/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include #include #include "./vpx_dsp_rtcd.h" #include "./vpx_scale_rtcd.h" #include "block.h" #include "onyx_int.h" #include "vpx_dsp/variance.h" #include "encodeintra.h" #include "vp8/common/common.h" #include "vp8/common/setupintrarecon.h" #include "vp8/common/systemdependent.h" #include "mcomp.h" #include "firstpass.h" #include "vpx_scale/vpx_scale.h" #include "encodemb.h" #include "vp8/common/extend.h" #include "vpx_ports/system_state.h" #include "vpx_mem/vpx_mem.h" #include "vp8/common/swapyv12buffer.h" #include "rdopt.h" #include "vp8/common/quant_common.h" #include "encodemv.h" #include "encodeframe.h" #define OUTPUT_FPF 0 extern void vp8cx_frame_init_quantizer(VP8_COMP *cpi); #define GFQ_ADJUSTMENT vp8_gf_boost_qadjustment[Q] extern int vp8_kf_boost_qadjustment[QINDEX_RANGE]; extern const int vp8_gf_boost_qadjustment[QINDEX_RANGE]; #define IIFACTOR 1.5 #define IIKFACTOR1 1.40 #define IIKFACTOR2 1.5 #define RMAX 14.0 #define GF_RMAX 48.0 #define KF_MB_INTRA_MIN 300 #define GF_MB_INTRA_MIN 200 #define DOUBLE_DIVIDE_CHECK(X) ((X) < 0 ? (X)-.000001 : (X) + .000001) #define POW1 (double)cpi->oxcf.two_pass_vbrbias / 100.0 #define POW2 (double)cpi->oxcf.two_pass_vbrbias / 100.0 #define NEW_BOOST 1 static int vscale_lookup[7] = { 0, 1, 1, 2, 2, 3, 3 }; static int hscale_lookup[7] = { 0, 0, 1, 1, 2, 2, 3 }; static const int cq_level[QINDEX_RANGE] = { 0, 0, 1, 1, 2, 3, 3, 4, 4, 5, 6, 6, 7, 8, 8, 9, 9, 10, 11, 11, 12, 13, 13, 14, 15, 15, 16, 17, 17, 18, 19, 20, 20, 21, 22, 22, 23, 24, 24, 25, 26, 27, 27, 28, 29, 30, 30, 31, 32, 33, 33, 34, 35, 36, 36, 37, 38, 39, 39, 40, 41, 42, 42, 43, 44, 45, 46, 46, 47, 48, 49, 50, 50, 51, 52, 53, 54, 55, 55, 56, 57, 58, 59, 60, 60, 61, 62, 63, 64, 65, 66, 67, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100 }; static void find_next_key_frame(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame); /* Resets the first pass file to the given position using a relative seek * from the current position */ static void reset_fpf_position(VP8_COMP *cpi, FIRSTPASS_STATS *Position) { cpi->twopass.stats_in = Position; } static int lookup_next_frame_stats(VP8_COMP *cpi, FIRSTPASS_STATS *next_frame) { if (cpi->twopass.stats_in >= cpi->twopass.stats_in_end) return EOF; *next_frame = *cpi->twopass.stats_in; return 1; } /* Read frame stats at an offset from the current position */ static int read_frame_stats(VP8_COMP *cpi, FIRSTPASS_STATS *frame_stats, int offset) { FIRSTPASS_STATS *fps_ptr = cpi->twopass.stats_in; /* Check legality of offset */ if (offset >= 0) { if (&fps_ptr[offset] >= cpi->twopass.stats_in_end) return EOF; } else if (offset < 0) { if (&fps_ptr[offset] < cpi->twopass.stats_in_start) return EOF; } *frame_stats = fps_ptr[offset]; return 1; } static int input_stats(VP8_COMP *cpi, FIRSTPASS_STATS *fps) { if (cpi->twopass.stats_in >= cpi->twopass.stats_in_end) return EOF; *fps = *cpi->twopass.stats_in; cpi->twopass.stats_in = (void *)((char *)cpi->twopass.stats_in + sizeof(FIRSTPASS_STATS)); return 1; } static void output_stats(struct vpx_codec_pkt_list *pktlist, FIRSTPASS_STATS *stats) { struct vpx_codec_cx_pkt pkt; pkt.kind = VPX_CODEC_STATS_PKT; pkt.data.twopass_stats.buf = stats; pkt.data.twopass_stats.sz = sizeof(FIRSTPASS_STATS); vpx_codec_pkt_list_add(pktlist, &pkt); /* TEMP debug code */ #if OUTPUT_FPF { FILE *fpfile; fpfile = fopen("firstpass.stt", "a"); fprintf(fpfile, "%12.0f %12.0f %12.0f %12.4f %12.4f %12.4f %12.4f" " %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f" " %12.0f %12.0f %12.4f\n", stats->frame, stats->intra_error, stats->coded_error, stats->ssim_weighted_pred_err, stats->pcnt_inter, stats->pcnt_motion, stats->pcnt_second_ref, stats->pcnt_neutral, stats->MVr, stats->mvr_abs, stats->MVc, stats->mvc_abs, stats->MVrv, stats->MVcv, stats->mv_in_out_count, stats->new_mv_count, stats->count, stats->duration); fclose(fpfile); } #endif } static void zero_stats(FIRSTPASS_STATS *section) { section->frame = 0.0; section->intra_error = 0.0; section->coded_error = 0.0; section->ssim_weighted_pred_err = 0.0; section->pcnt_inter = 0.0; section->pcnt_motion = 0.0; section->pcnt_second_ref = 0.0; section->pcnt_neutral = 0.0; section->MVr = 0.0; section->mvr_abs = 0.0; section->MVc = 0.0; section->mvc_abs = 0.0; section->MVrv = 0.0; section->MVcv = 0.0; section->mv_in_out_count = 0.0; section->new_mv_count = 0.0; section->count = 0.0; section->duration = 1.0; } static void accumulate_stats(FIRSTPASS_STATS *section, FIRSTPASS_STATS *frame) { section->frame += frame->frame; section->intra_error += frame->intra_error; section->coded_error += frame->coded_error; section->ssim_weighted_pred_err += frame->ssim_weighted_pred_err; section->pcnt_inter += frame->pcnt_inter; section->pcnt_motion += frame->pcnt_motion; section->pcnt_second_ref += frame->pcnt_second_ref; section->pcnt_neutral += frame->pcnt_neutral; section->MVr += frame->MVr; section->mvr_abs += frame->mvr_abs; section->MVc += frame->MVc; section->mvc_abs += frame->mvc_abs; section->MVrv += frame->MVrv; section->MVcv += frame->MVcv; section->mv_in_out_count += frame->mv_in_out_count; section->new_mv_count += frame->new_mv_count; section->count += frame->count; section->duration += frame->duration; } static void subtract_stats(FIRSTPASS_STATS *section, FIRSTPASS_STATS *frame) { section->frame -= frame->frame; section->intra_error -= frame->intra_error; section->coded_error -= frame->coded_error; section->ssim_weighted_pred_err -= frame->ssim_weighted_pred_err; section->pcnt_inter -= frame->pcnt_inter; section->pcnt_motion -= frame->pcnt_motion; section->pcnt_second_ref -= frame->pcnt_second_ref; section->pcnt_neutral -= frame->pcnt_neutral; section->MVr -= frame->MVr; section->mvr_abs -= frame->mvr_abs; section->MVc -= frame->MVc; section->mvc_abs -= frame->mvc_abs; section->MVrv -= frame->MVrv; section->MVcv -= frame->MVcv; section->mv_in_out_count -= frame->mv_in_out_count; section->new_mv_count -= frame->new_mv_count; section->count -= frame->count; section->duration -= frame->duration; } static void avg_stats(FIRSTPASS_STATS *section) { if (section->count < 1.0) return; section->intra_error /= section->count; section->coded_error /= section->count; section->ssim_weighted_pred_err /= section->count; section->pcnt_inter /= section->count; section->pcnt_second_ref /= section->count; section->pcnt_neutral /= section->count; section->pcnt_motion /= section->count; section->MVr /= section->count; section->mvr_abs /= section->count; section->MVc /= section->count; section->mvc_abs /= section->count; section->MVrv /= section->count; section->MVcv /= section->count; section->mv_in_out_count /= section->count; section->duration /= section->count; } /* Calculate a modified Error used in distributing bits between easier * and harder frames */ static double calculate_modified_err(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) { double av_err = (cpi->twopass.total_stats.ssim_weighted_pred_err / cpi->twopass.total_stats.count); double this_err = this_frame->ssim_weighted_pred_err; double modified_err; if (this_err > av_err) { modified_err = av_err * pow((this_err / DOUBLE_DIVIDE_CHECK(av_err)), POW1); } else { modified_err = av_err * pow((this_err / DOUBLE_DIVIDE_CHECK(av_err)), POW2); } return modified_err; } static const double weight_table[256] = { 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.031250, 0.062500, 0.093750, 0.125000, 0.156250, 0.187500, 0.218750, 0.250000, 0.281250, 0.312500, 0.343750, 0.375000, 0.406250, 0.437500, 0.468750, 0.500000, 0.531250, 0.562500, 0.593750, 0.625000, 0.656250, 0.687500, 0.718750, 0.750000, 0.781250, 0.812500, 0.843750, 0.875000, 0.906250, 0.937500, 0.968750, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000 }; static double simple_weight(YV12_BUFFER_CONFIG *source) { int i, j; unsigned char *src = source->y_buffer; double sum_weights = 0.0; /* Loop throught the Y plane raw examining levels and creating a weight * for the image */ i = source->y_height; do { j = source->y_width; do { sum_weights += weight_table[*src]; src++; } while (--j); src -= source->y_width; src += source->y_stride; } while (--i); sum_weights /= (source->y_height * source->y_width); return sum_weights; } /* This function returns the current per frame maximum bitrate target */ static int frame_max_bits(VP8_COMP *cpi) { /* Max allocation for a