/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim: set ts=8 sts=2 et sw=2 tw=80: */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "DisplayItemClip.h" #include "gfxContext.h" #include "gfxUtils.h" #include "mozilla/gfx/2D.h" #include "mozilla/gfx/PathHelpers.h" #include "mozilla/layers/StackingContextHelper.h" #include "mozilla/StaticPtr.h" #include "mozilla/webrender/WebRenderTypes.h" #include "nsPresContext.h" #include "nsCSSRendering.h" #include "nsLayoutUtils.h" #include "nsRegion.h" using namespace mozilla::gfx; namespace mozilla { void DisplayItemClip::SetTo(const nsRect& aRect) { SetTo(aRect, nullptr); } void DisplayItemClip::SetTo(const nsRect& aRect, const nscoord* aRadii) { mHaveClipRect = true; mClipRect = aRect; if (aRadii) { mRoundedClipRects.SetLength(1); mRoundedClipRects[0].mRect = aRect; memcpy(mRoundedClipRects[0].mRadii, aRadii, sizeof(nscoord) * 8); } else { mRoundedClipRects.Clear(); } } void DisplayItemClip::SetTo(const nsRect& aRect, const nsRect& aRoundedRect, const nscoord* aRadii) { mHaveClipRect = true; mClipRect = aRect; mRoundedClipRects.SetLength(1); mRoundedClipRects[0].mRect = aRoundedRect; memcpy(mRoundedClipRects[0].mRadii, aRadii, sizeof(nscoord) * 8); } bool DisplayItemClip::MayIntersect(const nsRect& aRect) const { if (!mHaveClipRect) { return !aRect.IsEmpty(); } nsRect r = aRect.Intersect(mClipRect); if (r.IsEmpty()) { return false; } for (uint32_t i = 0; i < mRoundedClipRects.Length(); ++i) { const RoundedRect& rr = mRoundedClipRects[i]; if (!nsLayoutUtils::RoundedRectIntersectsRect(rr.mRect, rr.mRadii, r)) { return false; } } return true; } void DisplayItemClip::IntersectWith(const DisplayItemClip& aOther) { if (!aOther.mHaveClipRect) { return; } if (!mHaveClipRect) { *this = aOther; return; } if (!mClipRect.IntersectRect(mClipRect, aOther.mClipRect)) { mRoundedClipRects.Clear(); return; } mRoundedClipRects.AppendElements(aOther.mRoundedClipRects); } void DisplayItemClip::ApplyTo(gfxContext* aContext, int32_t A2D) const { ApplyRectTo(aContext, A2D); ApplyRoundedRectClipsTo(aContext, A2D, 0, mRoundedClipRects.Length()); } void DisplayItemClip::ApplyRectTo(gfxContext* aContext, int32_t A2D) const { aContext->NewPath(); gfxRect clip = nsLayoutUtils::RectToGfxRect(mClipRect, A2D); aContext->SnappedRectangle(clip); aContext->Clip(); } void DisplayItemClip::ApplyRoundedRectClipsTo(gfxContext* aContext, int32_t A2D, uint32_t aBegin, uint32_t aEnd) const { DrawTarget& aDrawTarget = *aContext->GetDrawTarget(); aEnd = std::min(aEnd, mRoundedClipRects.Length()); for (uint32_t i = aBegin; i < aEnd; ++i) { RefPtr roundedRect = MakeRoundedRectPath(aDrawTarget, A2D, mRoundedClipRects[i]); aContext->Clip(roundedRect); } } void DisplayItemClip::FillIntersectionOfRoundedRectClips( gfxContext* aContext, const DeviceColor& aColor, int32_t aAppUnitsPerDevPixel) const { DrawTarget& aDrawTarget = *aContext->GetDrawTarget(); uint32_t end = mRoundedClipRects.Length(); if (!end) { return; } // Push clips