item.GetWritingMode(); const auto availableSize = LogicalSize(flexWM, aAvailableSizeForItems.ISize(flexWM), availableBSizeForItem) .ConvertTo(itemWM, flexWM); const nsReflowStatus childReflowStatus = ReflowFlexItem(aAxisTracker, aReflowInput, item, framePos, availableSize, aContainerSize); const bool shouldPushItem = [&]() { if (availableBSizeForItem == NS_UNCONSTRAINEDSIZE) { // If the available block-size is unconstrained, then we're not // fragmenting and we don't want to push the item. return false; } if (framePos.B(flexWM) == containerContentBoxOrigin.B(flexWM)) { // The flex item is adjacent with block-start of the container's // content-box. Don't push it, or we'll trap in an infinite loop. return false; } if (item.Frame()->BSize() <= availableBSizeForItem) { return false; } if (aAxisTracker.IsColumnOriented() && item.Frame()->StyleDisplay()->mBreakBefore == StyleBreakBetween::Avoid) { return false; } return true; }(); if (shouldPushItem) { FLEX_LOG( "[frag] Flex item %p needed to be pushed to container's " "next-in-flow because its block-size is larger than the " "available space", item.Frame()); pushedItems.Insert(item.Frame()); itemInPushedItems = true; } else if (childReflowStatus.IsIncomplete()) { incompleteItems.Insert(item.Frame()); } else if (childReflowStatus.IsOverflowIncomplete()) { overflowIncompleteItems.Insert(item.Frame()); } } else { MoveFlexItemToFinalPosition(item, framePos, aContainerSize); } if (!itemInPushedItems) { const nscoord borderBoxBSize = item.Frame()->BSize(flexWM); const nscoord bEndEdgeAfterPerItemShift = framePos.B(flexWM) + borderBoxBSize; // The item (or a fragment thereof) was placed in this flex container // fragment. Update the max block-end edge with the item's block-end // edge. maxBlockEndEdgeOfChildren = std::max(maxBlockEndEdgeOfChildren, bEndEdgeAfterPerItemShift); if (frameBPosBeforePerItemShift) { // Make the block-end edge relative to flex container's border-box // because bEndEdgeAfterPerItemShift is relative to the border-box. const nscoord bEndEdgeBeforePerItemShift = containerContentBoxOrigin.B(flexWM) + *frameBPosBeforePerItemShift + borderBoxBSize; if (bAxisMetrics.mMaxBEndEdge) { auto& [before, after] = *bAxisMetrics.mMaxBEndEdge; before = std::max(before, bEndEdgeBeforePerItemShift); after = std::max(after, bEndEdgeAfterPerItemShift); } else { bAxisMetrics.mMaxBEndEdge.emplace(bEndEdgeBeforePerItemShift, bEndEdgeAfterPerItemShift); } } if (item.Frame()->GetPrevInFlow()) { // Items with a previous-continuation may experience some // fragmentation-imposed growth in their block-size; we compute that // here. const nscoord bSizeOfThisFragment = item.Frame()->ContentSize(flexWM).BSize(flexWM); const nscoord consumedBSize = FlexItemConsumedBSize(item); const nscoord unfragmentedBSize = item.BSize(); nscoord bSizeGrowthOfThisFragment = 0; if (consumedBSize >= unfragmentedBSize) { // The item's block-size has been grown to exceed the unfragmented // block-size in the previous fragments. bSizeGrowthOfThisFragment = bSizeOfThisFragment; } else if (consumedBSize + bSizeOfThisFragment >= unfragmentedBSize) { // The item's block-size just grows in the current fragment to // exceed the unfragmented block-size. bSizeGrowthOfThisFragment = consumedBSize + bSizeOfThisFragment - unfragmentedBSize; } if (aAxisTracker.IsRowOriented()) { if (&line == &startmostLine) { bAxisMetrics.mBEndEdgeShift = std::max( bAxisMetrics.mBEndEdgeShift, bSizeGrowthOfThisFragment); } } else { MOZ_ASSERT(aAxisTracker.IsColumnOriented()); if (isSingleLine) { if (&item == startmostItem) { MOZ_ASSERT(bAxisMetrics.mBEndEdgeShift == 0, "The item's frame is a continuation, so it " "shouldn't shift!"); bAxisMetrics.mBEndEdgeShift = bSizeGrowthOfThisFragment; } } else { // Bug 1806717: We need a more sophisticated solution for // multi-line column-oriented flex container when each line has a // different block-size growth value. For now, we don't deal with // them. } } } } // If the item has auto margins, and we were tracking the UsedMargin // property, set the property to the computed margin values. if (item.HasAnyAutoMargin()) { nsMargin* propValue = item.Frame()->GetProperty(nsIFrame::UsedMarginProperty()); if (propValue) { *propValue = item.PhysicalMargin(); } } } // Now we've finished processing all the items in the startmost line. // Determine the amount by which the startmost line's block-end edge has // shifted, so we can apply the same shift for the remaining lines. if (GetPrevInFlow() && aAxisTracker.IsRowOriented() && &line == &startmostLine && bAxisMetrics.mMaxBEndEdge) { auto& [before, after] = *bAxisMetrics.mMaxBEndEdge; bAxisMetrics.mBEndEdgeShift = std::max(bAxisMetrics.mBEndEdgeShift, after - before); } } if (!aFlr.mPlaceholders.IsEmpty()) { ReflowPlaceholders(aReflowInput, aFlr.mPlaceholders, containerContentBoxOrigin, aContainerSize); } nsReflowStatus childrenStatus; if (!pushedItems.IsEmpty() || !incompleteItems.IsEmpty()) { childrenStatus.SetIncomplete(); } else if (!overflowIncompleteItems.IsEmpty()) { childrenStatus.SetOverflowIncomplete(); } PushIncompleteChildren(pushedItems, incompleteItems, overflowIncompleteItems); // TODO: Try making this a fatal assertion after we fix bug 1751260. NS_ASSERTION(childrenStatus.IsFullyComplete() || aAvailableSizeForItems.BSize(flexWM) != NS_UNCONSTRAINEDSIZE, "We shouldn't have any incomplete children if the available " "block-size is unconstrained!"); if (!pushedItems.IsEmpty()) { AddStateBits(NS_STATE_FLEX_DID_PUSH_ITEMS); } if (GetPrevInFlow()) { aFragmentData.mCumulativeBEndEdgeShift += bAxisMetrics.mBEndEdgeShift; } return {maxBlockEndEdgeOfChildren, childrenStatus}; } void nsFlexContainerFrame::PopulateReflowOutput( ReflowOutput& aReflowOutput, const ReflowInput& aReflowInput, nsReflowStatus& aStatus, const LogicalSize& aContentBoxSize, const LogicalMargin& aBorderPadding, const nscoord aConsumedBSize, const bool aMayNeedNextInFlow, const nscoord aMaxBlockEndEdgeOfChildren, const nsReflowStatus& aChildrenStatus, const FlexboxAxisTracker& aAxisTracker, FlexLayoutResult& aFlr) { const WritingMode flexWM = aReflowInput.GetWritingMode(); // Compute flex container's desired size (in its own writing-mode). LogicalSize desiredSizeInFlexWM(flexWM); desiredSizeInFlexWM.ISize(flexWM) = aContentBoxSize.ISize(flexWM) + aBorderPadding.IStartEnd(flexWM); // Unconditionally skip adding block-end border and padding for now. We add it // lower down, after we've established baseline and decided whether bottom // border-padding fits (if we're fragmented). const nscoord effectiveContentBSizeWithBStartBP = aContentBoxSize.BSize(flexWM) - aConsumedBSize + aBorderPadding.BStart(flexWM); nscoord blockEndContainerBP = aBorderPadding.BEnd(flexWM); if (aMayNeedNextInFlow) { // We assume our status should be reported as incomplete because we may need // a next-in-flow. bool isStatusIncomplete = true; const nscoord availableBSizeMinusBEndBP = aReflowInput.AvailableBSize() - aBorderPadding.BEnd(flexWM); if (aMaxBlockEndEdgeOfChildren <= availableBSizeMinusBEndBP) { // Consume all the available block-size. desiredSizeInFlexWM.BSize(flexWM) = availableBSizeMinusBEndBP; } else { // This case happens if we have some tall unbreakable children exceeding // the available block-size. desiredSizeInFlexWM.BSize(flexWM) = std::min( effectiveContentBSizeWithBStartBP, aMaxBlockEndEdgeOfChildren); if ((aReflowInput.ComputedBSize() != NS_UNCONSTRAINEDSIZE || aChildrenStatus.IsFullyComplete()) && aMaxBlockEndEdgeOfChildren >= effectiveContentBSizeWithBStartBP) { // We have some tall unbreakable child that's sticking off the end of // our fragment, *and* forcing us to consume all of our remaining // content block-size and call ourselves complete. // // - If we have a definite block-size: we get here if the tall child // makes us reach that block-size. // - If we have a content-based block-size: we get here if the tall // child makes us reach the content-based block-size from a // theoretical unfragmented layout, *and* all our children are // complete. (Note that if we have some incomplete child, then we // instead prefer to return an incomplete status, so we can get a // next-in-flow to include that child's requested next-in-flow, in the // spirit of having a block-size that fits the content.) // // TODO: the auto-height case might need more subtlety; see bug 1828977. isStatusIncomplete = false; // We also potentially need to get the unskipped block-end border and // padding (if we assumed it'd be skipped as part of our tentative // assumption that we'd be incomplete). if (aReflowInput.mStyleBorder->mBoxDecorationBreak == StyleBoxDecorationBreak::Slice) { blockEndContainerBP = aReflowInput.ComputedLogicalBorderPadding(flexWM).BEnd(flexWM); } } } if (isStatusIncomplete) { aStatus.SetIncomplete(); } } else { // Our own effective content-box block-size can fit within the available // block-size. desiredSizeInFlexWM.BSize(flexWM) = effectiveContentBSizeWithBStartBP; } // Now, we account for how the block-end border and padding (if any) impacts // our desired size. If adding it pushes us over the available block-size, // then we become incomplete (unless we already weren't asking for any // block-size, in which case we stay complete to avoid looping forever). // // NOTE: If we have auto block-size, we allow our block-end border and padding // to push us over the available block-size without requesting a continuation, // for consistency with the behavior of "display:block" elements. const nscoord effectiveContentBSizeWithBStartEndBP = desiredSizeInFlexWM.BSize(flexWM) + blockEndContainerBP; if (aReflowInput.AvailableBSize() != NS_UNCONSTRAINEDSIZE && effectiveContentBSizeWithBStartEndBP > aReflowInput.AvailableBSize() && desiredSizeInFlexWM.BSize(flexWM) != 0 && aReflowInput.ComputedBSize() != NS_UNCONSTRAINEDSIZE) { // We couldn't fit with the block-end border and padding included, so we'll // need a continuation. aStatus.SetIncomplete(); if (aReflowInput.mStyleBorder->mBoxDecorationBreak == StyleBoxDecorationBreak::Slice) { blockEndContainerBP = 0; } } // The variable "blockEndContainerBP" now accurately reflects how much (if // any) block-end border and padding we want for this frame, so we can proceed // to add it in. desiredSizeInFlexWM.BSize(flexWM) += blockEndContainerBP; if (aStatus.IsComplete() && !aChildrenStatus.IsFullyComplete()) { aStatus.SetOverflowIncomplete(); aStatus.SetNextInFlowNeedsReflow(); } // If we are the first-in-flow and not fully complete (either our block-size // or any of our flex items cannot fit in the available block-size), and the // style requires us to avoid breaking inside, set the status to prompt our // parent to push us to the next page/column. if (!GetPrevInFlow() && !aStatus.IsFullyComplete() && ShouldAvoidBreakInside(aReflowInput)) { aStatus.SetInlineLineBreakBeforeAndReset(); return; } // If we haven't established a baseline for the container yet, i.e. if we // don't have any flex item in the startmost flex line that participates in // baseline alignment, then use the startmost flex item to derive the // container's baseline. if (const FlexLine& line = StartmostLine(aFlr.mLines, aAxisTracker); aFlr.mAscent == nscoord_MIN && !line.IsEmpty()) { const FlexItem& item = line.StartmostItem(aAxisTracker); aFlr.mAscent = item.Frame() ->GetLogicalPosition( flexWM, desiredSizeInFlexWM.GetPhysicalSize(flexWM)) .B(flexWM) + item.ResolvedAscent(true); } // Likewise, if we don't have any flex item in the endmost flex line that // participates in last baseline alignment, then use the endmost flex item to // derived the container's last baseline. if (const FlexLine& line = EndmostLine(aFlr.mLines, aAxisTracker); aFlr.mAscentForLast == nscoord_MIN && !line.IsEmpty()) { const FlexItem& item = line.EndmostItem(aAxisTracker); const nscoord lastAscent = item.Frame() ->GetLogicalPosition(flexWM, desiredSizeInFlexWM.GetPhysicalSize(flexWM)) .B(flexWM) + item.ResolvedAscent(false); aFlr.mAscentForLast = desiredSizeInFlexWM.BSize(flexWM) - lastAscent; } if (aFlr.mAscent == nscoord_MIN) { // Still don't have our baseline set -- this happens if we have no // children, if our children are huge enough that they have nscoord_MIN // as their baseline, or our content is hidden in which case, we'll use the // wrong baseline (but no big deal). NS_WARNING_ASSERTION( HidesContentForLayout() || aFlr.mLines[0].IsEmpty(), "Have flex items but didn't get an ascent - that's odd (or there are " "just gigantic sizes involved)"); // Per spec, synthesize baseline from the flex container's content box // (i.e. use block-end side of content-box) // XXXdholbert This only makes sense if parent's writing mode is // horizontal (& even then, really we should be using the BSize in terms // of the parent's writing mode, not ours). Clean up in bug 1155322. aFlr.mAscent = effectiveContentBSizeWithBStartBP; } if (aFlr.mAscentForLast == nscoord_MIN) { // Still don't have our last baseline set -- this happens if we have no // children, if our children are huge enough that they have nscoord_MIN // as their baseline, or our content is hidden in which case, we'll use the // wrong baseline (but no big deal). NS_WARNING_ASSERTION( HidesContentForLayout() || aFlr.mLines[0].IsEmpty(), "Have flex items but didn't get an ascent - that's odd (or there are " "just gigantic sizes involved)"); // Per spec, synthesize baseline from the flex container's content box // (i.e. use block-end side of content-box) // XXXdholbert This only makes sense if parent's writing mode is // horizontal (& even then, really we should be using the BSize in terms // of the parent's writing mode, not ours). Clean up in bug 1155322. aFlr.mAscentForLast = blockEndContainerBP; } if (HasAnyStateBits(NS_STATE_FLEX_SYNTHESIZE_BASELINE)) { // This will force our parent to call GetLogicalBaseline, which will // synthesize a margin-box baseline. aReflowOutput.SetBlockStartAscent(ReflowOutput::ASK_FOR_BASELINE); } else { // XXXdholbert aFlr.mAscent needs to be in terms of our parent's // writing-mode here. See bug 1155322. aReflowOutput.SetBlockStartAscent(aFlr.mAscent); } // Cache the container baselines so that our parent can baseline-align us. mFirstBaseline = aFlr.mAscent; mLastBaseline = aFlr.mAscentForLast; // Convert flex container's final desired size to parent's WM, for outparam. aReflowOutput.SetSize(flexWM, desiredSizeInFlexWM); } void nsFlexContainerFrame::MoveFlexItemToFinalPosition( const FlexItem& aItem, const LogicalPoint& aFramePos, const nsSize& aContainerSize) { const WritingMode outerWM = aItem.ContainingBlockWM(); const nsStyleDisplay* display = aItem.Frame()->StyleDisplay(); LogicalPoint pos(aFramePos); if (display->IsRelativelyOrStickyPositionedStyle()) { // If the item is relatively positioned, look up its offsets (cached from // previous reflow). A sticky positioned item can pass a dummy // logicalOffsets into ApplyRelativePositioning(). LogicalMargin