; ; jchuff-sse2.asm - Huffman entropy encoding (SSE2) ; ; Copyright (C) 2009-2011, 2014-2017, 2019, D. R. Commander. ; Copyright (C) 2015, Matthieu Darbois. ; Copyright (C) 2018, Matthias Räncker. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; This file contains an SSE2 implementation for Huffman coding of one block. ; The following code is based on jchuff.c; see jchuff.c for more details. %include "jsimdext.inc" struc working_state .next_output_byte: resp 1 ; => next byte to write in buffer .free_in_buffer: resp 1 ; # of byte spaces remaining in buffer .cur.put_buffer.simd resq 1 ; current bit accumulation buffer .cur.free_bits resd 1 ; # of bits available in it .cur.last_dc_val resd 4 ; last DC coef for each component .cinfo: resp 1 ; dump_buffer needs access to this endstruc struc c_derived_tbl .ehufco: resd 256 ; code for each symbol .ehufsi: resb 256 ; length of code for each symbol ; If no code has been allocated for a symbol S, ehufsi[S] contains 0 endstruc ; -------------------------------------------------------------------------- SECTION SEG_CONST GLOBAL_DATA(jconst_huff_encode_one_block) EXTN(jconst_huff_encode_one_block): alignz 32 jpeg_mask_bits dq 0x0000, 0x0001, 0x0003, 0x0007 dq 0x000f, 0x001f, 0x003f, 0x007f dq 0x00ff, 0x01ff, 0x03ff, 0x07ff dq 0x0fff, 0x1fff, 0x3fff, 0x7fff times 1 << 14 db 15 times 1 << 13 db 14 times 1 << 12 db 13 times 1 << 11 db 12 times 1 << 10 db 11 times 1 << 9 db 10 times 1 << 8 db 9 times 1 << 7 db 8 times 1 << 6 db 7 times 1 << 5 db 6 times 1 << 4 db 5 times 1 << 3 db 4 times 1 << 2 db 3 times 1 << 1 db 2 times 1 << 0 db 1 times 1 db 0 jpeg_nbits_table: times 1 db 0 times 1 << 0 db 1 times 1 << 1 db 2 times 1 << 2 db 3 times 1 << 3 db 4 times 1 << 4 db 5 times 1 << 5 db 6 times 1 << 6 db 7 times 1 << 7 db 8 times 1 << 8 db 9 times 1 << 9 db 10 times 1 << 10 db 11 times 1 << 11 db 12 times 1 << 12 db 13 times 1 << 13 db 14 times 1 << 14 db 15 alignz 32 %ifdef PIC %define NBITS(x) nbits_base + x %else %define NBITS(x) jpeg_nbits_table + x %endif %define MASK_BITS(x) NBITS((x) * 8) + (jpeg_mask_bits - jpeg_nbits_table) ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 32 %define mm_put_buffer mm0 %define mm_all_0xff mm1 %define mm_temp mm2 %define mm_nbits mm3 %define mm_code_bits mm3 %define mm_code mm4 %define mm_overflow_bits mm5 %define mm_save_nbits mm6 ; Shorthand used to describe SIMD operations: ; wN: xmmN treated as eight signed 16-bit values ; wN[i]: perform the same operation on all eight signed 16-bit values, i=0..7 ; bN: xmmN treated as 16 unsigned 8-bit values, or ; mmN treated as eight unsigned 8-bit values ; bN[i]: perform the same operation on all unsigned 8-bit values, ; i=0..15 (SSE register) or i=0..7 (MMX register) ; Contents of SIMD registers are shown in memory order. ; Fill the bit buffer to capacity with the leading bits from code, then output ; the bit buffer and put the remaining bits from code into the bit buffer. ; ; Usage: ; code - contains the bits to shift into the bit buffer (LSB-aligned) ; %1 - temp register ; %2 - low byte of temp register ; %3 - second byte of temp register ; %4-%8 (optional) - extra instructions to execute before the macro completes ; %9 - the label to which to jump when the macro completes ; ; Upon completion, free_bits will be set to the number of