for any rects that come BEFORE the rect at |aEnd - 1|, if any: ApplyRoundedRectClipsTo(aContext, aAppUnitsPerDevPixel, 0, end - 1); // Now fill the rect at |aEnd - 1|: RefPtr roundedRect = MakeRoundedRectPath( aDrawTarget, aAppUnitsPerDevPixel, mRoundedClipRects[end - 1]); aDrawTarget.Fill(roundedRect, ColorPattern(aColor)); // Finally, pop any clips that we may have pushed: for (uint32_t i = 0; i < end - 1; ++i) { aContext->PopClip(); } } already_AddRefed DisplayItemClip::MakeRoundedRectPath( DrawTarget& aDrawTarget, int32_t A2D, const RoundedRect& aRoundRect) const { RectCornerRadii pixelRadii; nsCSSRendering::ComputePixelRadii(aRoundRect.mRadii, A2D, &pixelRadii); Rect rect = NSRectToSnappedRect(aRoundRect.mRect, A2D, aDrawTarget); return MakePathForRoundedRect(aDrawTarget, rect, pixelRadii); } nsRect DisplayItemClip::ApproximateIntersectInward(const nsRect& aRect) const { nsRect r = aRect; if (mHaveClipRect) { r.IntersectRect(r, mClipRect); } for (uint32_t i = 0, iEnd = mRoundedClipRects.Length(); i < iEnd; ++i) { const RoundedRect& rr = mRoundedClipRects[i]; nsRegion rgn = nsLayoutUtils::RoundedRectIntersectRect(rr.mRect, rr.mRadii, r); r = rgn.GetLargestRectangle(); } return r; } // Test if (aXPoint, aYPoint) is in the ellipse with center (aXCenter, aYCenter) // and radii aXRadius, aYRadius. static bool IsInsideEllipse(nscoord aXRadius, nscoord aXCenter, nscoord aXPoint, nscoord aYRadius, nscoord aYCenter, nscoord aYPoint) { float scaledX = float(aXPoint - aXCenter) / float(aXRadius); float scaledY = float(aYPoint - aYCenter) / float(aYRadius); return scaledX * scaledX + scaledY * scaledY < 1.0f; } bool DisplayItemClip::IsRectClippedByRoundedCorner(const nsRect& aRect) const { if (mRoundedClipRects.IsEmpty()) return false; nsRect rect; rect.IntersectRect(aRect, NonRoundedIntersection()); for (uint32_t i = 0, iEnd = mRoundedClipRects.Length(); i < iEnd; ++i) { const RoundedRect& rr = mRoundedClipRects[i]; // top left if (rect.x < rr.mRect.x + rr.mRadii[eCornerTopLeftX] && rect.y < rr.mRect.y + rr.mRadii[eCornerTopLeftY]) { if (!IsInsideEllipse(rr.mRadii[eCornerTopLeftX], rr.mRect.x + rr.mRadii[eCornerTopLeftX], rect.x, rr.mRadii[eCornerTopLeftY], rr.mRect.y + rr.mRadii[eCornerTopLeftY], rect.y)) { return true; } } // top right if (rect.XMost() > rr.mRect.XMost() - rr.mRadii[eCornerTopRightX] && rect.y < rr.mRect.y + rr.mRadii[eCornerTopRightY]) { if (!IsInsideEllipse(rr.mRadii[eCornerTopRightX], rr.mRect.XMost() - rr.mRadii[eCornerTopRightX], rect.XMost(), rr.mRadii[eCornerTopRightY], rr.mRect.y + rr.mRadii[eCornerTopRightY], rect.y)) { return true; } } // bottom left if (rect.x < rr.mRect.x + rr.mRadii[eCornerBottomLeftX] && rect.YMost() > rr.mRect.YMost() - rr.mRadii[eCornerBottomLeftY]) { if (!IsInsideEllipse(rr.mRadii[eCornerBottomLeftX], rr.mRect.x + rr.mRadii[eCornerBottomLeftX], rect.x, rr.mRadii[eCornerBottomLeftY], rr.mRect.YMost() - rr.mRadii[eCornerBottomLeftY], rect.YMost())) { return true; } } // bottom right