logicalOffsets(outerWM); if (display->IsRelativelyPositionedStyle()) { nsMargin* cachedOffsets = aItem.Frame()->GetProperty(nsIFrame::ComputedOffsetProperty()); MOZ_ASSERT( cachedOffsets, "relpos previously-reflowed frame should've cached its offsets"); logicalOffsets = LogicalMargin(outerWM, *cachedOffsets); } ReflowInput::ApplyRelativePositioning(aItem.Frame(), outerWM, logicalOffsets, &pos, aContainerSize); } FLEX_LOG("Moving flex item %p to its desired position %s", aItem.Frame(), ToString(pos).c_str()); aItem.Frame()->SetPosition(outerWM, pos, aContainerSize); PositionFrameView(aItem.Frame()); PositionChildViews(aItem.Frame()); } nsReflowStatus nsFlexContainerFrame::ReflowFlexItem( const FlexboxAxisTracker& aAxisTracker, const ReflowInput& aReflowInput, const FlexItem& aItem, const LogicalPoint& aFramePos, const LogicalSize& aAvailableSize, const nsSize& aContainerSize) { FLEX_LOG("Doing final reflow for flex item %p", aItem.Frame()); // Returns true if we should use 'auto' in block axis's StyleSizeOverrides to // allow fragmentation-imposed block-size growth. auto ComputeBSizeOverrideWithAuto = [&]() { if (!aReflowInput.IsInFragmentedContext()) { return false; } if (aItem.Frame()->IsReplaced()) { // Disallow fragmentation-imposed block-size growth for replaced elements // since they are monolithic, and cannot be fragmented. return false; } if (aItem.HasAspectRatio()) { // Aspect-ratio's automatic content-based minimum size doesn't work // properly in a fragmented context (Bug 1868284) when we use 'auto' // block-size to apply the fragmentation-imposed block-size growth. // Disable it for now so that items with aspect-ratios can still use their // known block-sizes (from flex layout algorithm) in final reflow. return false; } if (aItem.IsBlockAxisMainAxis()) { if (aItem.IsFlexBaseSizeContentBSize()) { // The flex item resolved its indefinite flex-basis to the content // block-size. if (aItem.IsMainMinSizeContentBSize()) { // The item's flex base size and main min-size are both content // block-size. We interpret this content-based block-size as // permission to apply fragmentation-imposed block-size growth. return true; } if (aReflowInput.ComputedBSize() == NS_UNCONSTRAINEDSIZE) { // The flex container has an indefinite block-size. We allow the // item's to apply fragmentation-imposed block-size growth. return true; } } return false; } MOZ_ASSERT(aItem.IsBlockAxisCrossAxis()); MOZ_ASSERT(aItem.IsStretched(), "No need to override block-size with 'auto' if the item is not " "stretched in the cross axis!"); Maybe<nscoord> measuredBSize = aItem.MeasuredBSize(); if (measuredBSize && aItem.CrossSize() == *measuredBSize) { // The item has a measured content-based block-size due to having an // indefinite cross-size. If its cross-size is equal to the content-based // block-size, then it is the tallest item that established the cross-size // of the flex line. We allow it apply fragmentation-imposed block-size // growth. // // Note: We only allow the tallest item to grow because it is likely to // have the most impact on the overall flex container block-size growth. // This is not a perfect solution since other shorter items in the same // line might also have fragmentation-imposed block-size growth, but // currently there is no reliable way to detect whether they will outgrow // the tallest item. return true; } return false; }; StyleSizeOverrides sizeOverrides; bool overrideBSizeWithAuto = false; // Override flex item's main size. if (aItem.IsInlineAxisMainAxis()) { sizeOverrides.mStyleISize.emplace(aItem.StyleMainSize()); FLEX_LOGV(" Main size (inline-size) override: %d", aItem.MainSize()); } else { overrideBSizeWithAuto = ComputeBSizeOverrideWithAuto(); if (overrideBSizeWithAuto) { sizeOverrides.mStyleBSize.emplace(StyleSize::Auto()); FLEX_LOGV(" Main size (block-size) override: Auto"); } else { sizeOverrides.mStyleBSize.emplace(aItem.StyleMainSize()); FLEX_LOGV(" Main size (block-size) override: %d", aItem.MainSize()); } } // Override flex item's cross size if it was stretched in the cross axis (in // which case we're imposing a cross size). if (aItem.IsStretched()) { if (aItem.IsInlineAxisCrossAxis()) { sizeOverrides.mStyleISize.emplace(aItem.StyleCrossSize()); FLEX_LOGV(" Cross size (inline-size) override: %d", aItem.CrossSize()); } else { overrideBSizeWithAuto = ComputeBSizeOverrideWithAuto(); if (overrideBSizeWithAuto) { sizeOverrides.mStyleBSize.emplace(StyleSize::Auto()); FLEX_LOGV(" Cross size (block-size) override: Auto"); } else { sizeOverrides.mStyleBSize.emplace(aItem.StyleCrossSize()); FLEX_LOGV(" Cross size (block-size) override: %d", aItem.CrossSize()); } } } if (sizeOverrides.mStyleBSize) { // We are overriding the block-size. For robustness, we always assume that // this represents a block-axis resize for the frame. This may be // conservative, but we do capture all the conditions in the block-axis // (checked in NeedsFinalReflow()) that make this item require a final // reflow. This sets relevant flags in ReflowInput::InitResizeFlags(). aItem.Frame()->SetHasBSizeChange(true); } ReflowInput childReflowInput(PresContext(), aReflowInput, aItem.Frame(), aAvailableSize, Nothing(), {}, sizeOverrides, {ComputeSizeFlag::ShrinkWrap}); if (overrideBSizeWithAuto) { // If we use 'auto' to override the item's block-size, set the item's // original block-size to min-size as a lower bound. childReflowInput.SetComputedMinBSize(aItem.BSize()); // Set the item's block-size as the percentage basis so that its children // can resolve percentage sizes correctly. childReflowInput.SetPercentageBasisInBlockAxis(aItem.BSize()); } if (aItem.TreatBSizeAsIndefinite() && aItem.IsBlockAxisMainAxis()) { childReflowInput.mFlags.mTreatBSizeAsIndefinite = true; } if (aItem.IsStretched() && aItem.IsBlockAxisCrossAxis()) { // This item is stretched (in the cross axis), and that axis is its block // axis. That stretching effectively gives it a relative BSize. // XXXdholbert This flag only makes a difference if we use the flex items' // frame-state when deciding whether to reflow them -- and we don't, as of // the changes in bug 851607. So this has no effect right now, but it might // make a difference if we optimize to use dirty bits in the // future. (Reftests flexbox-resizeviewport-1.xhtml and -2.xhtml are // intended to catch any regressions here, if we end up relying on this bit // & neglecting to set it.) aItem.Frame()->AddStateBits(NS_FRAME_CONTAINS_RELATIVE_BSIZE); } // NOTE: Be very careful about doing anything else with childReflowInput // after this point, because some of its methods (e.g. SetComputedWidth) // internally call InitResizeFlags and stomp on mVResize & mHResize. FLEX_LOG("Reflowing flex item %p at its desired position %s", aItem.Frame(), ToString(aFramePos).c_str()); // CachedFlexItemData is stored in item's writing mode, so we pass // aChildReflowInput into ReflowOutput's constructor. ReflowOutput childReflowOutput(childReflowInput); nsReflowStatus childReflowStatus; WritingMode outerWM = aReflowInput.GetWritingMode(); ReflowChild(aItem.Frame(), PresContext(), childReflowOutput, childReflowInput, outerWM, aFramePos, aContainerSize, ReflowChildFlags::Default, childReflowStatus); // XXXdholbert Perhaps we should call CheckForInterrupt here; see bug 1495532. FinishReflowChild(aItem.Frame(), PresContext(), childReflowOutput, &childReflowInput, outerWM, aFramePos, aContainerSize, ReflowChildFlags::ApplyRelativePositioning); aItem.SetAscent(childReflowOutput.BlockStartAscent()); // Update