//////////////////////////////////////////////////////////////////////////////// /// /// Sample interpolation routine using 8-tap band-limited Shannon interpolation /// with kaiser window. /// /// Notice. This algorithm is remarkably much heavier than linear or cubic /// interpolation, and not remarkably better than cubic algorithm. Thus mostly /// for experimental purposes /// /// Author : Copyright (c) Olli Parviainen /// Author e-mail : oparviai 'at' iki.fi /// SoundTouch WWW: http://www.surina.net/soundtouch /// //////////////////////////////////////////////////////////////////////////////// // // License : // // SoundTouch audio processing library // Copyright (c) Olli Parviainen // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2.1 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA // //////////////////////////////////////////////////////////////////////////////// #include #include "InterpolateShannon.h" #include "STTypes.h" using namespace soundtouch; /// Kaiser window with beta = 2.0 /// Values scaled down by 5% to avoid overflows static const double _kaiser8[8] = { 0.41778693317814, 0.64888025049173, 0.83508562409944, 0.93887857733412, 0.93887857733412, 0.83508562409944, 0.64888025049173, 0.41778693317814 }; InterpolateShannon::InterpolateShannon() { fract = 0; } void InterpolateShannon::resetRegisters() { fract = 0; } #define PI 3.1415926536 #define sinc(x) (sin(PI * (x)) / (PI * (x))) /// Transpose mono audio. Returns number of produced output samples, and /// updates "srcSamples" to amount of consumed source samples int InterpolateShannon::transposeMono(SAMPLETYPE *pdest, const SAMPLETYPE *psrc, int &srcSamples) { int i; int srcSampleEnd = srcSamples - 8; int srcCount = 0; i = 0; while (srcCount < srcSampleEnd) { double out; assert(fract < 1.0); out = psrc[0] * sinc(-3.0 - fract) * _kaiser8[0]; out += psrc[1] * sinc(-2.0 - fract) * _kaiser8[1]; out += psrc[2] * sinc(-1.0 - fract) * _kaiser8[2]; if (fract < 1e-6) { out += psrc[3] * _kaiser8[3]; // sinc(0) = 1 } else { out += psrc[3] * sinc(- fract) * _kaiser8[3]; } out += psrc[4] * sinc( 1.0 - fract) * _kaiser8[4]; out += psrc[5] * sinc( 2.0 - fract) * _kaiser8[5]; out += psrc[6] * sinc( 3.0 - fract) * _kaiser8[6]; out += psrc[7] * sinc( 4.0 - fract) * _kaiser8[7]; pdest[i] = (SAMPLETYPE)out; i ++; // update position fraction fract += rate; // update whole positions int whole = (int)fract; fract -= whole; psrc += whole; srcCount += whole; } srcSamples = srcCount; return i; } /// Transpose stereo audio. Returns number of produced output samples, and /// updates "srcSamples" to amount of consumed source samples int InterpolateShannon::transposeStereo(SAMPLETYPE *pdest, const SAMPLETYPE *psrc, int &srcSamples) { int i; int srcSampleEnd = srcSamples - 8; int srcCount = 0; i = 0; while (srcCount < srcSampleEnd) { double out0, out1, w; assert(fract < 1.0); w = sinc(-3.0 - fract) * _kaiser8[0]; out0 = psrc[0] * w; out1 = psrc[1] * w; w = sinc(-2.0 - fract) * _kaiser8[1]; out0 += psrc[2] * w; out1 += psrc[3] * w; w = sinc(-1.0 - fract) * _kaiser8[2]; out0 += psrc[4] * w; out1 += psrc[5] * w; w = _kaiser8[3] * ((fract < 1e-5) ? 1.0 : sinc(- fract)); // sinc(0) = 1 out0 += psrc[6] * w; out1 += psrc[7] * w; w = sinc( 1.0 - fract) * _kaiser8[4]; out0 += psrc[8] * w; out1 += psrc[9] * w; w = sinc( 2.0 - fract) * _kaiser8[5]; out0 += psrc[10] * w; out1 += psrc[11] * w; w = sinc( 3.0 - fract) * _kaiser8[6]; out0 += psrc[12] * w; out1 += psrc[13] * w; w = sinc( 4.0 - fract) * _kaiser8[7]; out0 += psrc[14] * w; out1 += psrc[15] * w; pdest[2*i] = (SAMPLETYPE)out0; pdest[2*i+1] = (SAMPLETYPE)out1; i ++; // update position fraction fract += rate; // update whole positions int whole = (int)fract; fract -= whole; psrc += 2*whole; srcCount += whole; } srcSamples = srcCount; return i; } /// Transpose stereo audio. Returns number of produced output samples, and /// updates "srcSamples" to amount of consumed source samples int InterpolateShannon::transposeMulti(SAMPLETYPE *pdest, const SAMPLETYPE *psrc, int &srcSamples) { // not implemented assert(false); return 0; }