if (rect.XMost() > rr.mRect.XMost() - rr.mRadii[eCornerBottomRightX] && rect.YMost() > rr.mRect.YMost() - rr.mRadii[eCornerBottomRightY]) { if (!IsInsideEllipse(rr.mRadii[eCornerBottomRightX], rr.mRect.XMost() - rr.mRadii[eCornerBottomRightX], rect.XMost(), rr.mRadii[eCornerBottomRightY], rr.mRect.YMost() - rr.mRadii[eCornerBottomRightY], rect.YMost())) { return true; } } } return false; } nsRect DisplayItemClip::NonRoundedIntersection() const { NS_ASSERTION(mHaveClipRect, "Must have a clip rect!"); nsRect result = mClipRect; for (uint32_t i = 0, iEnd = mRoundedClipRects.Length(); i < iEnd; ++i) { result.IntersectRect(result, mRoundedClipRects[i].mRect); } return result; } bool DisplayItemClip::IsRectAffectedByClip(const nsRect& aRect) const { if (mHaveClipRect && !mClipRect.Contains(aRect)) { return true; } for (uint32_t i = 0, iEnd = mRoundedClipRects.Length(); i < iEnd; ++i) { const RoundedRect& rr = mRoundedClipRects[i]; nsRegion rgn = nsLayoutUtils::RoundedRectIntersectRect(rr.mRect, rr.mRadii, aRect); if (!rgn.Contains(aRect)) { return true; } } return false; } bool DisplayItemClip::IsRectAffectedByClip(const nsIntRect& aRect, float aXScale, float aYScale, int32_t A2D) const { if (mHaveClipRect) { nsIntRect pixelClipRect = mClipRect.ScaleToNearestPixels(aXScale, aYScale, A2D); if (!pixelClipRect.Contains(aRect)) { return true; } } // Rounded rect clipping only snaps to user-space pixels, not device space. nsIntRect unscaled = aRect; unscaled.Scale(1 / aXScale, 1 / aYScale); for (uint32_t i = 0, iEnd = mRoundedClipRects.Length(); i < iEnd; ++i) { const RoundedRect& rr = mRoundedClipRects[i]; nsIntRect pixelRect = rr.mRect.ToNearestPixels(A2D); RectCornerRadii pixelRadii; nsCSSRendering::ComputePixelRadii(rr.mRadii, A2D, &pixelRadii); nsIntRegion rgn = nsLayoutUtils::RoundedRectIntersectIntRect( pixelRect, pixelRadii, unscaled); if (!rgn.Contains(unscaled)) { return true; } } return false; } nsRect DisplayItemClip::ApplyNonRoundedIntersection(const nsRect& aRect) const { if (!mHaveClipRect) { return aRect; } nsRect result = aRect.Intersect(mClipRect); for (uint32_t i = 0, iEnd = mRoundedClipRects.Length(); i < iEnd; ++i) { result = result.Intersect(mRoundedClipRects[i].mRect); } return result; } void DisplayItemClip::RemoveRoundedCorners() { if (mRoundedClipRects.IsEmpty()) return; mClipRect = NonRoundedIntersection(); mRoundedClipRects.Clear(); } // Computes the difference between aR1 and aR2, limited to aBounds. static void AccumulateRectDifference(const nsRect& aR1, const nsRect& aR2, const nsRect& aBounds, nsRegion* aOut) { if (aR1.IsEqualInterior(aR2)) return; nsRegion r; r.Xor(aR1, aR2); r.And(r, aBounds); aOut->Or(*aOut, r); } static void AccumulateRoundedRectDifference( const DisplayItemClip::RoundedRect& aR1, const DisplayItemClip::RoundedRect& aR2, const nsRect& aBounds, const nsRect& aOtherBounds, nsRegion* aOut) { const nsRect& rect1 = aR1.mRect; const nsRect& rect2 = aR2.mRect; // If the two rectangles are