remaining bits from ; code, and put_buffer will contain those remaining bits. temp and code will ; be clobbered. ; ; This macro encodes any 0xFF bytes as 0xFF 0x00, as does the EMIT_BYTE() ; macro in jchuff.c. %macro EMIT_QWORD 9 %define %%temp %1 %define %%tempb %2 %define %%temph %3 add nbits, free_bits ; nbits += free_bits; neg free_bits ; free_bits = -free_bits; movq mm_temp, mm_code ; temp = code; movd mm_nbits, nbits ; nbits --> MMX register movd mm_overflow_bits, free_bits ; overflow_bits (temp register) = free_bits; neg free_bits ; free_bits = -free_bits; psllq mm_put_buffer, mm_nbits ; put_buffer <<= nbits; psrlq mm_temp, mm_overflow_bits ; temp >>= overflow_bits; add free_bits, 64 ; free_bits += 64; por mm_temp, mm_put_buffer ; temp |= put_buffer; %ifidn %%temp, nbits_base movd mm_save_nbits, nbits_base ; save nbits_base %endif movq mm_code_bits, mm_temp ; code_bits (temp register) = temp; movq mm_put_buffer, mm_code ; put_buffer = code; pcmpeqb mm_temp, mm_all_0xff ; b_temp[i] = (b_temp[i] == 0xFF ? 0xFF : 0); movq mm_code, mm_code_bits ; code = code_bits; psrlq mm_code_bits, 32 ; code_bits >>= 32; pmovmskb nbits, mm_temp ; nbits = 0; nbits |= ((b_temp[i] >> 7) << i); movd %%temp, mm_code_bits ; temp = code_bits; bswap %%temp ; temp = htonl(temp); test nbits, nbits ; if (nbits != 0) /* Some 0xFF bytes */ jnz %%.SLOW ; goto %%.SLOW mov dword [buffer], %%temp ; *(uint32_t)buffer = temp; %ifidn %%temp, nbits_base movd nbits_base, mm_save_nbits ; restore nbits_base %endif %4 movd nbits, mm_code ; nbits = (uint32_t)(code); %5 bswap nbits ; nbits = htonl(nbits); mov dword [buffer + 4], nbits ; *(uint32_t)(buffer + 4) = nbits; lea buffer, [buffer + 8] ; buffer += 8; %6 %7 %8 jmp %9 ; return %%.SLOW: ; Execute the equivalent of the EMIT_BYTE() macro in jchuff.c for all 8 ; bytes in the qword. mov byte [buffer], %%tempb ; buffer[0] = temp[0]; cmp %%tempb, 0xFF ; Set CF if temp[0] < 0xFF mov byte [buffer+1], 0 ; buffer[1] = 0; sbb buffer, -2 ; buffer -= (-2 + (temp[0] < 0xFF ? 1 : 0)); mov byte [buffer], %%temph ; buffer[0] = temp[1]; cmp %%temph, 0xFF ; Set CF if temp[1] < 0xFF mov byte [buffer+1], 0 ; buffer[1] = 0; sbb buffer, -2 ; buffer -= (-2 + (temp[1] < 0xFF ? 1 : 0)); shr %%temp, 16 ; temp >>= 16; mov byte [buffer], %%tempb ; buffer[0] = temp[0]; cmp %%tempb, 0xFF ; Set CF if temp[0] < 0xFF mov byte [buffer+1], 0 ; buffer[1] = 0; sbb buffer, -2 ; buffer -= (-2 + (temp[0] < 0xFF ? 1 : 0)); mov byte [buffer], %%temph ; buffer[0] = temp[1]; cmp %%temph, 0xFF ; Set CF if temp[1] < 0xFF mov byte [buffer+1], 0 ; buffer[1] = 0; sbb buffer, -2 ; buffer -= (-2 + (temp[1] < 0xFF ? 1 : 0)); movd nbits, mm_code ; nbits (temp register) = (uint32_t)(code) %ifidn %%temp, nbits_base movd nbits_base, mm_save_nbits ; restore nbits_base %endif bswap nbits ; nbits = htonl(nbits) mov byte [buffer], nbitsb ; buffer[0] = nbits[0]; cmp nbitsb, 0xFF ; Set CF if nbits[0] < 0xFF mov byte [buffer+1], 0 ; buffer[1] = 0; sbb buffer, -2 ; buffer -= (-2 + (nbits[0] < 0xFF ? 1 : 0)); mov byte [buffer], nbitsh ; buffer[0] = nbits[1]; cmp nbitsh, 0xFF ; Set CF if nbits[1] < 0xFF mov byte [buffer+1], 0 ; buffer[1] = 0; sbb buffer, -2 ; buffer -= (-2 + (nbits[1] < 0xFF ? 1 : 0)); shr nbits, 16 ; nbits >>= 16; mov byte [buffer], nbitsb ; buffer[0] = nbits[0]; cmp nbitsb, 0xFF ; Set CF if nbits[0] < 0xFF mov byte [buffer+1], 0 ; buffer[1] = 0; sbb buffer, -2 ; buffer -= (-2 + (nbits[0] < 0xFF ? 