single frame based on the max section guidelines * passed in and how many bits are left */ int max_bits; /* For CBR we need to also consider buffer fullness. * If we are running below the optimal level then we need to gradually * tighten up on max_bits. */ if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) { double buffer_fullness_ratio = (double)cpi->buffer_level / DOUBLE_DIVIDE_CHECK((double)cpi->oxcf.optimal_buffer_level); /* For CBR base this on the target average bits per frame plus the * maximum sedction rate passed in by the user */ max_bits = (int)(cpi->av_per_frame_bandwidth * ((double)cpi->oxcf.two_pass_vbrmax_section / 100.0)); /* If our buffer is below the optimum level */ if (buffer_fullness_ratio < 1.0) { /* The lower of max_bits / 4 or cpi->av_per_frame_bandwidth / 4. */ int min_max_bits = ((cpi->av_per_frame_bandwidth >> 2) < (max_bits >> 2)) ? cpi->av_per_frame_bandwidth >> 2 : max_bits >> 2; max_bits = (int)(max_bits * buffer_fullness_ratio); /* Lowest value we will set ... which should allow the buffer to * refill. */ if (max_bits < min_max_bits) max_bits = min_max_bits; } } /* VBR */ else { /* For VBR base this on the bits and frames left plus the * two_pass_vbrmax_section rate passed in by the user */ max_bits = (int)(((double)cpi->twopass.bits_left / (cpi->twopass.total_stats.count - (double)cpi->common.current_video_frame)) * ((double)cpi->oxcf.two_pass_vbrmax_section / 100.0)); } /* Trap case where we are out of bits */ if (max_bits < 0) max_bits = 0; return max_bits; } void vp8_init_first_pass(VP8_COMP *cpi) { zero_stats(&cpi->twopass.total_stats); } void vp8_end_first_pass(VP8_COMP *cpi) { output_stats(cpi->output_pkt_list, &cpi->twopass.total_stats); } static void zz_motion_search(MACROBLOCK *x, YV12_BUFFER_CONFIG *raw_buffer, int *raw_motion_err, YV12_BUFFER_CONFIG *recon_buffer, int *best_motion_err, int recon_yoffset) { MACROBLOCKD *const xd = &x->e_mbd; BLOCK *b = &x->block[0]; BLOCKD *d = &x->e_mbd.block[0]; unsigned char *src_ptr = (*(b->base_src) + b->src); int src_stride = b->src_stride; unsigned char *raw_ptr; int raw_stride = raw_buffer->y_stride; unsigned char *ref_ptr; int ref_stride = x->e_mbd.pre.y_stride; /* Set up pointers for this macro block raw buffer */ raw_ptr = (unsigned char *)(raw_buffer->y_buffer + recon_yoffset + d->offset); vpx_mse16x16(src_ptr, src_stride, raw_ptr, raw_stride, (unsigned int *)(raw_motion_err)); /* Set up pointers for this macro block recon buffer */ xd->pre.y_buffer = recon_buffer->y_buffer + recon_yoffset; ref_ptr = (unsigned char *)(xd->pre.y_buffer + d->offset); vpx_mse16x16(src_ptr, src_stride, ref_ptr, ref_stride, (unsigned int *)(best_motion_err)); } static void first_pass_motion_search(VP8_COMP *cpi, MACROBLOCK *x, int_mv *ref_mv, MV *best_mv, YV12_BUFFER_CONFIG *recon_buffer, int *best_motion_err, int recon_yoffset) { MACROBLOCKD *const xd = &x->e_mbd; BLOCK *b = &x->block[0]; BLOCKD *d = &x->e_mbd.block[0]; int num00; int_mv tmp_mv; int_mv ref_mv_full; int tmp_err; int step_param = 3; /* Don't search over full range for first pass */ int further_steps = (MAX_MVSEARCH_STEPS - 1) - step_param; int n; vp8_variance_fn_ptr_t v_fn_ptr = cpi->fn_ptr[BLOCK_16X16]; int new_mv_mode_penalty = 256; /* override the default variance function to use MSE */ v_fn_ptr.vf = vpx_mse16x16; /* Set up pointers for this macro block recon buffer */ xd->pre.y_buffer = recon_buffer->y_buffer + recon_yoffset; /* Initial step/diamond search centred on best mv */ tmp_mv.as_int = 0; ref_mv_full.as_mv.col = ref_mv->as_mv.col >> 3; ref_mv_full.as_mv.row = ref_mv->as_mv.row >> 3; tmp_err = cpi->diamond_search_sad(x, b, d, &ref_mv_full, &tmp_mv, step_param, x->sadperbit16, &num00, &v_fn_ptr, x->mvcost, ref_mv); if (tmp_err < INT_MAX - new_mv_mode_penalty) tmp_err += new_mv_mode_penalty; if (tmp_err < *best_motion_err) { *best_motion_err = tmp_err; best_mv->row = tmp_mv.as_mv.row; best_mv->col = tmp_mv.as_mv.col; } /* Further step/diamond searches as necessary */ n = num00; num00 = 0; while (n < further_steps) { n++; if (num00) { num00--; } else { tmp_err = cpi->diamond_search_sad(x, b, d, &ref_mv_full, &tmp_mv, step_param + n, x->sadperbit16, &num00, &v_fn_ptr, x->mvcost, ref_mv); if (tmp_err < INT_MAX - new_mv_mode_penalty) { tmp_err += new_mv_mode_penalty; } if (tmp_err < *best_motion_err) { *best_motion_err = tmp_err; best_mv->row = tmp_mv.as_mv.row; best_mv->col = tmp_mv.as_mv.col; } } } } void vp8_first_pass(VP8_COMP *cpi) { int mb_row, mb_col; MACROBLOCK *const x = &cpi->mb; VP8_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &x->e_mbd; int recon_yoffset, recon_uvoffset; YV12_BUFFER_CONFIG *lst_yv12 = &cm->yv12_fb[cm->lst_fb_idx]; YV12_BUFFER_CONFIG *new_yv12 = &cm->yv12_fb[cm->new_fb_idx]; YV12_BUFFER_CONFIG *gld_yv12 = &cm->yv12_fb[cm->gld_fb_idx]; int recon_y_stride = lst_yv12->y_stride; int recon_uv_stride = lst_yv12->uv_stride; int64_t intra_error = 0; int64_t coded_error = 0; int sum_mvr = 0, sum_mvc = 0; int sum_mvr_abs = 0, sum_mvc_abs = 0; int sum_mvrs = 0, sum_mvcs = 0; int mvcount = 0; int intercount = 0; int second_ref_count = 0; int intrapenalty = 256; int neutral_count = 0; int new_mv_count = 0; int sum_in_vectors = 0; uint32_t lastmv_as_int = 0; int_mv zero_ref_mv; zero_ref_mv.as_int = 0; vpx_clear_system_state(); x->src = *cpi->Source; xd->pre = *lst_yv12; xd->dst = *new_yv12; x->partition_info = x->pi; xd->mode_info_context = cm->mi; if (!cm->use_bilinear_mc_filter) { xd->subpixel_predict = vp8_sixtap_predict4x4; xd->subpixel_predict8x4 = vp8_sixtap_predict8x4; xd->subpixel_predict8x8 = vp8_sixtap_predict8x8; xd->subpixel_predict16x16 = vp8_sixtap_predict16x16; } else { xd->subpixel_predict = vp8_bilinear_predict4x4; xd->subpixel_predict8x4 = vp8_bilinear_predict8x4; xd->subpixel_predict8x8 = vp8_bilinear_predict8x8; xd->subpixel_predict16x16 = vp8_bilinear_predict16x16; } vp8_build_block_offsets(x); /* set up frame new frame for intra coded blocks */ vp8_setup_intra_recon(new_yv12); vp8cx_frame_init_quantizer(cpi); /* Initialise the MV cost table to the defaults */ { int flag[2] = { 1, 1 }; vp8_initialize_rd_consts(cpi, x, vp8_dc_quant(cm->base_qindex, cm->y1dc_delta_q)); memcpy(cm->fc.mvc, vp8_default_mv_context, sizeof(vp8_default_mv_context)); vp8_build_component_cost_table(cpi->mb.mvcost, (const MV_CONTEXT *)cm->fc.mvc, flag); } /* for each macroblock row in image */ for (mb_row = 0; mb_row < cm->mb_rows; ++mb_row) { int_mv best_ref_mv; best_ref_mv.as_int = 0; /* reset above block coeffs */ xd->up_available = (mb_row != 0); recon_yoffset = (mb_row * recon_y_stride * 16); recon_uvoffset = (mb_row * recon_uv_stride * 8); /* Set up limit values for motion vectors to prevent them extending * outside the UMV borders */ x->mv_row_min = -((mb_row * 16) + (VP8BORDERINPIXELS - 16)); x->mv_row_max = ((cm->mb_rows - 1 - mb_row) * 16) + (VP8BORDERINPIXELS - 16); /* for each macroblock col in image */ for (mb_col = 0; mb_col < cm->mb_cols; ++mb_col) { int this_error; int gf_motion_error = INT_MAX; int use_dc_pred = (mb_col || mb_row) && (!mb_col || !mb_row); xd->dst.y_buffer = new_yv12->y_buffer + recon_yoffset; xd->dst.u_buffer = new_yv12->u_buffer + recon_uvoffset; xd->dst.v_buffer = new_yv12->v_buffer + recon_uvoffset; xd->left_available = (mb_col != 0); /* Copy current mb to a buffer */ vp8_copy_mem16x16(x->src.y_buffer, x->src.y_stride, x->thismb, 16); /* do intra 16x16 prediction */ this_error = vp8_encode_intra(x, use_dc_pred); /* "intrapenalty" below deals with situations where the intra * and inter error scores are very low (eg a plain black frame) * We do not have special cases in first pass for 0,0 and * nearest etc so all inter modes carry an overhead cost * estimate fot the mv. When the error score is very low this * causes us to pick all or lots of INTRA modes and throw lots * of key frames. This penalty adds a cost matching that of a * 0,0 mv to the intra case. */ this_error += intrapenalty; /* Cumulative intra error total */ intra_error += (int64_t)this_error; /* Set up limit values for motion vectors to prevent them * extending outside the UMV borders */ x->mv_col_min = -((mb_col * 16) + (VP8BORDERINPIXELS - 16)); x->mv_col_max = ((cm->mb_cols - 1 - mb_col) * 16) + (VP8BORDERINPIXELS - 16); /* Other than for the first frame do a motion search */ if (cm->current_video_frame > 0) { BLOCKD *d = &x->e_mbd.block[0]; MV tmp_mv = { 0, 0 }; int