/* * jidctred-neon.c - reduced-size IDCT (Arm Neon) * * Copyright (C) 2020, Arm Limited. All Rights Reserved. * Copyright (C) 2020, D. R. Commander. All Rights Reserved. * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ #define JPEG_INTERNALS #include "../../jinclude.h" #include "../../jpeglib.h" #include "../../jsimd.h" #include "../../jdct.h" #include "../../jsimddct.h" #include "../jsimd.h" #include "align.h" #include "neon-compat.h" #include #define CONST_BITS 13 #define PASS1_BITS 2 #define F_0_211 1730 #define F_0_509 4176 #define F_0_601 4926 #define F_0_720 5906 #define F_0_765 6270 #define F_0_850 6967 #define F_0_899 7373 #define F_1_061 8697 #define F_1_272 10426 #define F_1_451 11893 #define F_1_847 15137 #define F_2_172 17799 #define F_2_562 20995 #define F_3_624 29692 /* jsimd_idct_2x2_neon() is an inverse DCT function that produces reduced-size * 2x2 output from an 8x8 DCT block. It uses the same calculations and * produces exactly the same output as IJG's original jpeg_idct_2x2() function * from jpeg-6b, which can be found in jidctred.c. * * Scaled integer constants are used to avoid floating-point arithmetic: * 0.720959822 = 5906 * 2^-13 * 0.850430095 = 6967 * 2^-13 * 1.272758580 = 10426 * 2^-13 * 3.624509785 = 29692 * 2^-13 * * See jidctred.c for further details of the 2x2 IDCT algorithm. Where * possible, the variable names and comments here in jsimd_idct_2x2_neon() * match up with those in jpeg_idct_2x2(). */ ALIGN(16) static const int16_t jsimd_idct_2x2_neon_consts[] = { -F_0_720, F_0_850, -F_1_272, F_3_624 }; void jsimd_idct_2x2_neon(void *dct_table, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { ISLOW_MULT_TYPE *quantptr = dct_table; /* Load DCT coefficients. */ int16x8_t row0 = vld1q_s16(coef_block + 0 * DCTSIZE); int16x8_t row1 = vld1q_s16(coef_block + 1 * DCTSIZE); int16x8_t row3 = vld1q_s16(coef_block + 3 * DCTSIZE); int16x8_t row5 = vld1q_s16(coef_block + 5 * DCTSIZE); int16x8_t row7 = vld1q_s16(coef_block + 7 * DCTSIZE); /* Load quantization table values. */ int16x8_t quant_row0 = vld1q_s16(quantptr + 0 * DCTSIZE); int16x8_t quant_row1 = vld1q_s16(quantptr + 1 * DCTSIZE); int16x8_t quant_row3 = vld1q_s16(quantptr + 3 * DCTSIZE); int16x8_t quant_row5 = vld1q_s16(quantptr + 5 * DCTSIZE); int16x8_t quant_row7 = vld1q_s16(quantptr + 7 * DCTSIZE); /* Dequantize DCT coefficients. */ row0 = vmulq_s16(row0, quant_row0); row1 = vmulq_s16(row1, quant_row1); row3 = vmulq_s16(row3, quant_row3); row5 = vmulq_s16(row5, quant_row5); row7 = vmulq_s16(row7, quant_row7); /* Load IDCT conversion constants. */ const int16x4_t consts = vld1_s16(jsimd_idct_2x2_neon_consts); /* Pass 