1 : 0)); mov byte [buffer], nbitsh ; buffer[0] = nbits[1]; %4 cmp nbitsh, 0xFF ; Set CF if nbits[1] < 0xFF mov byte [buffer+1], 0 ; buffer[1] = 0; sbb buffer, -2 ; buffer -= (-2 + (nbits[1] < 0xFF ? 1 : 0)); %5 %6 %7 %8 jmp %9 ; return; %endmacro %macro PUSH 1 push %1 %assign stack_offset stack_offset + 4 %endmacro %macro POP 1 pop %1 %assign stack_offset stack_offset - 4 %endmacro ; If PIC is defined, load the address of a symbol defined in this file into a ; register. Equivalent to ; get_GOT %1 ; lea %1, [GOTOFF(%1, %2)] ; without using the GOT. ; ; Usage: ; %1 - register into which to load the address of the symbol ; %2 - symbol whose address should be loaded ; %3 - optional multi-line macro to execute before the symbol address is loaded ; %4 - optional multi-line macro to execute after the symbol address is loaded ; ; If PIC is not defined, then %3 and %4 are executed in order. %macro GET_SYM 2-4 %ifdef PIC call %%.geteip %%.ref: %4 add %1, %2 - %%.ref jmp short %%.done align 32 %%.geteip: %3 4 ; must adjust stack pointer because of call mov %1, POINTER [esp] ret align 32 %%.done: %else %3 0 %4 %endif %endmacro ; ; Encode a single block's worth of coefficients. ; ; GLOBAL(JOCTET *) ; jsimd_huff_encode_one_block_sse2(working_state *state, JOCTET *buffer, ; JCOEFPTR block, int last_dc_val, ; c_derived_tbl *dctbl, c_derived_tbl *actbl) ; ; Stack layout: ; Function args ; Return address ; Saved ebx ; Saved ebp ; Saved esi ; Saved edi <-- esp_save ; ... ; esp_save ; t_ 64*2 bytes (aligned to 128 bytes) ; ; esp is used (as t) to point into t_ (data in lower indices is not used once ; esp passes over them, so this is signal-safe.) Aligning to 128 bytes allows ; us to find the rest of the data again. ; ; NOTES: ; When shuffling data, we try to avoid pinsrw as much as possible, since it is ; slow on many CPUs. Its reciprocal throughput (issue latency) is 1 even on ; modern CPUs, so chains of pinsrw instructions (even with different outputs) ; can limit performance. pinsrw is a VectorPath instruction on AMD K8 and ; requires 2 µops (with memory operand) on Intel. In either case, only one ; pinsrw instruction can be decoded per cycle (and nothing else if they are ; back-to-back), so out-of-order execution cannot be used to work around long ; pinsrw chains (though for Sandy Bridge and later, this may be less of a ; problem if the code runs from the µop cache.) ; ; We use tzcnt instead of bsf without checking for support. The instruction is ; executed as bsf on CPUs that don't support tzcnt (encoding is equivalent to ; rep bsf.) The destination (first) operand of bsf (and tzcnt on some CPUs) is ; an input dependency (although the behavior is not formally defined, Intel ; CPUs usually leave the destination unmodified if the source is zero.) This ; can prevent out-of-order execution, so we clear the destination before ; invoking tzcnt. ; ; Initial register allocation ; eax - frame --> buffer ; ebx - nbits_base (PIC) / emit_temp ; ecx - dctbl --> size --> state ; edx - block --> nbits ; esi - code_temp --> state --> actbl ; edi - index_temp --> free_bits ; esp - t ; ebp - index %define frame eax %ifdef PIC %define nbits_base ebx %endif %define emit_temp ebx %define