tmp_err; int motion_error = INT_MAX; int raw_motion_error = INT_MAX; /* Simple 0,0 motion with no mv overhead */ zz_motion_search(x, cpi->last_frame_unscaled_source, &raw_motion_error, lst_yv12, &motion_error, recon_yoffset); d->bmi.mv.as_mv.row = 0; d->bmi.mv.as_mv.col = 0; if (raw_motion_error < cpi->oxcf.encode_breakout) { goto skip_motion_search; } /* Test last reference frame using the previous best mv as the * starting point (best reference) for the search */ first_pass_motion_search(cpi, x, &best_ref_mv, &d->bmi.mv.as_mv, lst_yv12, &motion_error, recon_yoffset); /* If the current best reference mv is not centred on 0,0 * then do a 0,0 based search as well */ if (best_ref_mv.as_int) { tmp_err = INT_MAX; first_pass_motion_search(cpi, x, &zero_ref_mv, &tmp_mv, lst_yv12, &tmp_err, recon_yoffset); if (tmp_err < motion_error) { motion_error = tmp_err; d->bmi.mv.as_mv.row = tmp_mv.row; d->bmi.mv.as_mv.col = tmp_mv.col; } } /* Experimental search in a second reference frame ((0,0) * based only) */ if (cm->current_video_frame > 1) { first_pass_motion_search(cpi, x, &zero_ref_mv, &tmp_mv, gld_yv12, &gf_motion_error, recon_yoffset); if ((gf_motion_error < motion_error) && (gf_motion_error < this_error)) { second_ref_count++; } /* Reset to last frame as reference buffer */ xd->pre.y_buffer = lst_yv12->y_buffer + recon_yoffset; xd->pre.u_buffer = lst_yv12->u_buffer + recon_uvoffset; xd->pre.v_buffer = lst_yv12->v_buffer + recon_uvoffset; } skip_motion_search: /* Intra assumed best */ best_ref_mv.as_int = 0; if (motion_error <= this_error) { /* Keep a count of cases where the inter and intra were * very close and very low. This helps with scene cut * detection for example in cropped clips with black bars * at the sides or top and bottom. */ if ((((this_error - intrapenalty) * 9) <= (motion_error * 10)) && (this_error < (2 * intrapenalty))) { neutral_count++; } d->bmi.mv.as_mv.row *= 8; d->bmi.mv.as_mv.col *= 8; this_error = motion_error; vp8_set_mbmode_and_mvs(x, NEWMV, &d->bmi.mv); vp8_encode_inter16x16y(x); sum_mvr += d->bmi.mv.as_mv.row; sum_mvr_abs += abs(d->bmi.mv.as_mv.row); sum_mvc += d->bmi.mv.as_mv.col; sum_mvc_abs += abs(d->bmi.mv.as_mv.col); sum_mvrs += d->bmi.mv.as_mv.row * d->bmi.mv.as_mv.row; sum_mvcs += d->bmi.mv.as_mv.col * d->bmi.mv.as_mv.col; intercount++; best_ref_mv.as_int = d->bmi.mv.as_int; /* Was the vector non-zero */ if (d->bmi.mv.as_int) { mvcount++; /* Was it different from the last non zero vector */ if (d->bmi.mv.as_int != lastmv_as_int) new_mv_count++; lastmv_as_int = d->bmi.mv.as_int; /* Does the Row vector point inwards or outwards */ if (mb_row < cm->mb_rows / 2) { if (d->bmi.mv.as_mv.row > 0) { sum_in_vectors--; } else if (d->bmi.mv.as_mv.row < 0) { sum_in_vectors++; } } else if (mb_row > cm->mb_rows / 2) { if (d->bmi.mv.as_mv.row > 0) { sum_in_vectors++; } else if (d->bmi.mv.as_mv.row < 0) { sum_in_vectors--; } } /* Does the Row vector point inwards or outwards */ if (mb_col < cm->mb_cols / 2) { if (d->bmi.mv.as_mv.col > 0) { sum_in_vectors--; } else if (d->bmi.mv.as_mv.col < 0) { sum_in_vectors++; } } else if (mb_col > cm->mb_cols / 2) { if (d->bmi.mv.as_mv.col > 0) { sum_in_vectors++; } else if (d->bmi.mv.as_mv.col < 0) { sum_in_vectors--; } } } } } coded_error += (int64_t)this_error; /* adjust to the next column of macroblocks */ x->src.y_buffer += 16; x->src.u_buffer += 8; x->src.v_buffer += 8; recon_yoffset += 16; recon_uvoffset += 8; } /* adjust to the next row of mbs */ x->src.y_buffer += 16 * x->src.y_stride - 16 * cm->mb_cols; x->src.u_buffer += 8 * x->src.uv_stride - 8 * cm->mb_cols; x->src.v_buffer += 8 * x->src.uv_stride - 8 * cm->mb_cols; /* extend the recon for intra prediction */ vp8_extend_mb_row(new_yv12, xd->dst.y_buffer + 16, xd->dst.u_buffer + 8, xd->dst.v_buffer + 8); vpx_clear_system_state(); } vpx_clear_system_state(); { double weight = 0.0; FIRSTPASS_STATS fps; fps.frame = cm->current_video_frame; fps.intra_error = (double)(intra_error >> 8); fps.coded_error = (double)(coded_error >> 8); weight = simple_weight(cpi->Source); if (weight < 0.1) weight = 0.1; fps.ssim_weighted_pred_err = fps.coded_error * weight; fps.pcnt_inter = 0.0; fps.pcnt_motion = 0.0; fps.MVr = 0.0; fps.mvr_abs = 0.0; fps.MVc = 0.0; fps.mvc_abs = 0.0; fps.MVrv = 0.0; fps.MVcv = 0.0; fps.mv_in_out_count = 0.0; fps.new_mv_count = 0.0; fps.count = 1.0; fps.pcnt_inter = 1.0 * (double)intercount / cm->MBs; fps.pcnt_second_ref = 1.0 * (double)second_ref_count / cm->MBs; fps.pcnt_neutral = 1.0 * (double)neutral_count / cm->MBs; if (mvcount > 0) { fps.MVr = (double)sum_mvr / (double)mvcount; fps.mvr_abs = (double)sum_mvr_abs / (double)mvcount; fps.MVc = (double)sum_mvc / (double)mvcount; fps.mvc_abs = (double)sum_mvc_abs / (double)mvcount; fps.MVrv = ((double)sum_mvrs - (fps.MVr * fps.MVr / (double)mvcount)) / (double)mvcount; fps.MVcv = ((double)sum_mvcs - (fps.MVc * fps.MVc / (double)mvcount)) / (double)mvcount; fps.mv_in_out_count = (double)sum_in_vectors / (double)(mvcount * 2); fps.new_mv_count = new_mv_count; fps.pcnt_motion = 1.0 * (double)mvcount / cpi->common.MBs; } /* TODO: handle the case when duration is set to 0, or something less * than the full time between subsequent cpi->source_time_stamps */ fps.duration = (double)(cpi->source->ts_end - cpi->source->ts_start); /* don't want to do output stats with a stack variable! */ memcpy(&cpi->twopass.this_frame_stats, &fps, sizeof(FIRSTPASS_STATS)); output_stats(cpi->output_pkt_list, &cpi->twopass.this_frame_stats); accumulate_stats(&cpi->twopass.total_stats, &fps); } /* Copy the previous Last Frame into the GF buffer if specific * conditions for doing so are met */ if ((cm->current_video_frame > 0) && (cpi->twopass.this_frame_stats.pcnt_inter > 0.20) && ((cpi->twopass.this_frame_stats.intra_error / DOUBLE_DIVIDE_CHECK(cpi->twopass.this_frame_stats.coded_error)) > 2.0)) { vp8_yv12_copy_frame(lst_yv12, gld_yv12); } /* swap frame pointers so last frame refers to the frame we just * compressed */ vp8_swap_yv12_buffer(lst_yv12, new_yv12); vp8_yv12_extend_frame_borders(lst_yv12); /* Special case for the first frame. Copy into the GF buffer as a * second reference. */ if (cm->current_video_frame == 0) { vp8_yv12_copy_frame(lst_yv12, gld_yv12); } cm->current_video_frame++; } extern const int vp8_bits_per_mb[2][QINDEX_RANGE]; /* Estimate a cost per mb attributable to overheads such as the coding of * modes and motion vectors. * Currently simplistic in its assumptions for testing. */ static double bitcost(double prob) { if (prob > 0.000122) { return -log(prob) / log(2.0); } else { return 13.0; } } static int64_t estimate_modemvcost(VP8_COMP *cpi, FIRSTPASS_STATS *fpstats) { int mv_cost; int64_t mode_cost; double av_pct_inter = fpstats->pcnt_inter / fpstats->count; double av_pct_motion = fpstats->pcnt_motion / fpstats->count; double av_intra = (1.0 - av_pct_inter); double zz_cost; double motion_cost; double intra_cost; zz_cost = bitcost(av_pct_inter - av_pct_motion); motion_cost = bitcost(av_pct_motion); intra_cost = bitcost(av_intra); /* Estimate of extra bits per mv overhead for mbs * << 9 is the normalization to the (bits * 512) used in vp8_bits_per_mb */ mv_cost = ((int)(fpstats->new_mv_count / fpstats->count) * 8) << 9; /* Crude estimate of overhead cost from modes * << 9 is the normalization to (bits * 512) used in vp8_bits_per_mb */ mode_cost = (int64_t)((((av_pct_inter - av_pct_motion) * zz_cost) + (av_pct_motion * motion_cost) + (av_intra * intra_cost)) * cpi->common.MBs) * 512; return mv_cost + mode_cost; } static double calc_correction_factor(double err_per_mb, double err_devisor, double pt_low, double pt_high, int Q) { double power_term; double error_term = err_per_mb / err_devisor; double correction_factor; /* Adjustment based on Q to power term. */ power_term = pt_low + (Q * 0.01); power_term = (power_term > pt_high) ? pt_high : power_term; /* Adjustments to error term */ /* TBD */ /* Calculate correction factor */ correction_factor = pow(error_term, power_term); /* Clip range */ correction_factor = (correction_factor < 0.05) ? 0.05 : (correction_factor > 5.0) ? 