totally disjoint, just add them both - otherwise // we'd end up adding one big enclosing rect if (!rect1.Intersects(rect2) || memcmp(aR1.mRadii, aR2.mRadii, sizeof(aR1.mRadii))) { aOut->Or(*aOut, rect1.Intersect(aBounds)); aOut->Or(*aOut, rect2.Intersect(aOtherBounds)); return; } nscoord lowestBottom = std::max(rect1.YMost(), rect2.YMost()); nscoord highestTop = std::min(rect1.Y(), rect2.Y()); nscoord maxRight = std::max(rect1.XMost(), rect2.XMost()); nscoord minLeft = std::min(rect1.X(), rect2.X()); // At this point, we know that the radii haven't changed, and that the bounds // are different in some way. To explain how this works, consider the case // where the rounded rect has just been translated along the X direction. // | ______________________ _ _ _ _ _ _ | // | / / \ \ | // | | | | // | | aR1 | | aR2 | | // | | | | // | \ __________\___________ / _ _ _ _ _ / | // | | // The invalidation region will be as if we lopped off the left rounded part // of aR2, and the right rounded part of aR1, and XOR'd them: // | ______________________ _ _ _ _ _ _ | // | -/-----------/- -\-----------\- | // | |-------------- --|------------ | // | |-----aR1---|-- --|-----aR2---| | // | |-------------- --|------------ | // | -\ __________\-__________-/ _ _ _ _ _ /- | // | | // The logic below just implements this idea, but generalized to both the // X and Y dimensions. The "(...)Adjusted(...)" values represent the lopped // off sides. nscoord highestAdjustedBottom = std::min( rect1.YMost() - aR1.mRadii[eCornerBottomLeftY], std::min(rect1.YMost() - aR1.mRadii[eCornerBottomRightY], std::min(rect2.YMost() - aR2.mRadii[eCornerBottomLeftY], rect2.YMost() - aR2.mRadii[eCornerBottomRightY]))); nscoord lowestAdjustedTop = std::max(rect1.Y() + aR1.mRadii[eCornerTopLeftY], std::max(rect1.Y() + aR1.mRadii[eCornerTopRightY], std::max(rect2.Y() + aR2.mRadii[eCornerTopLeftY], rect2.Y() + aR2.mRadii[eCornerTopRightY]))); nscoord minAdjustedRight = std::min( rect1.XMost() - aR1.mRadii[eCornerTopRightX], std::min(rect1.XMost() - aR1.mRadii[eCornerBottomRightX], std::min(rect2.XMost() - aR2.mRadii[eCornerTopRightX], rect2.XMost() - aR2.mRadii[eCornerBottomRightX]))); nscoord maxAdjustedLeft = std::max(rect1.X() + aR1.mRadii[eCornerTopLeftX], std::max(rect1.X() + aR1.mRadii[eCornerBottomLeftX], std::max(rect2.X() + aR2.mRadii[eCornerTopLeftX], rect2.X() + aR2.mRadii[eCornerBottomLeftX]))); // We only want to add an invalidation rect if the bounds have changed. If we // always added all of the 4 rects below, we would always be invalidating a // border around the rects, even in cases where we just translated along the X // or Y axis. nsRegion r; // First, or with the Y delta rects, wide along the X axis if (rect1.Y() != rect2.Y()) { r.Or(r, nsRect(minLeft, highestTop, maxRight - minLeft, lowestAdjustedTop - highestTop)); } if (rect1.YMost() != rect2.YMost()) { r.Or(r, nsRect(minLeft, highestAdjustedBottom, maxRight - minLeft, lowestBottom - highestAdjustedBottom)); } // Then, or