emit_tempb bl %define emit_temph bh %define dctbl ecx %define block edx %define code_temp esi %define index_temp edi %define t esp %define index ebp %assign save_frame DCTSIZE2 * SIZEOF_WORD ; Step 1: Re-arrange input data according to jpeg_natural_order ; xx 01 02 03 04 05 06 07 xx 01 08 16 09 02 03 10 ; 08 09 10 11 12 13 14 15 17 24 32 25 18 11 04 05 ; 16 17 18 19 20 21 22 23 12 19 26 33 40 48 41 34 ; 24 25 26 27 28 29 30 31 ==> 27 20 13 06 07 14 21 28 ; 32 33 34 35 36 37 38 39 35 42 49 56 57 50 43 36 ; 40 41 42 43 44 45 46 47 29 22 15 23 30 37 44 51 ; 48 49 50 51 52 53 54 55 58 59 52 45 38 31 39 46 ; 56 57 58 59 60 61 62 63 53 60 61 54 47 55 62 63 align 32 GLOBAL_FUNCTION(jsimd_huff_encode_one_block_sse2) EXTN(jsimd_huff_encode_one_block_sse2): %assign stack_offset 0 %define arg_state 4 + stack_offset %define arg_buffer 8 + stack_offset %define arg_block 12 + stack_offset %define arg_last_dc_val 16 + stack_offset %define arg_dctbl 20 + stack_offset %define arg_actbl 24 + stack_offset ;X: X = code stream mov block, [esp + arg_block] PUSH ebx PUSH ebp movups xmm3, XMMWORD [block + 0 * SIZEOF_WORD] ;D: w3 = xx 01 02 03 04 05 06 07 PUSH esi PUSH edi movdqa xmm0, xmm3 ;A: w0 = xx 01 02 03 04 05 06 07 mov frame, esp lea t, [frame - (save_frame + 4)] movups xmm1, XMMWORD [block + 8 * SIZEOF_WORD] ;B: w1 = 08 09 10 11 12 13 14 15 and t, -DCTSIZE2 * SIZEOF_WORD ; t = &t_[0] mov [t + save_frame], frame pxor xmm4, xmm4 ;A: w4[i] = 0; punpckldq xmm0, xmm1 ;A: w0 = xx 01 08 09 02 03 10 11 pshuflw xmm0, xmm0, 11001001b ;A: w0 = 01 08 xx 09 02 03 10 11 pinsrw xmm0, word [block + 16 * SIZEOF_WORD], 2 ;A: w0 = 01 08 16 09 02 03 10 11 punpckhdq xmm3, xmm1 ;D: w3 = 04 05 12 13 06 07 14 15 punpcklqdq xmm1, xmm3 ;B: w1 = 08 09 10 11 04 05 12 13 pinsrw xmm0, word [block + 17 * SIZEOF_WORD], 7 ;A: w0 = 01 08 16 09 02 03 10 17 ;A: (Row 0, offset 1) pcmpgtw xmm4, xmm0 ;A: w4[i] = (w0[i] < 0 ? -1 : 0); paddw xmm0, xmm4 ;A: w0[i] += w4[i]; movaps XMMWORD [t + 0 * SIZEOF_WORD], xmm0 ;A: t[i] = w0[i]; movq xmm2, qword [block + 24 * SIZEOF_WORD] ;B: w2 = 24 25 26 27 -- -- -- -- pshuflw xmm2, xmm2, 11011000b ;B: w2 = 24 26 25 27 -- -- -- -- pslldq xmm1, 1 * SIZEOF_WORD ;B: w1 = -- 08 09 10 11 04 05 12 movups xmm5, XMMWORD [block + 48 * SIZEOF_WORD] ;H: w5 = 48 49 50 51 52 53 54 55 movsd xmm1, xmm2 ;B: w1 = 24 26 25 27 11 04 05 12 punpcklqdq xmm2, xmm5 ;C: w2 = 24 26 25 27 48 49 50 51 pinsrw xmm1, word [block + 32 * SIZEOF_WORD], 1 ;B: w1 = 24 32 25 27 11 04 05 12 pxor xmm4, xmm4 ;A: w4[i] = 0; psrldq xmm3, 2 * SIZEOF_WORD ;D: w3 = 12 13 06 07 14 15 -- -- pcmpeqw xmm0, xmm4 ;A: w0[i] = (w0[i] == 0 ? -1 : 0); pinsrw xmm1, word [block + 18 * SIZEOF_WORD], 3 ;B: w1 = 24 32 25 18 11 04 05 12 ; (Row 1, offset 1) pcmpgtw xmm4, xmm1 ;B: w4[i] = (w1[i] < 0 ? -1 : 0); paddw xmm1, xmm4 ;B: w1[i] += w4[i]; movaps XMMWORD [t + 8 * SIZEOF_WORD], xmm1 ;B: t[i+8] = w1[i]; pxor xmm4, xmm4 ;B: w4[i] = 0; pcmpeqw xmm1, xmm4 ;B: w1[i] = (w1[i] == 0 ? -1 : 0); packsswb xmm0, xmm1 ;AB: b0[i] = w0[i], b0[i+8] = w1[i] ; w/ signed saturation pinsrw xmm3, word [block + 20 * SIZEOF_WORD], 0 ;D: w3 = 20 13 06 07 14 15 -- -- pinsrw xmm3, word [block + 21 * SIZEOF_WORD], 5 ;D: w3 = 20 13 06 07 14 21 -- -- pinsrw xmm3, word [block + 28 * SIZEOF_WORD], 6 ;D: w3 = 20 13 06 07 14 21 28 -- pinsrw xmm3, word [block + 35 * SIZEOF_WORD], 7 ;D: w3 = 20 13 06 07 14 21 28 35 ; (Row 3, offset 1) pcmpgtw xmm4, xmm3 ;D: w4[i] = (w3[i] < 0 ? -1 : 0); paddw xmm3, xmm4 ;D: w3[i] += w4[i]; movaps XMMWORD [t + 24 * SIZEOF_WORD], xmm3 ;D: t[i+24] = w3[i]; pxor xmm4, xmm4 ;D: w4[i] = 0; pcmpeqw xmm3, xmm4 ;D: w3[i] = (w3[i] == 0 ? -1 : 0); pinsrw xmm2, word [block + 19 * SIZEOF_WORD], 0 ;C: w2 = 19 26 25 27 48 49 50 51 pinsrw xmm2, word [block + 33 * SIZEOF_WORD], 2 ;C: w2 = 19 26 33 27 48 49 50 51 pinsrw xmm2, word [block + 40 * SIZEOF_WORD], 3 ;C: w2 = 19 26 33 40 48 49 50 51 pinsrw xmm2, word [block + 41 * SIZEOF_WORD], 5 ;C: w2 = 19 26 33 40 48 41 50 51 pinsrw xmm2, word [block + 34 * SIZEOF_WORD], 6 ;C: w2 = 19 26 33 40 48 41 34 51 pinsrw xmm2, word [block + 27 * SIZEOF_WORD], 7 ;C: w2 = 19 26 33 40 48 41 34 27 ; (Row 2, offset 1) pcmpgtw xmm4, xmm2 ;C: w4[i] = (w2[i] < 0 ? -1 : 0); paddw xmm2, xmm4 ;C: w2[i] += w4[i]; movsx code_temp, word [block] ;Z: code_temp = block[0]; ; %1 - stack pointer adjustment %macro GET_SYM_BEFORE 1 movaps XMMWORD [t + 16 * SIZEOF_WORD + %1], xmm2 ;C: t[i+16] = w2[i]; pxor xmm4, xmm4 ;C: w4[i] = 0; pcmpeqw xmm2, xmm4 ;C: w2[i] = (w2[i] == 0 ? -1 : 0); sub code_temp, [frame + arg_last_dc_val] ;Z: code_temp -= last_dc_val; packsswb xmm2, xmm3 ;CD: b2[i] = w2[i], b2[i+8] = w3[i] ; w/ signed saturation movdqa xmm3, xmm5 ;H: w3 = 48 49 50 51 52 53 54 55 pmovmskb index_temp, xmm2 ;Z: index_temp = 0; index_temp |= ((b2[i] >> 7) << i); pmovmskb index, xmm0 ;Z: index = 0; index |= ((b0[i] >> 7) << i); movups xmm0, XMMWORD [block + 56 * SIZEOF_WORD] ;H: w0 = 56 57 58 59 60 61 62 63 punpckhdq xmm3, xmm0 ;H: w3 = 52 53 60 61 54 55 62 63 shl index_temp, 16 ;Z: index_temp <<= 16; psrldq xmm3, 1 * SIZEOF_WORD ;H: w3 = 53 60 61 54 55 62 63 -- pxor xmm2, xmm2 ;H: w2[i] = 0; pshuflw xmm3, xmm3, 00111001b ;H: w3 = 60 61 54 53 55 62 63 -- or index, index_temp ;Z: index |= index_temp; %undef index_temp %define free_bits edi %endmacro %macro GET_SYM_AFTER 0 movq xmm1, qword [block + 44 * SIZEOF_WORD] ;G: w1 = 44 45 46 47 -- -- -- -- unpcklps xmm5, xmm0 ;E: w5 = 48 49 56 57 50 51 58 59 pxor xmm0, xmm0 ;H: w0[i] = 0; not index ;Z: index = ~index; pinsrw xmm3, word [block + 47 * SIZEOF_WORD], 3 ;H: w3 = 60 61 54 47 55 62 63 -- ; (Row 7, offset 1) pcmpgtw xmm2, xmm3 ;H: w2[i] = (w3[i] < 0 ? -1 : 0); mov dctbl, [frame + arg_dctbl] paddw xmm3, xmm2 ;H: w3[i] += w2[i]; movaps XMMWORD [t + 56 * SIZEOF_WORD], xmm3 ;H: t[i+56] = w3[i]; movq xmm4, qword [block + 36 * SIZEOF_WORD] ;G: w4 = 36 37 38 39 -- -- -- -- pcmpeqw xmm3, xmm0 ;H: w3[i] = (w3[i] == 0 ? -1 : 0); punpckldq xmm4, xmm1 ;G: w4 = 36 37 44 45 38 39 46 47 movdqa xmm1, xmm4 ;F: w1 = 36 37 44 45 38 39 46 47 pcmpeqw mm_all_0xff, mm_all_0xff ;Z: all_0xff[i] = 0xFF; %endmacro GET_SYM nbits_base, jpeg_nbits_table, GET_SYM_BEFORE, GET_SYM_AFTER psrldq xmm4, 1 * SIZEOF_WORD ;G: w4 = 37 44 45 38 39 46 47 -- shufpd xmm1, xmm5, 10b ;F: w1 = 36 37 44 45 50 51 58 59 pshufhw xmm4, xmm4, 11010011b ;G: w4 = 37 44 45 38 -- 39 46 -- pslldq xmm1, 1 * SIZEOF_WORD ;F: w1 = -- 36 37 44 45 50 51 58 pinsrw xmm4, word [block + 59 * SIZEOF_WORD], 0 ;G: w4 = 59 44 45 38 -- 39 46 -- pshufd xmm1, xmm1, 11011000b ;F: w1 = -- 36 45 50 37 44 51 58 cmp code_temp, 1 << 31 ;Z: Set CF if code_temp < 0x80000000, ;Z: i.e. if code_temp is positive pinsrw xmm4, word [block + 52 * SIZEOF_WORD], 1 ;G: w4 = 59 52 45 38 -- 39 46 -- movlps xmm1, qword [block + 20 * SIZEOF_WORD] ;F: w1 = 20 21 22 23 37 44 51 58 pinsrw xmm4, word [block + 31 * SIZEOF_WORD], 4 ;G: w4 = 59 52 45 38 31 39 46 -- pshuflw xmm1, xmm1, 01110010b ;F: w1 = 22 20 23 21 37 44 51 58 pinsrw xmm4, word [block + 53 * SIZEOF_WORD], 7 ;G: w4 = 59 52 45 38 31 39 46 53 ; (Row 6, offset 1) adc code_temp, -1 ;Z: code_temp += -1 + (code_temp >= 0 ? 