5.0 : correction_factor; return correction_factor; } static int estimate_max_q(VP8_COMP *cpi, FIRSTPASS_STATS *fpstats, int section_target_bandwitdh, int overhead_bits) { int Q; int num_mbs = cpi->common.MBs; int target_norm_bits_per_mb; double section_err = (fpstats->coded_error / fpstats->count); double err_per_mb = section_err / num_mbs; double err_correction_factor; double speed_correction = 1.0; int overhead_bits_per_mb; if (section_target_bandwitdh <= 0) { return cpi->twopass.maxq_max_limit; /* Highest value allowed */ } target_norm_bits_per_mb = (section_target_bandwitdh < (1 << 20)) ? (512 * section_target_bandwitdh) / num_mbs : 512 * (section_target_bandwitdh / num_mbs); /* Calculate a corrective factor based on a rolling ratio of bits spent * vs target bits */ if ((cpi->rolling_target_bits > 0) && (cpi->active_worst_quality < cpi->worst_quality)) { double rolling_ratio; rolling_ratio = (double)cpi->rolling_actual_bits / (double)cpi->rolling_target_bits; if (rolling_ratio < 0.95) { cpi->twopass.est_max_qcorrection_factor -= 0.005; } else if (rolling_ratio > 1.05) { cpi->twopass.est_max_qcorrection_factor += 0.005; } cpi->twopass.est_max_qcorrection_factor = (cpi->twopass.est_max_qcorrection_factor < 0.1) ? 0.1 : (cpi->twopass.est_max_qcorrection_factor > 10.0) ? 10.0 : cpi->twopass.est_max_qcorrection_factor; } /* Corrections for higher compression speed settings * (reduced compression expected) */ if ((cpi->compressor_speed == 3) || (cpi->compressor_speed == 1)) { if (cpi->oxcf.cpu_used <= 5) { speed_correction = 1.04 + (cpi->oxcf.cpu_used * 0.04); } else { speed_correction = 1.25; } } /* Estimate of overhead bits per mb */ /* Correction to overhead bits for min allowed Q. */ overhead_bits_per_mb = overhead_bits / num_mbs; overhead_bits_per_mb = (int)(overhead_bits_per_mb * pow(0.98, (double)cpi->twopass.maxq_min_limit)); /* Try and pick a max Q that will be high enough to encode the * content at the given rate. */ for (Q = cpi->twopass.maxq_min_limit; Q < cpi->twopass.maxq_max_limit; ++Q) { int bits_per_mb_at_this_q; /* Error per MB based correction factor */ err_correction_factor = calc_correction_factor(err_per_mb, 150.0, 0.40, 0.90, Q); bits_per_mb_at_this_q = vp8_bits_per_mb[INTER_FRAME][Q] + overhead_bits_per_mb; bits_per_mb_at_this_q = (int)(.5 + err_correction_factor * speed_correction * cpi->twopass.est_max_qcorrection_factor * cpi->twopass.section_max_qfactor * (double)bits_per_mb_at_this_q); /* Mode and motion overhead */ /* As Q rises in real encode loop rd code will force overhead down * We make a crude adjustment for this here as *.98 per Q step. */ overhead_bits_per_mb = (int)((double)overhead_bits_per_mb * 0.98); if (bits_per_mb_at_this_q <= target_norm_bits_per_mb) break; } /* Restriction on active max q for constrained quality mode. */ if ((cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) && (Q < cpi->cq_target_quality)) { Q = cpi->cq_target_quality; } /* Adjust maxq_min_limit and maxq_max_limit limits based on * average q observed in clip for non kf/gf.arf frames * Give average a chance to settle though. */ if ((cpi->ni_frames > ((int)cpi->twopass.total_stats.count >> 8)) && (cpi->ni_frames > 150)) { cpi->twopass.maxq_max_limit = ((cpi->ni_av_qi + 32) < cpi->worst_quality) ? (cpi->ni_av_qi + 32) : cpi->worst_quality; cpi->twopass.maxq_min_limit = ((cpi->ni_av_qi - 32) > cpi->best_quality) ? (cpi->ni_av_qi - 32) : cpi->best_quality; } return Q; } /* For cq mode estimate a cq level that matches the observed * complexity and data rate. */ static int estimate_cq(VP8_COMP *cpi, FIRSTPASS_STATS *fpstats, int section_target_bandwitdh, int overhead_bits) { int Q; int num_mbs = cpi->common.MBs; int target_norm_bits_per_mb; double section_err = (fpstats->coded_error / fpstats->count); double err_per_mb = section_err / num_mbs; double err_correction_factor; double speed_correction = 1.0; double clip_iiratio; double clip_iifactor; int overhead_bits_per_mb; target_norm_bits_per_mb = (section_target_bandwitdh < (1 << 20)) ? (512 * section_target_bandwitdh) / num_mbs : 512 * (section_target_bandwitdh / num_mbs); /* Estimate of overhead bits per mb */ overhead_bits_per_mb = overhead_bits / num_mbs; /* Corrections for higher compression speed settings * (reduced compression expected) */ if ((cpi->compressor_speed == 3) || (cpi->compressor_speed == 1)) { if (cpi->oxcf.cpu_used <= 5) { speed_correction = 1.04 + (cpi->oxcf.cpu_used * 0.04); } else { speed_correction = 1.25; } } /* II ratio correction factor for clip as a whole */ clip_iiratio = cpi->twopass.total_stats.intra_error / DOUBLE_DIVIDE_CHECK(cpi->twopass.total_stats.coded_error); clip_iifactor = 1.0 - ((clip_iiratio - 10.0) * 0.025); if (clip_iifactor < 0.80) clip_iifactor = 0.80; /* Try and pick a Q that can encode the content at the given rate. */ for (Q = 0; Q < MAXQ; ++Q) { int bits_per_mb_at_this_q; /* Error per MB based correction factor */ err_correction_factor = calc_correction_factor(err_per_mb, 100.0, 0.40, 0.90, Q); bits_per_mb_at_this_q = vp8_bits_per_mb[INTER_FRAME][Q] + overhead_bits_per_mb; bits_per_mb_at_this_q = (int)(.5 + err_correction_factor * speed_correction * clip_iifactor * (double)bits_per_mb_at_this_q); /* Mode and motion overhead */ /* As Q rises in real encode loop rd code will force overhead down * We make a crude adjustment for this here as *.98 per Q step. */ overhead_bits_per_mb = (int)((double)overhead_bits_per_mb * 0.98); if (bits_per_mb_at_this_q <= target_norm_bits_per_mb) break; } /* Clip value to range "best allowed to (worst allowed - 1)" */ Q = cq_level[Q]; if (Q >= cpi->worst_quality) Q = cpi->worst_quality - 1; if (Q < cpi->best_quality) Q = cpi->best_quality; return Q; } static int estimate_q(VP8_COMP *cpi, double section_err, int section_target_bandwitdh) { int Q; int num_mbs = cpi->common.MBs; int target_norm_bits_per_mb; double err_per_mb = section_err / num_mbs; double err_correction_factor; double speed_correction = 1.0; target_norm_bits_per_mb = (section_target_bandwitdh < (1 << 20)) ? (512 * section_target_bandwitdh) / num_mbs : 512 * (section_target_bandwitdh / num_mbs); /* Corrections for higher compression speed settings * (reduced compression expected) */ if ((cpi->compressor_speed == 3) || (cpi->compressor_speed == 1)) { if (cpi->oxcf.cpu_used <= 5) { speed_correction = 1.04 + (cpi->oxcf.cpu_used * 0.04); } else { speed_correction = 1.25; } } /* Try and pick a Q that can encode the content at the given rate. */ for (Q = 0; Q < MAXQ; ++Q) { int bits_per_mb_at_this_q; /* Error per MB based correction factor */ err_correction_factor = calc_correction_factor(err_per_mb, 150.0, 0.40, 0.90, Q); bits_per_mb_at_this_q = (int)(.5 + (err_correction_factor * speed_correction * cpi->twopass.est_max_qcorrection_factor * (double)vp8_bits_per_mb[INTER_FRAME][Q] / 1.0)); if (bits_per_mb_at_this_q <= target_norm_bits_per_mb) break; } return Q; } /* Estimate a worst case Q for a KF group */ static int estimate_kf_group_q(VP8_COMP *cpi, double section_err, int section_target_bandwitdh, double group_iiratio) { int Q; int num_mbs = cpi->common.MBs; int target_norm_bits_per_mb = (512 * section_target_bandwitdh) / num_mbs; int bits_per_mb_at_this_q; double err_per_mb = section_err / num_mbs; double err_correction_factor; double speed_correction = 1.0; double current_spend_ratio = 1.0; double pow_highq = (POW1 < 0.6) ? POW1 + 0.3 : 0.90; double pow_lowq = (POW1 < 0.7) ? POW1 + 0.1 : 0.80; double iiratio_correction_factor = 1.0; double combined_correction_factor; /* Trap special case where the target is <= 0 */ if (target_norm_bits_per_mb <= 0) return MAXQ * 2; /* Calculate a corrective factor based on a rolling ratio of bits spent * vs target bits * This is clamped to the range 0.1 to 10.0 */ if (cpi->long_rolling_target_bits <= 0) { current_spend_ratio = 10.0; } else { current_spend_ratio = (double)cpi->long_rolling_actual_bits / (double)cpi->long_rolling_target_bits; current_spend_ratio = (current_spend_ratio > 10.0) ? 10.0 : (current_spend_ratio < 0.1) ? 