/* * jcgryext-neon.c - grayscale colorspace conversion (Arm Neon) * * Copyright (C) 2020, Arm Limited. All Rights Reserved. * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ /* This file is included by jcgray-neon.c */ /* RGB -> Grayscale conversion is defined by the following equation: * Y = 0.29900 * R + 0.58700 * G + 0.11400 * B * * Avoid floating point arithmetic by using shifted integer constants: * 0.29899597 = 19595 * 2^-16 * 0.58700561 = 38470 * 2^-16 * 0.11399841 = 7471 * 2^-16 * These constants are defined in jcgray-neon.c * * This is the same computation as the RGB -> Y portion of RGB -> YCbCr. */ void jsimd_rgb_gray_convert_neon(JDIMENSION image_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows) { JSAMPROW inptr; JSAMPROW outptr; /* Allocate temporary buffer for final (image_width % 16) pixels in row. */ ALIGN(16) uint8_t tmp_buf[16 * RGB_PIXELSIZE]; while (--num_rows >= 0) { inptr = *input_buf++; outptr = output_buf[0][output_row]; output_row++; int cols_remaining = image_width; for (; cols_remaining > 0; cols_remaining -= 16) { /* To prevent buffer overread by the vector load instructions, the last * (image_width % 16) columns of data are first memcopied to a temporary * buffer large enough to accommodate the vector load. */ if (cols_remaining < 16) { memcpy(tmp_buf, inptr, cols_remaining * RGB_PIXELSIZE); inptr = tmp_buf; } #if RGB_PIXELSIZE == 4 uint8x16x4_t input_pixels = vld4q_u8(inptr); #else uint8x16x3_t input_pixels = vld3q_u8(inptr); #endif uint16x8_t r_l = vmovl_u8(vget_low_u8(input_pixels.val[RGB_RED])); uint16x8_t r_h = vmovl_u8(vget_high_u8(input_pixels.val[RGB_RED])); uint16x8_t g_l = vmovl_u8(vget_low_u8(input_pixels.val[RGB_GREEN])); uint16x8_t g_h = vmovl_u8(vget_high_u8(input_pixels.val[RGB_GREEN])); uint16x8_t b_l = vmovl_u8(vget_low_u8(input_pixels.val[RGB_BLUE])); uint16x8_t b_h = vmovl_u8(vget_high_u8(input_pixels.val[RGB_BLUE])); /* Compute Y = 0.29900 * R + 0.58700 * G + 0.11400 * B */ uint32x4_t y_ll = vmull_n_u16(vget_low_u16(r_l), F_0_298); uint32x4_t y_lh = vmull_n_u16(vget_high_u16(r_l), F_0_298); uint32x4_t y_hl = vmull_n_u16(vget_low_u16(r_h), F_0_298); uint32x4_t y_hh = vmull_n_u16(vget_high_u16(r_h), F_0_298); y_ll = vmlal_n_u16(y_ll, vget_low_u16(g_l), F_0_587); y_lh = vmlal_n_u16(y_lh, vget_high_u16(g_l), F_0_587); y_hl = vmlal_n_u16(y_hl, vget_low_u16(g_h), F_0_587); y_hh = vmlal_n_u16(y_hh, vget_high_u16(g_h), F_0_587); y_ll = vmlal_n_u16(y_ll, vget_low_u16(b_l), F_0_113); y_lh = vmlal_n_u16(y_lh, vget_high_u16(b_l), F_0_113); y_hl = vmlal_n_u16(y_hl, vget_low_u16(b_h), F_0_113); y_hh = vmlal_n_u16(y_hh, vget_high_u16(b_h), F_0_113); /* Descale Y values (rounding right shift) and narrow to 16-bit. */ uint16x8_t y_l = vcombine_u16(vrshrn_n_u32(y_ll, 16), vrshrn_n_u32(y_lh, 16)); uint16x8_t y_h = vcombine_u16(vrshrn_n_u32(y_hl, 16), vrshrn_n_u32(y_hh, 16)); /* Narrow Y values to 8-bit and store to memory. Buffer overwrite is * permitted up to the next multiple of ALIGN_SIZE bytes. */ vst1q_u8(outptr, vcombine_u8(vmovn_u16(y_l), vmovn_u16(y_h))); /* Increment pointers. */ inptr += (16 * RGB_PIXELSIZE); outptr += 16; } } }