1: process columns from input, put results in vectors row0 and * row1. */ /* Even part */ int32x4_t tmp10_l = vshll_n_s16(vget_low_s16(row0), CONST_BITS + 2); int32x4_t tmp10_h = vshll_n_s16(vget_high_s16(row0), CONST_BITS + 2); /* Odd part */ int32x4_t tmp0_l = vmull_lane_s16(vget_low_s16(row1), consts, 3); tmp0_l = vmlal_lane_s16(tmp0_l, vget_low_s16(row3), consts, 2); tmp0_l = vmlal_lane_s16(tmp0_l, vget_low_s16(row5), consts, 1); tmp0_l = vmlal_lane_s16(tmp0_l, vget_low_s16(row7), consts, 0); int32x4_t tmp0_h = vmull_lane_s16(vget_high_s16(row1), consts, 3); tmp0_h = vmlal_lane_s16(tmp0_h, vget_high_s16(row3), consts, 2); tmp0_h = vmlal_lane_s16(tmp0_h, vget_high_s16(row5), consts, 1); tmp0_h = vmlal_lane_s16(tmp0_h, vget_high_s16(row7), consts, 0); /* Final output stage: descale and narrow to 16-bit. */ row0 = vcombine_s16(vrshrn_n_s32(vaddq_s32(tmp10_l, tmp0_l), CONST_BITS), vrshrn_n_s32(vaddq_s32(tmp10_h, tmp0_h), CONST_BITS)); row1 = vcombine_s16(vrshrn_n_s32(vsubq_s32(tmp10_l, tmp0_l), CONST_BITS), vrshrn_n_s32(vsubq_s32(tmp10_h, tmp0_h), CONST_BITS)); /* Transpose two rows, ready for second pass. */ int16x8x2_t cols_0246_1357 = vtrnq_s16(row0, row1); int16x8_t cols_0246 = cols_0246_1357.val[0]; int16x8_t cols_1357 = cols_0246_1357.val[1]; /* Duplicate columns such that each is accessible in its own vector. */ int32x4x2_t cols_1155_3377 = vtrnq_s32(vreinterpretq_s32_s16(cols_1357), vreinterpretq_s32_s16(cols_1357)); int16x8_t cols_1155 = vreinterpretq_s16_s32(cols_1155_3377.val[0]); int16x8_t cols_3377 = vreinterpretq_s16_s32(cols_1155_3377.val[1]); /* Pass 2: process two rows, store to output array. */ /* Even part: we're only interested in col0; the top half of tmp10 is "don't * care." */ int32x4_t tmp10 = vshll_n_s16(vget_low_s16(cols_0246), CONST_BITS + 2); /* Odd part: we're only interested in the bottom half of tmp0. */ int32x4_t tmp0 = vmull_lane_s16(vget_low_s16(cols_1155), consts, 3); tmp0 = vmlal_lane_s16(tmp0, vget_low_s16(cols_3377), consts, 2); tmp0 = vmlal_lane_s16(tmp0, vget_high_s16(cols_1155), consts, 1); tmp0 = vmlal_lane_s16(tmp0, vget_high_s16(cols_3377), consts, 0); /* Final output stage: descale and clamp to range [0-255]. */ int16x8_t output_s16 = vcombine_s16(vaddhn_s32(tmp10, tmp0), vsubhn_s32(tmp10, tmp0)); output_s16 = vrsraq_n_s16(vdupq_n_s16(CENTERJSAMPLE), output_s16, CONST_BITS + PASS1_BITS + 3 + 2 - 16); /* Narrow to 8-bit and convert to unsigned. */ uint8x8_t output_u8 = vqmovun_s16(output_s16); /* Store 2x2 block to memory. */ vst1_lane_u8(output_buf[0] + output_col, output_u8, 0); vst1_lane_u8(output_buf[1] + output_col, output_u8, 