0.1 : current_spend_ratio; } /* Calculate a correction factor based on the quality of prediction in * the sequence as indicated by intra_inter error score ratio (IIRatio) * The idea here is to favour subsampling in the hardest sections vs * the easyest. */ iiratio_correction_factor = 1.0 - ((group_iiratio - 6.0) * 0.1); if (iiratio_correction_factor < 0.5) iiratio_correction_factor = 0.5; /* Corrections for higher compression speed settings * (reduced compression expected) */ if ((cpi->compressor_speed == 3) || (cpi->compressor_speed == 1)) { if (cpi->oxcf.cpu_used <= 5) { speed_correction = 1.04 + (cpi->oxcf.cpu_used * 0.04); } else { speed_correction = 1.25; } } /* Combine the various factors calculated above */ combined_correction_factor = speed_correction * iiratio_correction_factor * current_spend_ratio; /* Try and pick a Q that should be high enough to encode the content at * the given rate. */ for (Q = 0; Q < MAXQ; ++Q) { /* Error per MB based correction factor */ err_correction_factor = calc_correction_factor(err_per_mb, 150.0, pow_lowq, pow_highq, Q); bits_per_mb_at_this_q = (int)(.5 + (err_correction_factor * combined_correction_factor * (double)vp8_bits_per_mb[INTER_FRAME][Q])); if (bits_per_mb_at_this_q <= target_norm_bits_per_mb) break; } /* If we could not hit the target even at Max Q then estimate what Q * would have been required */ while ((bits_per_mb_at_this_q > target_norm_bits_per_mb) && (Q < (MAXQ * 2))) { bits_per_mb_at_this_q = (int)(0.96 * bits_per_mb_at_this_q); Q++; } return Q; } void vp8_init_second_pass(VP8_COMP *cpi) { FIRSTPASS_STATS this_frame; FIRSTPASS_STATS *start_pos; double two_pass_min_rate = (double)(cpi->oxcf.target_bandwidth * cpi->oxcf.two_pass_vbrmin_section / 100); zero_stats(&cpi->twopass.total_stats); zero_stats(&cpi->twopass.total_left_stats); if (!cpi->twopass.stats_in_end) return; cpi->twopass.total_stats = *cpi->twopass.stats_in_end; cpi->twopass.total_left_stats = cpi->twopass.total_stats; /* each frame can have a different duration, as the frame rate in the * source isn't guaranteed to be constant. The frame rate prior to * the first frame encoded in the second pass is a guess. However the * sum duration is not. Its calculated based on the actual durations of * all frames from the first pass. */ vp8_new_framerate(cpi, 10000000.0 * cpi->twopass.total_stats.count / cpi->twopass.total_stats.duration); cpi->output_framerate = cpi->framerate; cpi->twopass.bits_left = (int64_t)(cpi->twopass.total_stats.duration * cpi->oxcf.target_bandwidth / 10000000.0); cpi->twopass.bits_left -= (int64_t)(cpi->twopass.total_stats.duration * two_pass_min_rate / 10000000.0); /* Calculate a minimum intra value to be used in determining the IIratio * scores used in the second pass. We have this minimum to make sure * that clips that are static but "low complexity" in the intra domain * are still boosted appropriately for KF/GF/ARF */ cpi->twopass.kf_intra_err_min = KF_MB_INTRA_MIN * cpi->common.MBs; cpi->twopass.gf_intra_err_min = GF_MB_INTRA_MIN * cpi->common.MBs; /* Scan the first pass file and calculate an average Intra / Inter error * score ratio for the sequence */ { double sum_iiratio = 0.0; double IIRatio; start_pos = cpi->twopass.stats_in; /* Note starting "file" position */ while (input_stats(cpi, &this_frame) != EOF) { IIRatio = this_frame.intra_error / DOUBLE_DIVIDE_CHECK(this_frame.coded_error); IIRatio = (IIRatio < 1.0) ? 1.0 : (IIRatio > 20.0) ? 20.0 : IIRatio; sum_iiratio += IIRatio; } cpi->twopass.avg_iiratio = sum_iiratio / DOUBLE_DIVIDE_CHECK((double)cpi->twopass.total_stats.count); /* Reset file position */ reset_fpf_position(cpi, start_pos); } /* Scan the first pass file and calculate a modified total error based * upon the bias/power function used to allocate bits */ { start_pos = cpi->twopass.stats_in; /* Note starting "file" position */ cpi->twopass.modified_error_total = 0.0; cpi->twopass.modified_error_used = 0.0; while (input_stats(cpi, &this_frame) != EOF) { cpi->twopass.modified_error_total += calculate_modified_err(cpi, &this_frame); } cpi->twopass.modified_error_left = cpi->twopass.modified_error_total; reset_fpf_position(cpi, start_pos); /* Reset file position */ } } void vp8_end_second_pass(VP8_COMP *cpi) { (void)cpi; } /* This function gives and estimate of how badly we believe the prediction * quality is decaying from frame to frame. */ static double get_prediction_decay_rate(FIRSTPASS_STATS *next_frame) { double prediction_decay_rate; double motion_decay; double motion_pct = next_frame->pcnt_motion; /* Initial basis is the % mbs inter coded */ prediction_decay_rate = next_frame->pcnt_inter; /* High % motion -> somewhat higher decay rate */ motion_decay = (1.0 - (motion_pct / 20.0)); if (motion_decay < prediction_decay_rate) { prediction_decay_rate = motion_decay; } /* Adjustment to decay rate based on speed of motion */ { double this_mv_rabs; double this_mv_cabs; double distance_factor; this_mv_rabs = fabs(next_frame->mvr_abs * motion_pct); this_mv_cabs = fabs(next_frame->mvc_abs * motion_pct); distance_factor = sqrt((this_mv_rabs * this_mv_rabs) + (this_mv_cabs * this_mv_cabs)) / 250.0; distance_factor = ((distance_factor > 1.0) ? 0.0 : (1.0 - distance_factor)); if (distance_factor < prediction_decay_rate) { prediction_decay_rate = distance_factor; } } return prediction_decay_rate; } /* Function to test for a condition where a complex transition is followed * by a static section. For example in slide shows where there is a fade * between slides. This is to help with more optimal kf and gf positioning. */ static int detect_transition_to_still(VP8_COMP *cpi, int frame_interval, int still_interval, double loop_decay_rate, double decay_accumulator) { int trans_to_still = 0; /* Break clause to detect very still sections after motion * For example a static image after a fade or other transition * instead of a clean scene cut. */ if ((frame_interval > MIN_GF_INTERVAL) && (loop_decay_rate >= 0.999) && (decay_accumulator < 0.9)) { int j; FIRSTPASS_STATS *position = cpi->twopass.stats_in; FIRSTPASS_STATS tmp_next_frame; double decay_rate; /* Look ahead a few frames to see if static condition persists... */ for (j = 0; j < still_interval; ++j) { if (EOF == input_stats(cpi, &tmp_next_frame)) break; decay_rate = get_prediction_decay_rate(&tmp_next_frame); if (decay_rate < 0.999) break; } /* Reset file position */ reset_fpf_position(cpi, position); /* Only if it does do we signal a transition to still */ if (j == still_interval) trans_to_still = 1; } return trans_to_still; } /* This function detects a flash through the high relative pcnt_second_ref * score in the frame following a flash frame. The offset passed in should * reflect this */ static int detect_flash(VP8_COMP *cpi, int offset) { FIRSTPASS_STATS next_frame; int flash_detected = 0; /* Read the frame data. */ /* The return is 0 (no flash detected) if not a valid frame */ if (read_frame_stats(cpi, &next_frame, offset) != EOF) { /* What we are looking for here is a situation where there is a * brief break in prediction (such as a flash) but subsequent frames * are reasonably well predicted by an earlier (pre flash) frame. * The recovery after a flash is indicated by a high pcnt_second_ref * comapred to pcnt_inter. */ if ((next_frame.pcnt_second_ref > next_frame.pcnt_inter) && (next_frame.pcnt_second_ref >= 0.5)) { flash_detected = 1; /*if (1) { FILE *f = fopen("flash.stt", "a"); fprintf(f, "%8.0f %6.2f %6.2f\n", next_frame.frame, next_frame.pcnt_inter, next_frame.pcnt_second_ref); fclose(f); }*/ } } return flash_detected; } /* Update the motion related elements to the GF arf boost calculation */ static void accumulate_frame_motion_stats(FIRSTPASS_STATS *this_frame, double *this_frame_mv_in_out, double *mv_in_out_accumulator, double *abs_mv_in_out_accumulator, double *mv_ratio_accumulator) { double this_frame_mvr_ratio; double this_frame_mvc_ratio; double motion_pct; /* Accumulate motion stats. */ motion_pct = this_frame->pcnt_motion; /* Accumulate Motion In/Out of frame stats */ *this_frame_mv_in_out = this_frame->mv_in_out_count * motion_pct; *mv_in_out_accumulator += this_frame->mv_in_out_count * motion_pct; *abs_mv_in_out_accumulator += fabs(this_frame->mv_in_out_count * motion_pct); /* Accumulate a measure of how uniform (or conversely how random) * the motion field is. (A ratio of absmv / mv) */ if (motion_pct > 0.05) { this_frame_mvr_ratio = fabs(this_frame->mvr_abs) / DOUBLE_DIVIDE_CHECK(fabs(this_frame->MVr)); this_frame_mvc_ratio = fabs(this_frame->mvc_abs) / DOUBLE_DIVIDE_CHECK(fabs(this_frame->MVc)); *mv_ratio_accumulator += (this_frame_mvr_ratio < this_frame->mvr_abs) ? (this_frame_mvr_ratio * motion_pct) : this_frame->mvr_abs * motion_pct; *mv_ratio_accumulator += (this_frame_mvc_ratio < this_frame->mvc_abs) ? (this_frame_mvc_ratio * motion_pct) : this_frame->mvc_abs * motion_pct; } } /* Calculate a baseline boost number for the current frame. */ static double calc_frame_boost(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame, double this_frame_mv_in_out) { double