with the X delta rects, wide along the Y axis if (rect1.X() != rect2.X()) { r.Or(r, nsRect(minLeft, highestTop, maxAdjustedLeft - minLeft, lowestBottom - highestTop)); } if (rect1.XMost() != rect2.XMost()) { r.Or(r, nsRect(minAdjustedRight, highestTop, maxRight - minAdjustedRight, lowestBottom - highestTop)); } r.And(r, aBounds.Union(aOtherBounds)); aOut->Or(*aOut, r); } void DisplayItemClip::AddOffsetAndComputeDifference( const nsPoint& aOffset, const nsRect& aBounds, const DisplayItemClip& aOther, const nsRect& aOtherBounds, nsRegion* aDifference) { if (mHaveClipRect != aOther.mHaveClipRect || mRoundedClipRects.Length() != aOther.mRoundedClipRects.Length()) { aDifference->Or(*aDifference, aBounds); aDifference->Or(*aDifference, aOtherBounds); return; } if (mHaveClipRect) { AccumulateRectDifference(mClipRect + aOffset, aOther.mClipRect, aBounds.Union(aOtherBounds), aDifference); } for (uint32_t i = 0; i < mRoundedClipRects.Length(); ++i) { if (mRoundedClipRects[i] + aOffset != aOther.mRoundedClipRects[i]) { AccumulateRoundedRectDifference(mRoundedClipRects[i] + aOffset, aOther.mRoundedClipRects[i], aBounds, aOtherBounds, aDifference); } } } void DisplayItemClip::AppendRoundedRects(nsTArray* aArray) const { aArray->AppendElements(mRoundedClipRects.Elements(), mRoundedClipRects.Length()); } bool DisplayItemClip::ComputeRegionInClips(const DisplayItemClip* aOldClip, const nsPoint& aShift, nsRegion* aCombined) const { if (!mHaveClipRect || (aOldClip && !aOldClip->mHaveClipRect)) { return false; } if (aOldClip) { *aCombined = aOldClip->NonRoundedIntersection(); aCombined->MoveBy(aShift); aCombined->Or(*aCombined, NonRoundedIntersection()); } else { *aCombined = NonRoundedIntersection(); } return true; } void DisplayItemClip::MoveBy(const nsPoint& aPoint) { if (!mHaveClipRect) { return; } mClipRect += aPoint; for (uint32_t i = 0; i < mRoundedClipRects.Length(); ++i) { mRoundedClipRects[i].mRect += aPoint; } } static StaticAutoPtr gNoClip; const DisplayItemClip& DisplayItemClip::NoClip() { if (!gNoClip) { gNoClip = new DisplayItemClip(); } return *gNoClip; } void DisplayItemClip::Shutdown() { gNoClip = nullptr; } nsCString DisplayItemClip::ToString() const { nsAutoCString str; if (mHaveClipRect) { str.AppendPrintf("%d,%d,%d,%d", mClipRect.x, mClipRect.y, mClipRect.width, mClipRect.height); for (uint32_t i = 0; i < mRoundedClipRects.Length(); ++i) { const RoundedRect& r = mRoundedClipRects[i]; str.AppendPrintf(" [%d,%d,%d,%d corners %d,%d,%d,%d,%d,%d,%d,%d]", r.mRect.x, r.mRect.y, r.mRect.width, r.mRect.height, r.mRadii[0], r.mRadii[1], r.mRadii[2], r.mRadii[3], r.mRadii[4], r.mRadii[5], r.mRadii[6], r.mRadii[7]); } } return std::move(str); } void DisplayItemClip::ToComplexClipRegions( int32_t aAppUnitsPerDevPixel, nsTArray& aOutArray) const { for (const auto& clipRect : mRoundedClipRects) { aOutArray.AppendElement(wr::ToComplexClipRegion( clipRect.mRect, clipRect.mRadii, aAppUnitsPerDevPixel)); } } } // namespace mozilla