1); vst1_lane_u8(output_buf[0] + output_col + 1, output_u8, 4); vst1_lane_u8(output_buf[1] + output_col + 1, output_u8, 5); } /* jsimd_idct_4x4_neon() is an inverse DCT function that produces reduced-size * 4x4 output from an 8x8 DCT block. It uses the same calculations and * produces exactly the same output as IJG's original jpeg_idct_4x4() function * from jpeg-6b, which can be found in jidctred.c. * * Scaled integer constants are used to avoid floating-point arithmetic: * 0.211164243 = 1730 * 2^-13 * 0.509795579 = 4176 * 2^-13 * 0.601344887 = 4926 * 2^-13 * 0.765366865 = 6270 * 2^-13 * 0.899976223 = 7373 * 2^-13 * 1.061594337 = 8697 * 2^-13 * 1.451774981 = 11893 * 2^-13 * 1.847759065 = 15137 * 2^-13 * 2.172734803 = 17799 * 2^-13 * 2.562915447 = 20995 * 2^-13 * * See jidctred.c for further details of the 4x4 IDCT algorithm. Where * possible, the variable names and comments here in jsimd_idct_4x4_neon() * match up with those in jpeg_idct_4x4(). */ ALIGN(16) static const int16_t jsimd_idct_4x4_neon_consts[] = { F_1_847, -F_0_765, -F_0_211, F_1_451, -F_2_172, F_1_061, -F_0_509, -F_0_601, F_0_899, F_2_562, 0, 0 }; void jsimd_idct_4x4_neon(void *dct_table, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { ISLOW_MULT_TYPE *quantptr = dct_table; /* Load DCT coefficients. */ int16x8_t row0 = vld1q_s16(coef_block + 0 * DCTSIZE); int16x8_t row1 = vld1q_s16(coef_block + 1 * DCTSIZE); int16x8_t row2 = vld1q_s16(coef_block + 2 * DCTSIZE); int16x8_t row3 = vld1q_s16(coef_block + 3 * DCTSIZE); int16x8_t row5 = vld1q_s16(coef_block + 5 * DCTSIZE); int16x8_t row6 = vld1q_s16(coef_block + 6 * DCTSIZE); int16x8_t row7 = vld1q_s16(coef_block + 7 * DCTSIZE); /* Load quantization table values for DC coefficients. */ int16x8_t quant_row0 = vld1q_s16(quantptr + 0 * DCTSIZE); /* Dequantize DC coefficients. */ row0 = vmulq_s16(row0, quant_row0); /* Construct bitmap to test if all AC coefficients are 0. */ int16x8_t bitmap = vorrq_s16(row1, row2); bitmap = vorrq_s16(bitmap, row3); bitmap = vorrq_s16(bitmap, row5); bitmap = vorrq_s16(bitmap, row6); bitmap = vorrq_s16(bitmap, row7); int64_t left_ac_bitmap = vgetq_lane_s64(vreinterpretq_s64_s16(bitmap), 0); int64_t right_ac_bitmap = vgetq_lane_s64(vreinterpretq_s64_s16(bitmap), 1); /* Load constants for IDCT computation. */ #ifdef HAVE_VLD1_S16_X3 const int16x4x3_t consts = vld1_s16_x3(jsimd_idct_4x4_neon_consts); #else /* GCC does not currently support the intrinsic vld1__x3(). */ const int16x4_t consts1 = vld1_s16(jsimd_idct_4x4_neon_consts); const int16x4_t consts2 = vld1_s16(jsimd_idct_4x4_neon_consts + 4); const int16x4_t