1 : 0); pxor xmm2, xmm2 ;G: w2[i] = 0; pcmpgtw xmm0, xmm4 ;G: w0[i] = (w4[i] < 0 ? -1 : 0); pinsrw xmm1, word [block + 15 * SIZEOF_WORD], 1 ;F: w1 = 22 15 23 21 37 44 51 58 paddw xmm4, xmm0 ;G: w4[i] += w0[i]; movaps XMMWORD [t + 48 * SIZEOF_WORD], xmm4 ;G: t[48+i] = w4[i]; movd mm_temp, code_temp ;Z: temp = code_temp pinsrw xmm1, word [block + 30 * SIZEOF_WORD], 3 ;F: w1 = 22 15 23 30 37 44 51 58 ; (Row 5, offset 1) pcmpeqw xmm4, xmm2 ;G: w4[i] = (w4[i] == 0 ? -1 : 0); packsswb xmm4, xmm3 ;GH: b4[i] = w4[i], b4[i+8] = w3[i] ; w/ signed saturation lea t, [t - SIZEOF_WORD] ;Z: t = &t[-1] pxor xmm0, xmm0 ;F: w0[i] = 0; pcmpgtw xmm2, xmm1 ;F: w2[i] = (w1[i] < 0 ? -1 : 0); paddw xmm1, xmm2 ;F: w1[i] += w2[i]; movaps XMMWORD [t + (40+1) * SIZEOF_WORD], xmm1 ;F: t[40+i] = w1[i]; pcmpeqw xmm1, xmm0 ;F: w1[i] = (w1[i] == 0 ? -1 : 0); pinsrw xmm5, word [block + 42 * SIZEOF_WORD], 0 ;E: w5 = 42 49 56 57 50 51 58 59 pinsrw xmm5, word [block + 43 * SIZEOF_WORD], 5 ;E: w5 = 42 49 56 57 50 43 58 59 pinsrw xmm5, word [block + 36 * SIZEOF_WORD], 6 ;E: w5 = 42 49 56 57 50 43 36 59 pinsrw xmm5, word [block + 29 * SIZEOF_WORD], 7 ;E: w5 = 42 49 56 57 50 43 36 29 ; (Row 4, offset 1) %undef block %define nbits edx %define nbitsb dl %define nbitsh dh movzx nbits, byte [NBITS(code_temp)] ;Z: nbits = JPEG_NBITS(code_temp); %undef code_temp %define state esi pxor xmm2, xmm2 ;E: w2[i] = 0; mov state, [frame + arg_state] movd mm_nbits, nbits ;Z: nbits --> MMX register pcmpgtw xmm0, xmm5 ;E: w0[i] = (w5[i] < 0 ? -1 : 0); movd mm_code, dword [dctbl + c_derived_tbl.ehufco + nbits * 4] ;Z: code = dctbl->ehufco[nbits]; %define size ecx %define sizeb cl %define sizeh ch paddw xmm5, xmm0 ;E: w5[i] += w0[i]; movaps XMMWORD [t + (32+1) * SIZEOF_WORD], xmm5 ;E: t[32+i] = w5[i]; movzx size, byte [dctbl + c_derived_tbl.ehufsi + nbits] ;Z: size = dctbl->ehufsi[nbits]; %undef dctbl pcmpeqw xmm5, xmm2 ;E: w5[i] = (w5[i] == 0 ? -1 : 0); packsswb xmm5, xmm1 ;EF: b5[i] = w5[i], b5[i+8] = w1[i] ; w/ signed saturation movq mm_put_buffer, [state + working_state.cur.put_buffer.simd] ;Z: put_buffer = state->cur.put_buffer.simd; mov free_bits, [state + working_state.cur.free_bits] ;Z: free_bits = state->cur.free_bits; %undef state %define actbl esi mov actbl, [frame + arg_actbl] %define buffer eax mov buffer, [frame + arg_buffer] %undef frame jmp .BEGIN ; ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ align 16 ; size <= 32, so this is not really a loop .BRLOOP1: ; .BRLOOP1: movzx nbits, byte [actbl + c_derived_tbl.ehufsi + 0xf0] ; nbits = actbl->ehufsi[0xf0]; movd mm_code, dword [actbl + c_derived_tbl.ehufco + 0xf0 * 4] ; code = actbl->ehufco[0xf0]; and index, 0x7ffffff ; clear index if size == 32 sub size, 16 ; size -= 16; sub free_bits, nbits ; if ((free_bits -= nbits) <= 0) jle .EMIT_BRLOOP1 ; goto .EMIT_BRLOOP1; movd mm_nbits, nbits ; nbits --> MMX register psllq