our cached flex item info: if (auto* cached = aItem.Frame()->GetProperty(CachedFlexItemData::Prop())) { cached->Update(childReflowInput, childReflowOutput, FlexItemReflowType::Final); } else { cached = new CachedFlexItemData(childReflowInput, childReflowOutput, FlexItemReflowType::Final); aItem.Frame()->SetProperty(CachedFlexItemData::Prop(), cached); } return childReflowStatus; } void nsFlexContainerFrame::ReflowPlaceholders( const ReflowInput& aReflowInput, nsTArray<nsIFrame*>& aPlaceholders, const LogicalPoint& aContentBoxOrigin, const nsSize& aContainerSize) { WritingMode outerWM = aReflowInput.GetWritingMode(); // As noted in this method's documentation, we'll reflow every entry in // |aPlaceholders| at the container's content-box origin. for (nsIFrame* placeholder : aPlaceholders) { MOZ_ASSERT(placeholder->IsPlaceholderFrame(), "placeholders array should only contain placeholder frames"); WritingMode wm = placeholder->GetWritingMode(); LogicalSize availSize = aReflowInput.ComputedSize(wm); ReflowInput childReflowInput(PresContext(), aReflowInput, placeholder, availSize); // No need to set the -webkit-line-clamp related flags when reflowing // a placeholder. ReflowOutput childReflowOutput(outerWM); nsReflowStatus childReflowStatus; ReflowChild(placeholder, PresContext(), childReflowOutput, childReflowInput, outerWM, aContentBoxOrigin, aContainerSize, ReflowChildFlags::Default, childReflowStatus); FinishReflowChild(placeholder, PresContext(), childReflowOutput, &childReflowInput, outerWM, aContentBoxOrigin, aContainerSize, ReflowChildFlags::Default); // Mark the placeholder frame to indicate that it's not actually at the // element's static position, because we need to apply CSS Alignment after // we determine the OOF's size: placeholder->AddStateBits(PLACEHOLDER_STATICPOS_NEEDS_CSSALIGN); } } nscoord nsFlexContainerFrame::IntrinsicISize(gfxContext* aRenderingContext, IntrinsicISizeType aType) { nscoord containerISize = 0; const nsStylePosition* stylePos = StylePosition(); const FlexboxAxisTracker axisTracker(this); nscoord mainGapSize; if (axisTracker.IsRowOriented()) { mainGapSize = nsLayoutUtils::ResolveGapToLength(stylePos->mColumnGap, NS_UNCONSTRAINEDSIZE); } else { mainGapSize = nsLayoutUtils::ResolveGapToLength(stylePos->mRowGap, NS_UNCONSTRAINEDSIZE); } const bool useMozBoxCollapseBehavior = StyleVisibility()->UseLegacyCollapseBehavior(); // The loop below sets aside space for a gap before each item besides the // first. This bool helps us handle that special-case. bool onFirstChild = true; for (nsIFrame* childFrame : mFrames) { // Skip out-of-flow children because they don't participate in flex layout. if (childFrame->IsPlaceholderFrame()) { continue; } if (useMozBoxCollapseBehavior && childFrame->StyleVisibility()->IsCollapse()) { // If we're using legacy "visibility:collapse" behavior, then we don't // care about the sizes of any collapsed children. continue; } nscoord childISize = nsLayoutUtils::IntrinsicForContainer( aRenderingContext, childFrame, aType); // * For a row-oriented single-line flex container, the intrinsic // {min/pref}-isize is the sum of its items' {min/pref}-isizes and // (n-1) column gaps. // * For a column-oriented flex container, the intrinsic min isize // is the max of its items' min isizes. // * For a row-oriented multi-line flex container, the intrinsic // pref isize is former (sum), and its min isize is the latter (max). bool isSingleLine = (StyleFlexWrap::Nowrap == stylePos->mFlexWrap); if (axisTracker.IsRowOriented() && (isSingleLine || aType == IntrinsicISizeType::PrefISize)) { containerISize += childISize; if (!onFirstChild) { containerISize += mainGapSize; } onFirstChild = false; } else { // (col-oriented, or MinISize for multi-line row flex container) containerISize = std::max(containerISize, childISize); } } return containerISize; } /* virtual */ nscoord nsFlexContainerFrame::GetMinISize(gfxContext* aRenderingContext) { DISPLAY_MIN_INLINE_SIZE(this, mCachedMinISize); if (mCachedMinISize == NS_INTRINSIC_ISIZE_UNKNOWN) { if (Maybe<nscoord> containISize = ContainIntrinsicISize()) { mCachedMinISize = *containISize; } else { mCachedMinISize = IntrinsicISize(aRenderingContext, IntrinsicISizeType::MinISize); } } return mCachedMinISize; } /* virtual */ nscoord nsFlexContainerFrame::GetPrefISize(gfxContext* aRenderingContext) { DISPLAY_PREF_INLINE_SIZE(this, mCachedPrefISize); if (mCachedPrefISize == NS_INTRINSIC_ISIZE_UNKNOWN) { if (Maybe<nscoord> containISize = ContainIntrinsicISize()) { mCachedPrefISize = *containISize; } else { mCachedPrefISize = IntrinsicISize(aRenderingContext, IntrinsicISizeType::PrefISize); } } return mCachedPrefISize; } int32_t nsFlexContainerFrame::GetNumLines() const { // TODO(emilio, bug 1793251): Treating all row oriented frames as single-lines // might not be great for flex-wrap'd containers, consider trying to do // better? We probably would need to persist more stuff than we do after // layout. return FlexboxAxisInfo(this).mIsRowOriented ? 1 : mFrames.GetLength(); } bool nsFlexContainerFrame::IsLineIteratorFlowRTL() { FlexboxAxisInfo info(this); if (info.mIsRowOriented) { const bool isRtl = StyleVisibility()->mDirection == StyleDirection::Rtl; return info.mIsMainAxisReversed != isRtl; } return false; } Result<nsILineIterator::LineInfo, nsresult> nsFlexContainerFrame::GetLine( int32_t aLineNumber) { if (aLineNumber < 0 || aLineNumber >= GetNumLines()) { return Err(NS_ERROR_FAILURE); } FlexboxAxisInfo info(this); LineInfo lineInfo; if (info.mIsRowOriented) { lineInfo.mLineBounds = GetRect(); lineInfo.mFirstFrameOnLine = mFrames.FirstChild(); // This isn't quite ideal for multi-line row flexbox, see bug 1793251. lineInfo.mNumFramesOnLine = mFrames.GetLength(); } else { // TODO(emilio, bug 1793322): Deal with column-reverse (mIsMainAxisReversed) nsIFrame* f = mFrames.FrameAt(aLineNumber); lineInfo.mLineBounds = f->GetRect(); lineInfo.mFirstFrameOnLine = f; lineInfo.mNumFramesOnLine = 1; } return lineInfo; } int32_t nsFlexContainerFrame::FindLineContaining(nsIFrame* aFrame, int32_t aStartLine) { const int32_t index = mFrames.IndexOf(aFrame); if (index < 0) { return -1; } const FlexboxAxisInfo info(this); if (info.mIsRowOriented) { return 0; } if (index < aStartLine) { return -1; } return index; } NS_IMETHODIMP nsFlexContainerFrame::CheckLineOrder(int32_t aLine, bool* aIsReordered, nsIFrame** aFirstVisual, nsIFrame** aLastVisual) { *aIsReordered = false; *aFirstVisual = nullptr; *aLastVisual = nullptr; return NS_OK; } NS_IMETHODIMP nsFlexContainerFrame::FindFrameAt(int32_t aLineNumber, nsPoint aPos, nsIFrame** aFrameFound, bool* aPosIsBeforeFirstFrame, bool* aPosIsAfterLastFrame) { const auto wm = GetWritingMode(); const LogicalPoint pos(wm, aPos, GetSize()); const FlexboxAxisInfo info(this); *aFrameFound = nullptr; *aPosIsBeforeFirstFrame = true; *aPosIsAfterLastFrame = false; if (!info.mIsRowOriented) { nsIFrame* f = mFrames.FrameAt(aLineNumber); if (!f) { return NS_OK; } auto rect = f->GetLogicalRect(wm, GetSize()); *aFrameFound = f; *aPosIsBeforeFirstFrame = pos.I(wm) < rect.IStart(wm); *aPosIsAfterLastFrame = pos.I(wm) > rect.IEnd(wm); return NS_OK; } LineFrameFinder finder(aPos, GetSize(), GetWritingMode(), IsLineIteratorFlowRTL()); for (nsIFrame* f : mFrames) { finder.Scan(f); if (finder.IsDone()) { break; } } finder.Finish(aFrameFound, aPosIsBeforeFirstFrame, aPosIsAfterLastFrame); return NS_OK; }