consts3 = vld1_s16(jsimd_idct_4x4_neon_consts + 8); const int16x4x3_t consts = { { consts1, consts2, consts3 } }; #endif if (left_ac_bitmap == 0 && right_ac_bitmap == 0) { /* All AC coefficients are zero. * Compute DC values and duplicate into row vectors 0, 1, 2, and 3. */ int16x8_t dcval = vshlq_n_s16(row0, PASS1_BITS); row0 = dcval; row1 = dcval; row2 = dcval; row3 = dcval; } else if (left_ac_bitmap == 0) { /* AC coefficients are zero for columns 0, 1, 2, and 3. * Compute DC values for these columns. */ int16x4_t dcval = vshl_n_s16(vget_low_s16(row0), PASS1_BITS); /* Commence regular IDCT computation for columns 4, 5, 6, and 7. */ /* Load quantization table. */ int16x4_t quant_row1 = vld1_s16(quantptr + 1 * DCTSIZE + 4); int16x4_t quant_row2 = vld1_s16(quantptr + 2 * DCTSIZE + 4); int16x4_t quant_row3 = vld1_s16(quantptr + 3 * DCTSIZE + 4); int16x4_t quant_row5 = vld1_s16(quantptr + 5 * DCTSIZE + 4); int16x4_t quant_row6 = vld1_s16(quantptr + 6 * DCTSIZE + 4); int16x4_t quant_row7 = vld1_s16(quantptr + 7 * DCTSIZE + 4); /* Even part */ int32x4_t tmp0 = vshll_n_s16(vget_high_s16(row0), CONST_BITS + 1); int16x4_t z2 = vmul_s16(vget_high_s16(row2), quant_row2); int16x4_t z3 = vmul_s16(vget_high_s16(row6), quant_row6); int32x4_t tmp2 = vmull_lane_s16(z2, consts.val[0], 0); tmp2 = vmlal_lane_s16(tmp2, z3, consts.val[0], 1); int32x4_t tmp10 = vaddq_s32(tmp0, tmp2); int32x4_t tmp12 = vsubq_s32(tmp0, tmp2); /* Odd part */ int16x4_t z1 = vmul_s16(vget_high_s16(row7), quant_row7); z2 = vmul_s16(vget_high_s16(row5), quant_row5); z3 = vmul_s16(vget_high_s16(row3), quant_row3); int16x4_t z4 = vmul_s16(vget_high_s16(row1), quant_row1); tmp0 = vmull_lane_s16(z1, consts.val[0], 2); tmp0 = vmlal_lane_s16(tmp0, z2, consts.val[0], 3); tmp0 = vmlal_lane_s16(tmp0, z3, consts.val[1], 0); tmp0 = vmlal_lane_s16(tmp0, z4, consts.val[1], 1); tmp2 = vmull_lane_s16(z1, consts.val[1], 2); tmp2 = vmlal_lane_s16(tmp2, z2, consts.val[1], 3); tmp2 = vmlal_lane_s16(tmp2, z3, consts.val[2], 0); tmp2 = vmlal_lane_s16(tmp2, z4, consts.val[2], 1); /* Final output stage: descale and narrow to 16-bit. */ row0 = vcombine_s16(dcval, vrshrn_n_s32(vaddq_s32(tmp10, tmp2), CONST_BITS - PASS1_BITS + 1)); row3 = vcombine_s16(dcval, vrshrn_n_s32(vsubq_s32(tmp10, tmp2), CONST_BITS - PASS1_BITS + 1)); row1 = vcombine_s16(dcval, vrshrn_n_s32(vaddq_s32(tmp12, tmp0), CONST_BITS - PASS1_BITS + 1)); row2 = vcombine_s16(dcval, vrshrn_n_s32(vsubq_s32(tmp12, tmp0), CONST_BITS - PASS1_BITS + 1)); } else if (right_ac_bitmap == 0) { /* AC coefficients are zero for columns 4, 5, 6, and 7. * Compute DC values for these columns. */ int16x4_t