mm_put_buffer, mm_nbits ; put_buffer <<= nbits; por mm_put_buffer, mm_code ; put_buffer |= code; jmp .ERLOOP1 ; goto .ERLOOP1; ; ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ align 16 %ifdef PIC times 6 nop %else times 2 nop %endif .BLOOP1: ; do { /* size = # of zero bits/elements to skip */ ; if size == 32, index remains unchanged. Correct in .BRLOOP. shr index, sizeb ; index >>= size; lea t, [t + size * SIZEOF_WORD] ; t += size; cmp size, 16 ; if (size > 16) jg .BRLOOP1 ; goto .BRLOOP1; .ERLOOP1: ; .ERLOOP1: movsx nbits, word [t] ; nbits = *t; %ifdef PIC add size, size ; size += size; %else lea size, [size * 2] ; size += size; %endif movd mm_temp, nbits ; temp = nbits; movzx nbits, byte [NBITS(nbits)] ; nbits = JPEG_NBITS(nbits); lea size, [size * 8 + nbits] ; size = size * 8 + nbits; movd mm_nbits, nbits ; nbits --> MMX register movd mm_code, dword [actbl + c_derived_tbl.ehufco + (size - 16) * 4] ; code = actbl->ehufco[size-16]; movzx size, byte [actbl + c_derived_tbl.ehufsi + (size - 16)] ; size = actbl->ehufsi[size-16]; .BEGIN: ; .BEGIN: pand mm_temp, [MASK_BITS(nbits)] ; temp &= (1 << nbits) - 1; psllq mm_code, mm_nbits ; code <<= nbits; add nbits, size ; nbits += size; por mm_code, mm_temp ; code |= temp; sub free_bits, nbits ; if ((free_bits -= nbits) <= 0) jle .EMIT_ERLOOP1 ; insert code, flush buffer, init size, goto .BLOOP1 xor size, size ; size = 0; /* kill tzcnt input dependency */ tzcnt size, index ; size = # of trailing 0 bits in index movd mm_nbits, nbits ; nbits --> MMX register psllq mm_put_buffer, mm_nbits ; put_buffer <<= nbits; inc size ; ++size; por mm_put_buffer, mm_code ; put_buffer |= code; test index, index jnz .BLOOP1 ; } while (index != 0); ; Round 2 ; t points to the last used word, possibly below t_ if the previous index had 32 zero bits. .ELOOP1: ; .ELOOP1: pmovmskb size, xmm4 ; size = 0; size |= ((b4[i] >> 7) << i); pmovmskb index, xmm5 ; index = 0; index |= ((b5[i] >> 7) << i); shl size, 16 ; size <<= 16; or index, size ; index |= size; not index ; index = ~index; lea nbits, [t + (1 + DCTSIZE2) * SIZEOF_WORD] ; nbits = t + 1 + 64; and nbits, -DCTSIZE2 * SIZEOF_WORD ; nbits &= -128; /* now points to &t_[64] */ sub nbits, t ; nbits -= t; shr nbits, 1 ; nbits >>= 1; /* # of leading 0 bits in old index + 33 */ tzcnt size, index ; size = # of trailing 0 bits in index inc size ; ++size; test index, index ; if (index == 0) jz .ELOOP2 ; goto .ELOOP2; ; NOTE: size == 32 cannot happen, since the last element is always 0. shr index, sizeb ; index >>= size; lea size, [size + nbits - 33] ; size = size + nbits - 33; lea t, [t + size * SIZEOF_WORD] ; t += size; cmp size, 16 ; if (size <= 16) jle .ERLOOP2 ; goto .ERLOOP2; .BRLOOP2: ; do { movzx nbits, byte [actbl + c_derived_tbl.ehufsi + 0xf0] ; nbits = actbl->ehufsi[0xf0]; sub size, 16 ; size -= 16; movd mm_code, dword [actbl + c_derived_tbl.ehufco + 0xf0 * 4] ; code = actbl->ehufco[0xf0]; sub free_bits, nbits ; if ((free_bits -= nbits) <= 0) jle .EMIT_BRLOOP2 ; insert code and flush put_buffer movd mm_nbits, nbits ; else { nbits --> MMX register psllq mm_put_buffer, mm_nbits ; put_buffer <<= nbits; por mm_put_buffer, mm_code ; put_buffer |= code; cmp size, 16 ; if (size <= 16) jle .ERLOOP2 ; goto .ERLOOP2; jmp .BRLOOP2 ; } while (1); ; ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ align 16 .BLOOP2: ; do { /* size = # of zero bits/elements to skip */ shr index, sizeb ; index >>= size; lea t, [t + size * SIZEOF_WORD] ; t += size; cmp size, 16 ; if (size > 16) jg .BRLOOP2 ; goto .BRLOOP2; .ERLOOP2: ; .ERLOOP2: movsx nbits, word [t] ; nbits = *t; add size, size ; size += size; movd mm_temp, nbits ; temp = nbits; movzx nbits, byte [NBITS(nbits)] ; nbits = JPEG_NBITS(nbits); movd mm_nbits, nbits ; nbits --> MMX register lea size, [size * 8 + nbits] ; size = size * 8 + nbits; movd mm_code, dword [actbl + c_derived_tbl.ehufco + (size - 16) * 4] ; code = actbl->ehufco[size-16]; movzx size, byte [actbl + c_derived_tbl.ehufsi + (size - 16)] ; size = actbl->ehufsi[size-16]; psllq mm_code, mm_nbits ; code <<= nbits; pand mm_temp, [MASK_BITS(nbits)] ; temp &= (1 << nbits) - 1; lea nbits, [nbits + size] ; nbits += size; por mm_code, mm_temp ; code |= temp; xor size, size ; size = 0; /* kill tzcnt input dependency */ sub free_bits, nbits ; if ((free_bits -= nbits) <= 0) jle .EMIT_ERLOOP2 ; insert code, flush buffer, init size, goto .BLOOP2 tzcnt size, index ; size = # of trailing 0 bits in index movd mm_nbits, nbits ; nbits --> MMX register psllq mm_put_buffer, mm_nbits ; put_buffer <<= nbits; inc size ; ++size; por mm_put_buffer, mm_code ; put_buffer |= code; test index, index jnz .BLOOP2 ; } while (index != 0); .ELOOP2: ; .ELOOP2: mov nbits, t ; nbits = t; lea t, [t + SIZEOF_WORD] ; t = &t[1]; and nbits, DCTSIZE2 * SIZEOF_WORD - 1 ; nbits &= 127; and t, -DCTSIZE2 * SIZEOF_WORD ; t &= -128; /* t = &t_[0]; */ cmp nbits, (DCTSIZE2 - 2) * SIZEOF_WORD ; if (nbits != 62 * 2) je .EFN ; { movd mm_code, dword [actbl + c_derived_tbl.ehufco + 0] ; code = actbl->ehufco[0]; movzx nbits, byte [actbl + c_derived_tbl.ehufsi + 0] ; nbits = actbl->ehufsi[0]; sub free_bits, nbits ; if ((free_bits -= nbits) <= 0) jg .EFN_SKIP_EMIT_CODE ; { EMIT_QWORD size, sizeb, sizeh, , , , , , .EFN ; insert code, flush put_buffer align 16 .EFN_SKIP_EMIT_CODE: ; } else { movd mm_nbits, nbits ; nbits --> MMX register psllq mm_put_buffer, mm_nbits ; put_buffer <<= nbits; por mm_put_buffer, mm_code ; put_buffer |= code; .EFN: ; } } %define frame esp mov frame, [t + save_frame] %define state ecx mov state, [frame + arg_state] movq [state + working_state.cur.put_buffer.simd], mm_put_buffer ; state->cur.put_buffer.simd = put_buffer; emms mov [state + working_state.cur.free_bits], free_bits ; state->cur.free_bits = free_bits; POP edi POP esi POP ebp POP ebx ret ; ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ align 16 .EMIT_BRLOOP1: EMIT_QWORD emit_temp, emit_tempb, emit_temph, , , , , , \ .ERLOOP1 ; ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ align 16 .EMIT_ERLOOP1: EMIT_QWORD size, sizeb, sizeh, \ { xor size, size }, \ { tzcnt size, index }, \ { inc size }, \ { test index, index }, \ { jnz .BLOOP1 }, \ .ELOOP1 ; ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ align 16 .EMIT_BRLOOP2: EMIT_QWORD emit_temp, emit_tempb, emit_temph, , , , \ { cmp size, 16 }, \ { jle .ERLOOP2 }, \ .BRLOOP2 ; ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ align 16 .EMIT_ERLOOP2: EMIT_QWORD size, sizeb, sizeh, \ { xor size, size }, \ { tzcnt size, index }, \ { inc size }, \ { test index, index }, \ { jnz .BLOOP2 }, \ .ELOOP2 ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 32