dcval = vshl_n_s16(vget_high_s16(row0), PASS1_BITS); /* Commence regular IDCT computation for columns 0, 1, 2, and 3. */ /* Load quantization table. */ int16x4_t quant_row1 = vld1_s16(quantptr + 1 * DCTSIZE); int16x4_t quant_row2 = vld1_s16(quantptr + 2 * DCTSIZE); int16x4_t quant_row3 = vld1_s16(quantptr + 3 * DCTSIZE); int16x4_t quant_row5 = vld1_s16(quantptr + 5 * DCTSIZE); int16x4_t quant_row6 = vld1_s16(quantptr + 6 * DCTSIZE); int16x4_t quant_row7 = vld1_s16(quantptr + 7 * DCTSIZE); /* Even part */ int32x4_t tmp0 = vshll_n_s16(vget_low_s16(row0), CONST_BITS + 1); int16x4_t z2 = vmul_s16(vget_low_s16(row2), quant_row2); int16x4_t z3 = vmul_s16(vget_low_s16(row6), quant_row6); int32x4_t tmp2 = vmull_lane_s16(z2, consts.val[0], 0); tmp2 = vmlal_lane_s16(tmp2, z3, consts.val[0], 1); int32x4_t tmp10 = vaddq_s32(tmp0, tmp2); int32x4_t tmp12 = vsubq_s32(tmp0, tmp2); /* Odd part */ int16x4_t z1 = vmul_s16(vget_low_s16(row7), quant_row7); z2 = vmul_s16(vget_low_s16(row5), quant_row5); z3 = vmul_s16(vget_low_s16(row3), quant_row3); int16x4_t z4 = vmul_s16(vget_low_s16(row1), quant_row1); tmp0 = vmull_lane_s16(z1, consts.val[0], 2); tmp0 = vmlal_lane_s16(tmp0, z2, consts.val[0], 3); tmp0 = vmlal_lane_s16(tmp0, z3, consts.val[1], 0); tmp0 = vmlal_lane_s16(tmp0, z4, consts.val[1], 1); tmp2 = vmull_lane_s16(z1, consts.val[1], 2); tmp2 = vmlal_lane_s16(tmp2, z2, consts.val[1], 3); tmp2 = vmlal_lane_s16(tmp2, z3, consts.val[2], 0); tmp2 = vmlal_lane_s16(tmp2, z4, consts.val[2], 1); /* Final output stage: descale and narrow to 16-bit. */ row0 = vcombine_s16(vrshrn_n_s32(vaddq_s32(tmp10, tmp2), CONST_BITS - PASS1_BITS + 1), dcval); row3 = vcombine_s16(vrshrn_n_s32(vsubq_s32(tmp10, tmp2), CONST_BITS - PASS1_BITS + 1), dcval); row1 = vcombine_s16(vrshrn_n_s32(vaddq_s32(tmp12, tmp0), CONST_BITS - PASS1_BITS + 1), dcval); row2 = vcombine_s16(vrshrn_n_s32(vsubq_s32(tmp12, tmp0), CONST_BITS - PASS1_BITS + 1), dcval); } else { /* All AC coefficients are non-zero; full IDCT calculation required. */ int16x8_t quant_row1 = vld1q_s16(quantptr + 1 * DCTSIZE); int16x8_t quant_row2 = vld1q_s16(quantptr + 2 * DCTSIZE); int16x8_t quant_row3 = vld1q_s16(quantptr + 3 * DCTSIZE); int16x8_t quant_row5 = vld1q_s16(quantptr + 5 * DCTSIZE); int16x8_t quant_row6 = vld1q_s16(quantptr + 6 * DCTSIZE); int16x8_t quant_row7 = vld1q_s16(quantptr + 7 * DCTSIZE); /* Even part */ int32x4_t tmp0_l = vshll_n_s16(vget_low_s16(row0), CONST_BITS + 1); int32x4_t tmp0_h = vshll_n_s16(vget_high_s16(row0), CONST_BITS + 1); int16x8_t z2 = vmulq_s16(row2, quant_row2); int16x8_t z3 = vmulq_s16(row6, quant_row6); int32x4_t tmp2_l = vmull_lane_s16(vget_low_s16(z2), consts.val[0], 0); int32x4_t tmp2_h = vmull_lane_s16(vget_high_s16(z2), consts.val[0], 0); tmp2_l = vmlal_lane_s16(tmp2_l, vget_low_s16(z3), consts.val[0], 1); tmp2_h = vmlal_lane_s16(tmp2_h, vget_high_s16(z3), consts.val[0], 1); int32x4_t tmp10_l = vaddq_s32(tmp0_l, tmp2_l); int32x4_t tmp10_h = vaddq_s32(tmp0_h, tmp2_h); int32x4_t tmp12_l = vsubq_s32(tmp0_l, tmp2_l); int32x4_t tmp12_h = vsubq_s32(tmp0_h, tmp2_h); /* Odd part */ int16x8_t z1 = vmulq_s16(row7, quant_row7); z2 = vmulq_s16(row5, quant_row5); z3 = vmulq_s16(row3, quant_row3); int16x8_t z4 = vmulq_s16(row1, quant_row1); tmp0_l = vmull_lane_s16(vget_low_s16(z1), consts.val[0], 2); tmp0_l = vmlal_lane_s16(tmp0_l, vget_low_s16(z2), consts.val[0], 3); tmp0_l = vmlal_lane_s16(tmp0_l, vget_low_s16(z3), consts.val[1], 0); tmp0_l = vmlal_lane_s16(tmp0_l, vget_low_s16(z4), consts.val[1], 1); tmp0_h = vmull_lane_s16(vget_high_s16(z1), consts.val[0], 2); tmp0_h = vmlal_lane_s16(tmp0_h, vget_high_s16(z2), consts.val[0], 3); tmp0_h = vmlal_lane_s16(tmp0_h, vget_high_s16(z3), consts.val[1], 0); tmp0_h = vmlal_lane_s16(tmp0_h, vget_high_s16(z4), consts.val[1], 1); tmp2_l = vmull_lane_s16(vget_low_s16(z1), consts.val[1], 2); tmp2_l = vmlal_lane_s16(tmp2_l, vget_low_s16(z2), consts.val[1], 3); tmp2_l = vmlal_lane_s16(tmp2_l, vget_low_s16(z3), consts.val[2], 0); tmp2_l = vmlal_lane_s16(tmp2_l, vget_low_s16(z4), consts.val[2], 1); tmp2_h = vmull_lane_s16(vget_high_s16(z1), consts.val[1], 2); tmp2_h = vmlal_lane_s16(tmp2_h, vget_high_s16(z2), consts.val[1], 3); tmp2_h = vmlal_lane_s16(tmp2_h, vget_high_s16(z3), consts.val[2], 0); tmp2_h = vmlal_lane_s16(tmp2_h, vget_high_s16(z4), consts.val[2], 1); /* Final output stage: descale and narrow to 16-bit. */ row0 = vcombine_s16(vrshrn_n_s32(vaddq_s32(tmp10_l, tmp2_l), CONST_BITS - PASS1_BITS + 1), vrshrn_n_s32(vaddq_s32(tmp10_h, tmp2_h), CONST_BITS - PASS1_BITS + 1)); row3 = vcombine_s16(vrshrn_n_s32(vsubq_s32(tmp10_l, tmp2_l), CONST_BITS - PASS1_BITS + 1), vrshrn_n_s32(vsubq_s32(tmp10_h, tmp2_h), CONST_BITS - PASS1_BITS + 1)); row1 = vcombine_s16(vrshrn_n_s32(vaddq_s32(tmp12_l, tmp0_l), CONST_BITS - PASS1_BITS + 1), vrshrn_n_s32(vaddq_s32(tmp12_h, tmp0_h), CONST_BITS - PASS1_BITS + 1)); row2 = vcombine_s16(vrshrn_n_s32(vsubq_s32(tmp12_l, tmp0_l), CONST_BITS - PASS1_BITS + 1), vrshrn_n_s32(vsubq_s32(tmp12_h, tmp0_h), CONST_BITS - PASS1_BITS + 1)); } /* Transpose 8x4 block to perform IDCT on rows in second pass. */ int16x8x2_t row_01 = vtrnq_s16(row0, row1); int16x8x2_t row_23 = vtrnq_s16(row2, row3); int32x4x2_t cols_0426 = vtrnq_s32(vreinterpretq_s32_s16(row_01.val[0]), vreinterpretq_s32_s16(row_23.val[0])); int32x4x2_t cols_1537 = vtrnq_s32(vreinterpretq_s32_s16(row_01.val[1]), vreinterpretq_s32_s16(row_23.val[1])); int16x4_t col0 = vreinterpret_s16_s32(vget_low_s32(cols_0426.val[0])); int16x4_t col1 = vreinterpret_s16_s32(vget_low_s32(cols_1537.val[0])); int16x4_t col2 = vreinterpret_s16_s32(vget_low_s32(cols_0426.val[1])); int16x4_t col3 = vreinterpret_s16_s32(vget_low_s32(cols_1537.val[1])); int16x4_t col5 = vreinterpret_s16_s32(vget_high_s32(cols_1537.val[0])); int16x4_t col6 = vreinterpret_s16_s32(vget_high_s32(cols_0426.val[1])); int16x4_t col7 = vreinterpret_s16_s32(vget_high_s32(cols_1537.val[1])); /* Commence second pass of IDCT. */ /* Even part */ int32x4_t tmp0 = vshll_n_s16(col0, CONST_BITS + 1); int32x4_t tmp2 = vmull_lane_s16(col2, consts.val[0], 0); tmp2 = vmlal_lane_s16(tmp2, col6, consts.val[0], 1); int32x4_t tmp10 = vaddq_s32(tmp0, tmp2); int32x4_t tmp12 = vsubq_s32(tmp0, tmp2); /* Odd part */ tmp0 = vmull_lane_s16(col7, consts.val[0], 2); tmp0 = vmlal_lane_s16(tmp0, col5, consts.val[0], 3); tmp0 = vmlal_lane_s16(tmp0, col3, consts.val[1], 0); tmp0 = vmlal_lane_s16(tmp0, col1, consts.val[1], 1); tmp2 = vmull_lane_s16(col7, consts.val[1], 2); tmp2 = vmlal_lane_s16(tmp2, col5, consts.val[1], 3); tmp2 = vmlal_lane_s16(tmp2, col3, consts.val[2], 0); tmp2 = vmlal_lane_s16(tmp2, col1, consts.val[2], 1); /* Final output stage: descale and clamp to range [0-255]. */ int16x8_t output_cols_02 = vcombine_s16(vaddhn_s32(tmp10, tmp2), vsubhn_s32(tmp12, tmp0)); int16x8_t output_cols_13 = vcombine_s16(vaddhn_s32(tmp12, tmp0), vsubhn_s32(tmp10, tmp2)); output_cols_02 = vrsraq_n_s16(vdupq_n_s16(CENTERJSAMPLE), output_cols_02, CONST_BITS + PASS1_BITS + 3 + 1 - 16); output_cols_13 = vrsraq_n_s16(vdupq_n_s16(CENTERJSAMPLE), output_cols_13, CONST_BITS + PASS1_BITS + 3 + 1 - 16); /* Narrow to 8-bit and convert to unsigned while zipping 8-bit elements. * An interleaving store completes the transpose. */ uint8x8x2_t output_0123 = vzip_u8(vqmovun_s16(output_cols_02), vqmovun_s16(output_cols_13)); uint16x4x2_t output_01_23 = { { vreinterpret_u16_u8(output_0123.val[0]), vreinterpret_u16_u8(output_0123.val[1]) } }; /* Store 4x4 block to memory. */ JSAMPROW outptr0 = output_buf[0] + output_col; JSAMPROW outptr1 = output_buf[1] + output_col; JSAMPROW outptr2 = output_buf[2] + output_col; JSAMPROW outptr3 = output_buf[3] + output_col; vst2_lane_u16((uint16_t *)outptr0, output_01_23, 0); vst2_lane_u16((uint16_t *)outptr1, output_01_23, 1); vst2_lane_u16((uint16_t *)outptr2, output_01_23, 2); vst2_lane_u16((uint16_t *)outptr3, output_01_23, 3); }