frame_boost; /* Underlying boost factor is based on inter intra error ratio */ if (this_frame->intra_error > cpi->twopass.gf_intra_err_min) { frame_boost = (IIFACTOR * this_frame->intra_error / DOUBLE_DIVIDE_CHECK(this_frame->coded_error)); } else { frame_boost = (IIFACTOR * cpi->twopass.gf_intra_err_min / DOUBLE_DIVIDE_CHECK(this_frame->coded_error)); } /* Increase boost for frames where new data coming into frame * (eg zoom out). Slightly reduce boost if there is a net balance * of motion out of the frame (zoom in). * The range for this_frame_mv_in_out is -1.0 to +1.0 */ if (this_frame_mv_in_out > 0.0) { frame_boost += frame_boost * (this_frame_mv_in_out * 2.0); /* In extreme case boost is halved */ } else { frame_boost += frame_boost * (this_frame_mv_in_out / 2.0); } /* Clip to maximum */ if (frame_boost > GF_RMAX) frame_boost = GF_RMAX; return frame_boost; } #if NEW_BOOST static int calc_arf_boost(VP8_COMP *cpi, int offset, int f_frames, int b_frames, int *f_boost, int *b_boost) { FIRSTPASS_STATS this_frame; int i; double boost_score = 0.0; double mv_ratio_accumulator = 0.0; double decay_accumulator = 1.0; double this_frame_mv_in_out = 0.0; double mv_in_out_accumulator = 0.0; double abs_mv_in_out_accumulator = 0.0; double r; int flash_detected = 0; /* Search forward from the proposed arf/next gf position */ for (i = 0; i < f_frames; ++i) { if (read_frame_stats(cpi, &this_frame, (i + offset)) == EOF) break; /* Update the motion related elements to the boost calculation */ accumulate_frame_motion_stats( &this_frame, &this_frame_mv_in_out, &mv_in_out_accumulator, &abs_mv_in_out_accumulator, &mv_ratio_accumulator); /* Calculate the baseline boost number for this frame */ r = calc_frame_boost(cpi, &this_frame, this_frame_mv_in_out); /* We want to discount the flash frame itself and the recovery * frame that follows as both will have poor scores. */ flash_detected = detect_flash(cpi, (i + offset)) || detect_flash(cpi, (i + offset + 1)); /* Cumulative effect of prediction quality decay */ if (!flash_detected) { decay_accumulator = decay_accumulator * get_prediction_decay_rate(&this_frame); decay_accumulator = decay_accumulator < 0.1 ? 0.1 : decay_accumulator; } boost_score += (decay_accumulator * r); /* Break out conditions. */ if ((!flash_detected) && ((mv_ratio_accumulator > 100.0) || (abs_mv_in_out_accumulator > 3.0) || (mv_in_out_accumulator < -2.0))) { break; } } *f_boost = (int)(boost_score * 100.0) >> 4; /* Reset for backward looking loop */ boost_score = 0.0; mv_ratio_accumulator = 0.0; decay_accumulator = 1.0; this_frame_mv_in_out = 0.0; mv_in_out_accumulator = 0.0; abs_mv_in_out_accumulator = 0.0; /* Search forward from the proposed arf/next gf position */ for (i = -1; i >= -b_frames; i--) { if (read_frame_stats(cpi, &this_frame, (i + offset)) == EOF) break; /* Update the motion related elements to the boost calculation */ accumulate_frame_motion_stats( &this_frame, &this_frame_mv_in_out, &mv_in_out_accumulator, &abs_mv_in_out_accumulator, &mv_ratio_accumulator); /* Calculate the baseline boost number for this frame */ r = calc_frame_boost(cpi, &this_frame, this_frame_mv_in_out); /* We want to discount the flash frame itself and the recovery * frame that follows as both will have poor scores. */ flash_detected = detect_flash(cpi, (i + offset)) || detect_flash(cpi, (i + offset + 1)); /* Cumulative effect of prediction quality decay */ if (!flash_detected) { decay_accumulator = decay_accumulator * get_prediction_decay_rate(&this_frame); decay_accumulator = decay_accumulator < 0.1 ? 0.1 : decay_accumulator; } boost_score += (decay_accumulator * r); /* Break out conditions. */ if ((!flash_detected) && ((mv_ratio_accumulator > 100.0) || (abs_mv_in_out_accumulator > 3.0) || (mv_in_out_accumulator < -2.0))) { break; } } *b_boost = (int)(boost_score * 100.0) >> 4; return (*f_boost + *b_boost); } #endif /* Analyse and define a gf/arf group . */ static void define_gf_group(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) { FIRSTPASS_STATS next_frame; FIRSTPASS_STATS *start_pos; int i; double r; double boost_score = 0.0; double old_boost_score = 0.0; double gf_group_err = 0.0; double gf_first_frame_err = 0.0; double mod_frame_err = 0.0; double mv_ratio_accumulator = 0.0; double decay_accumulator = 1.0; double loop_decay_rate = 1.00; /* Starting decay rate */ double this_frame_mv_in_out = 0.0; double mv_in_out_accumulator = 0.0; double abs_mv_in_out_accumulator = 0.0; int max_bits = frame_max_bits(cpi); /* Max for a single frame */ unsigned int allow_alt_ref = cpi->oxcf.play_alternate && cpi->oxcf.lag_in_frames; int alt_boost = 0; int f_boost = 0; int b_boost = 0; int flash_detected; cpi->twopass.gf_group_bits = 0; cpi->twopass.gf_decay_rate = 0; vpx_clear_system_state(); start_pos = cpi->twopass.stats_in; memset(&next_frame, 0, sizeof(next_frame)); /* assure clean */ /* Load stats for the current frame. */ mod_frame_err = calculate_modified_err(cpi, this_frame); /* Note the error of the frame at the start of the group (this will be * the GF frame error if we code a normal gf */ gf_first_frame_err = mod_frame_err; /* Special treatment if the current frame is a key frame (which is also * a gf). If it is then its error score (and hence bit allocation) need * to be subtracted out from the calculation for the GF group */ if (cpi->common.frame_type == KEY_FRAME) gf_group_err -= gf_first_frame_err; /* Scan forward to try and work out how many frames the next gf group * should contain and what level of boost is appropriate for the GF * or ARF that will be coded with the group */ i = 0; while (((i < cpi->twopass.static_scene_max_gf_interval) || ((cpi->twopass.frames_to_key - i) < MIN_GF_INTERVAL)) && (i < cpi->twopass.frames_to_key)) { i++; /* Accumulate error score of frames in this gf group */ mod_frame_err = calculate_modified_err(cpi, this_frame); gf_group_err += mod_frame_err; if (EOF == input_stats(cpi, &next_frame)) break; /* Test for the case where there is a brief flash but the prediction * quality back to an earlier frame is then restored. */ flash_detected = detect_flash(cpi, 0); /* Update the motion related elements to the boost calculation */ accumulate_frame_motion_stats( &next_frame, &this_frame_mv_in_out, &mv_in_out_accumulator, &abs_mv_in_out_accumulator, &mv_ratio_accumulator); /* Calculate a baseline boost number for this frame */ r = calc_frame_boost(cpi, &next_frame, this_frame_mv_in_out); /* Cumulative effect of prediction quality decay */ if (!flash_detected) { loop_decay_rate = get_prediction_decay_rate(&next_frame); decay_accumulator = decay_accumulator * loop_decay_rate; decay_accumulator = decay_accumulator < 0.1 ? 0.1 : decay_accumulator; } boost_score += (decay_accumulator * r); /* Break clause to detect very still sections after motion * For example a staic image after a fade or other transition. */ if (detect_transition_to_still(cpi, i, 5, loop_decay_rate, decay_accumulator)) { allow_alt_ref = 0; boost_score = old_boost_score; break; } /* Break out conditions. */ if ( /* Break at cpi->max_gf_interval unless almost totally static */ (i >= cpi->max_gf_interval && (decay_accumulator < 0.995)) || ( /* Don't break out with a very short interval */ (i > MIN_GF_INTERVAL) && /* Don't break out very close to a key frame */ ((cpi->twopass.frames_to_key - i) >= MIN_GF_INTERVAL) && ((boost_score > 20.0) || (next_frame.pcnt_inter < 0.75)) && (!flash_detected) && ((mv_ratio_accumulator > 100.0) || (abs_mv_in_out_accumulator > 3.0) || (mv_in_out_accumulator < -2.0) || ((boost_score - old_boost_score) < 2.0)))) { boost_score = old_boost_score; break; } memcpy(this_frame, &next_frame, sizeof(*this_frame)); old_boost_score = boost_score; } cpi->twopass.gf_decay_rate = (i > 0) ? (int)(100.0 * (1.0 - decay_accumulator)) / i : 0; /* When using CBR apply additional buffer related upper limits */ if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) { double max_boost; /* For cbr apply buffer related limits */ if (cpi->drop_frames_allowed) { int64_t df_buffer_level = cpi->oxcf.drop_frames_water_mark * (cpi->oxcf.optimal_buffer_level / 100); if (cpi->buffer_level > df_buffer_level) { max_boost = ((double)((cpi->buffer_level - df_buffer_level) * 2 / 3) * 16.0) / DOUBLE_DIVIDE_CHECK((double)cpi->av_per_frame_bandwidth); } else { max_boost = 0.0; } } else if (cpi->buffer_level > 0) { max_boost = ((double)(cpi->buffer_level * 2 / 3) * 16.0) / DOUBLE_DIVIDE_CHECK((double)cpi->av_per_frame_bandwidth); } else { max_boost = 0.0; } if (boost_score > max_boost) boost_score = max_boost; } /* Don't allow conventional gf too near the next kf */ if ((cpi->twopass.frames_to_key - i) < MIN_GF_INTERVAL) { while (i < cpi->twopass.frames_to_key) { i++; if (EOF == input_stats(cpi, this_frame)) break; if (i < cpi->twopass.frames_to_key) { mod_frame_err = calculate_modified_err(cpi, this_frame); gf_group_err += mod_frame_err; } } } cpi->gfu_boost = (int)(boost_score * 100.0) >> 4; #if NEW_BOOST /* Alterrnative boost calculation for alt ref */ alt_boost = calc_arf_boost(cpi, 0, (i - 1), (i - 1), &f_boost, &b_boost); #endif /* Should we use the alternate reference frame */ if (allow_alt_ref && (i >= MIN_GF_INTERVAL) && /* don't use ARF very near next kf */ (i <= (cpi->twopass.frames_to_key - MIN_GF_INTERVAL)) && #if NEW_BOOST ((next_frame.pcnt_inter > 0.75) || (next_frame.pcnt_second_ref > 0.5)) && ((mv_in_out_accumulator / (double)i > -0.2) || (mv_in_out_accumulator > -2.0)) && (b_boost > 100) && (f_boost > 100)) #else (next_frame.pcnt_inter > 0.75) && ((mv_in_out_accumulator / (double)i > -0.2) || (mv_in_out_accumulator > -2.0)) && (cpi->gfu_boost > 100) && (cpi->twopass.gf_decay_rate <= (ARF_DECAY_THRESH + (cpi->gfu_boost / 200)))) #endif { int Boost; int allocation_chunks; int Q = (cpi->oxcf.fixed_q < 0) ? cpi->last_q[INTER_FRAME] : cpi->oxcf.fixed_q; int tmp_q; int arf_frame_bits = 0; int group_bits; #if NEW_BOOST cpi->gfu_boost = alt_boost; #endif /* Estimate the bits to be allocated to the group as a whole */ if ((cpi->twopass.kf_group_bits > 0) && (cpi->twopass.kf_group_error_left > 0)) { group_bits = (int)((double)cpi->twopass.kf_group_bits * (gf_group_err / (double)cpi->twopass.kf_group_error_left)); } else { group_bits = 0; } /* Boost for arf frame */ #if NEW_BOOST Boost = (alt_boost * GFQ_ADJUSTMENT) / 100; #else Boost = (cpi->gfu_boost * 3 * GFQ_ADJUSTMENT) / (2 * 100); #endif Boost += (i * 50); /* Set max and minimum boost and hence minimum allocation */ if (Boost > ((cpi->baseline_gf_interval + 1) * 200)) { Boost = ((cpi->baseline_gf_interval + 1) * 200); } else if (Boost < 125) { Boost = 125; } allocation_chunks = (i * 100) + Boost; /* Normalize Altboost and allocations chunck down to prevent overflow */ while (Boost > 1000) { Boost /= 2; allocation_chunks /= 2; } /* Calculate the number of bits to be spent on the arf based on the * boost number */ arf_frame_bits = (int)((double)Boost * (group_bits / (double)allocation_chunks)); /* Estimate if there are enough bits available to make worthwhile use * of an arf. */ tmp_q = estimate_q(cpi, mod_frame_err, (int)arf_frame_bits); /* Only use an arf if it is likely we will be able to code * it at a lower Q than the surrounding frames. */ if (tmp_q < cpi->worst_quality) { int half_gf_int; int frames_after_arf; int frames_bwd = cpi->oxcf.arnr_max_frames - 1; int frames_fwd = cpi->oxcf.arnr_max_frames - 1; cpi->source_alt_ref_pending = 1; /* * For alt ref frames the error score for the end frame of the * group (the alt ref frame) should not contribute to the group * total and hence the number of bit allocated to the group. * Rather it forms part of the next group (it is the GF at the * start of the next group) * gf_group_err -= mod_frame_err; * * For alt ref frames alt ref frame is technically part of the * GF frame for the next group but we always base the error * calculation and bit allocation on the current group of frames. * * Set the interval till the next gf or arf. * For ARFs this is the number of frames to be coded before the * future frame that is coded as an ARF. * The future frame itself is part of the next group */ cpi->baseline_gf_interval = i; /* * Define the arnr filter width for this group of frames: * We only filter frames that lie within a distance of half * the GF interval from the ARF frame. We also have to trap * cases where the filter extends beyond the end of clip. * Note: this_frame->frame has been updated in the loop * so it now points at the ARF frame. */ half_gf_int = cpi->baseline_gf_interval >> 1; frames_after_arf = (int)(cpi->twopass.total_stats.count - this_frame->frame - 1); switch (cpi->oxcf.arnr_type) { case 1: /* Backward filter */ frames_fwd = 0; if (frames_bwd > half_gf_int) frames_bwd = half_gf_int; break; case 2: /* Forward filter */ if (frames_fwd > half_gf_int) frames_fwd = half_gf_int; if (frames_fwd > frames_after_arf) frames_fwd = frames_after_arf; frames_bwd = 0; break; case 3: /* Centered filter */ default: frames_fwd >>= 1; if (frames_fwd > frames_after_arf) frames_fwd = frames_after_arf; if (frames_fwd > half_gf_int) frames_fwd = half_gf_int; frames_bwd = frames_fwd; /* For even length filter there is one more frame backward * than forward: e.g. len=6 ==> bbbAff, len=7 ==> bbbAfff. */ if (frames_bwd < half_gf_int) { frames_bwd += (cpi->oxcf.arnr_max_frames + 1) & 0x1; } break; } cpi->active_arnr_frames = frames_bwd + 1 + frames_fwd; } else { cpi->source_alt_ref_pending = 0; cpi->baseline_gf_interval = i; } } else { cpi->source_alt_ref_pending = 0; cpi->baseline_gf_interval = i; } /* * Now decide how many bits should be allocated to the GF group as a * proportion of those remaining in the kf group. * The final key frame group in the clip is treated as a special case * where cpi->twopass.kf_group_bits is tied to cpi->twopass.bits_left. * This is also important for short clips where there may only be one * key frame. */ if (cpi->twopass.frames_to_key >= (int)(cpi->twopass.total_stats.count - cpi->common.current_video_frame)) { cpi->twopass.kf_group_bits = (cpi->twopass.bits_left > 0) ? cpi->twopass.bits_left : 0; } /* Calculate the bits to be allocated to the group as a whole */ if ((cpi->twopass.kf_group_bits > 0) && (cpi->twopass.kf_group_error_left > 0)) { cpi->twopass.gf_group_bits = (int64_t)(cpi->twopass.kf_group_bits * (gf_group_err / cpi->twopass.kf_group_error_left)); } else { cpi->twopass.gf_group_bits = 0; } cpi->twopass.gf_group_bits = (cpi->twopass.gf_group_bits < 0) ? 0 : (cpi->twopass.gf_group_bits > cpi->twopass.kf_group_bits) ? cpi->twopass.kf_group_bits : cpi->twopass.gf_group_bits; /* Clip cpi->twopass.gf_group_bits based on user supplied data rate * variability limit (cpi->oxcf.two_pass_vbrmax_section) */ if (cpi->twopass.gf_group_bits > (int64_t)max_bits * cpi->baseline_gf_interval) { cpi->twopass.gf_group_bits = (int64_t)max_bits * cpi->baseline_gf_interval; } /* Reset the file position */ reset_fpf_position(cpi, start_pos); /* Update the record of error used so far (only done once per gf group) */ cpi->twopass.modified_error_used += gf_group_err; /* Assign bits to the arf or gf. */ for (i = 0; i <= (cpi->source_alt_ref_pending && cpi->common.frame_type != KEY_FRAME); i++) { int Boost; int allocation_chunks; int Q = (cpi->oxcf.fixed_q < 0) ? cpi->last_q[INTER_FRAME] : cpi->oxcf.fixed_q; int gf_bits; /* For ARF frames */ if (cpi->source_alt_ref_pending && i == 0) { #if NEW_BOOST Boost = (alt_boost * GFQ_ADJUSTMENT) / 100; #else Boost = (cpi->gfu_boost * 3 * GFQ_ADJUSTMENT) / (2 * 100); #endif Boost += (cpi->baseline_gf_interval * 50); /* Set max and minimum boost and hence minimum allocation */ if (Boost > ((cpi->baseline_gf_interval + 1) * 200)) { Boost = ((cpi->baseline_gf_interval + 1) * 200); } else if (Boost < 125) { Boost = 125; } allocation_chunks = ((cpi->baseline_gf_interval + 1) * 100) + Boost; } /* Else for standard golden frames */ else { /* boost based on inter / intra ratio of subsequent frames */ Boost = (cpi->gfu_boost * GFQ_ADJUSTMENT) / 100; /* Set max and minimum boost and hence minimum allocation */ if (Boost > (cpi->baseline_gf_interval * 150)) { Boost = (cpi->baseline_gf_interval * 150); } else if (Boost < 125) { Boost = 125; } allocation_chunks = (cpi->baseline_gf_interval * 100) + (Boost - 100); } /* Normalize Altboost and allocations chunck down to prevent overflow */ while (Boost > 1000) { Boost /= 2; allocation_chunks /= 2; } /* Calculate the number of bits to be spent on the gf or arf based on * the boost number */ gf_bits = (int)((double)Boost * (cpi->twopass.gf_group_bits / (double)allocation_chunks)); /* If the frame that is to be boosted is simpler than the average for * the gf/arf group then use an alternative calculation * based on the error score of the frame itself */ if (mod_frame_err < gf_group_err / (double)cpi->baseline_gf_interval) { double alt_gf_grp_bits; int alt_gf_bits; alt_gf_grp_bits = (double)cpi->twopass.kf_group_bits * (mod_frame_err * (double)cpi->baseline_gf_interval) / DOUBLE_DIVIDE_CHECK((double)cpi->twopass.kf_group_error_left); alt_gf_bits = (int)((double)Boost * (alt_gf_grp_bits / (double)allocation_chunks)); if (gf_bits > alt_gf_bits) { gf_bits = alt_gf_bits; } } /* Else if it is harder than other frames in the group make sure it at * least receives an allocation in keeping with its relative error * score, otherwise it may be worse off than an "un-boosted" frame */ else { // Avoid division by 0 by clamping cpi->twopass.kf_group_error_left to 1 int alt_gf_bits = (int)((double)cpi->twopass.kf_group_bits * mod_frame_err / (double)VPXMAX(cpi->twopass.kf_group_error_left, 1)); if (alt_gf_bits > gf_bits) { gf_bits = alt_gf_bits; } } /* Apply an additional limit for CBR */ if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) { if (cpi->twopass.gf_bits > (int)(cpi->buffer_level >> 1)) { cpi->twopass.gf_bits = (int)(cpi->buffer_level >> 1); } } /* Don't allow a negative value for gf_bits */ if (gf_bits < 0) gf_bits = 0; /* Add in minimum for a frame */ gf_bits += cpi->min_frame_bandwidth; if (i == 0) { cpi->twopass.gf_bits = gf_bits; } if (i == 1 || (!cpi->source_alt_ref_pending && (cpi->common.frame_type != KEY_FRAME))) { /* Per frame bit target for this frame */ cpi->per_frame_bandwidth = gf_bits; } } { /* Adjust KF group bits and error remainin */ cpi->twopass.kf_group_error_left -= (int64_t)gf_group_err; cpi->twopass.kf_group_bits -= cpi->twopass.gf_group_bits; if (cpi->twopass.kf_group_bits < 0) cpi->twopass.kf_group_bits = 0; /* Note the error score left in the remaining frames of the group. * For normal GFs we want to remove the error score for the first * frame of the group (except in Key frame case where this has * already happened) */ if (!cpi->source_alt_ref_pending && cpi->common.frame_type != KEY_FRAME) { cpi->twopass.gf_group_error_left = (int)(gf_group_err - gf_first_frame_err); } else { cpi->twopass.gf_group_error_left = (int)gf_group_err; } cpi->twopass.gf_group_bits -= cpi->twopass.gf_bits - cpi->min_frame_bandwidth; if (cpi->twopass.gf_group_bits < 0) cpi->twopass.gf_group_bits = 0; /* This condition could fail if there are two kfs very close together * despite (MIN_GF_INTERVAL) and would cause a divide by 0 in the * calculation of cpi->twopass.alt_extra_bits. */ if (cpi->baseline_gf_interval >= 3) { #if NEW_BOOST int boost = (cpi->source_alt_ref_pending) ? b_boost : cpi->gfu_boost; #else int boost = cpi->gfu_boost; #endif if (boost >= 150) { int pct_extra; pct_extra = (boost - 100) / 50; pct_extra = (pct_extra > 20) ? 20 : pct_extra; cpi->twopass.alt_extra_bits = (int)(cpi->twopass.gf_group_bits * pct_extra) / 100; cpi->twopass.gf_group_bits -= cpi->twopass.alt_extra_bits; cpi->twopass.alt_extra_bits /= ((cpi->baseline_gf_interval - 1) >> 1); } else { cpi->twopass.alt_extra_bits = 0; } } else { cpi->twopass.alt_extra_bits = 0; } } /* Adjustments based on a measure of complexity of the section */ if (cpi->common.frame_type != KEY_FRAME) { FIRSTPASS_STATS sectionstats; double Ratio; zero_stats(§ionstats); reset_fpf_position(cpi, start_pos); for (i = 0; i < cpi->baseline_gf_interval; ++i) { input_stats(cpi, &next_frame); accumulate_stats(§ionstats, &next_frame); } avg_stats(§ionstats); cpi->twopass.section_intra_rating = (unsigned int)(sectionstats.intra_error / DOUBLE_DIVIDE_CHECK(sectionstats.coded_error)); Ratio = sectionstats.intra_error / DOUBLE_DIVIDE_CHECK(sectionstats.coded_error); cpi->twopass.section_max_qfactor = 1.0 - ((Ratio - 10.0) * 0.025); if (cpi->twopass.section_max_qfactor < 0.80) { cpi->twopass.section_max_qfactor = 0.80; } reset_fpf_position(cpi, start_pos); } } /* Allocate bits to a normal frame that is neither a gf an arf or a key frame. */ static void assign_std_frame_bits(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) { int target_frame_size; double modified_err; double err_fraction; int max_bits = frame_max_bits(cpi); /* Max for a single frame */ /* Calculate modified prediction error used in bit allocation */ modified_err = calculate_modified_err(cpi, this_frame); /* What portion of the remaining GF group error is used by this frame */ if (cpi->twopass.gf_group_error_left > 0) { err_fraction = modified_err / cpi->twopass.gf_group_error_left; } else { err_fraction = 0.0; } /* How many of those bits available for allocation should we give it? */ target_frame_size = (int)((double)cpi->twopass.gf_group_bits * err_fraction); /* Clip to target size to 0 - max_bits (or cpi->twopass.gf_group_bits) * at the top end. */ if (target_frame_size < 0) { target_frame_size = 0; } else { if (target_frame_size > max_bits) target_frame_size = max_bits; if (target_frame_size > cpi->twopass.gf_group_bits) { target_frame_size = (int)cpi->twopass.gf_group_bits; } } /* Adjust error and bits remaining */ cpi->twopass.gf_group_error_left -= (int)modified_err; cpi->twopass.gf_group_bits -= target_frame_size; if (cpi->twopass.gf_group_bits < 0) cpi->twopass.gf_group_bits = 0; /* Add in the minimum number of bits that is set aside for every frame. */ target_frame_size += cpi->min_frame_bandwidth; /* Every other frame gets a few extra bits */ if ((cpi->frames_since_golden & 0x01) && (cpi->frames_till_gf_update_due > 0)) { target_frame_size += cpi->twopass.alt_extra_bits; } /* Per frame bit target for this frame */ cpi->per_frame_bandwidth = target_frame_size; } void vp8_second_pass(VP8_COMP *cpi) { int tmp_q; int frames_left = (int)(cpi->twopass.total_stats.count - cpi->common.current_video_frame); FIRSTPASS_STATS this_frame; FIRSTPASS_STATS this_frame_copy; double this_frame_intra_error; double this_frame_coded_error; int overhead_bits; vp8_zero(this_frame); if (!cpi->twopass.stats_in) { return; } vpx_clear_system_state(); if (EOF == input_stats(cpi, &this_frame)) return; this_frame_intra_error = this_frame.intra_error; this_frame_coded_error = this_frame.coded_error; /* keyframe and section processing ! */ if (cpi->twopass.frames_to_key == 0) { /* Define next KF group and assign bits to it */ memcpy(&this_frame_copy, &this_frame, sizeof(this_frame)); find_next_key_frame(cpi, &this_frame_copy); /* Special case: Error error_resilient_mode mode does not make much * sense for two pass but with its current meaning this code is * designed to stop outlandish behaviour if someone does set it when * using two pass. It effectively disables GF groups. This is * temporary code until we decide what should really happen in this * case. */ if (cpi->oxcf.error_resilient_mode) { cpi->twopass.gf_group_bits = cpi->twopass.kf_group_bits; cpi->twopass.gf_group_error_left = (int)cpi->twopass.kf_group_error_left; cpi->baseline_gf_interval = cpi->twopass.frames_to_key; cpi->frames_till_gf_update_due = cpi->baseline_gf_interval; cpi->source_alt_ref_pending = 0; } } /* Is this a GF / ARF (Note that a KF is always also a GF) */ if (cpi->frames_till_gf_update_due == 0) { /* Define next gf group and assign bits to it */ memcpy(&this_frame_copy, &this_frame, sizeof(this_frame)); define_gf_group(cpi, &this_frame_copy); /* If we are going to code an altref frame at the end of the group * and the current frame is not a key frame.... If the previous * group used an arf this frame has already benefited from that arf * boost and it should not be given extra bits If the previous * group was NOT coded using arf we may want to apply some boost to * this GF as well */ if (cpi->source_alt_ref_pending && (cpi->common.frame_type != KEY_FRAME)) { /* Assign a standard frames worth of bits from those allocated * to the GF group */ int bak = cpi->per_frame_bandwidth; memcpy(&this_frame_copy, &this_frame, sizeof(this_frame)); assign_std_frame_bits(cpi, &this_frame_copy); cpi->per_frame_bandwidth = bak; } } /* Otherwise this is an ordinary frame */ else { /* Special case: Error error_resilient_mode mode does not make much * sense for two pass but with its current meaning but this code is * designed to stop outlandish behaviour if someone does set it * when using two pass. It effectively disables GF groups. This is * temporary code till we decide what should really happen in this * case. */ if (cpi->oxcf.error_resilient_mode) { cpi->frames_till_gf_update_due = cpi->twopass.frames_to_key; if (cpi->common.frame_type != KEY_FRAME) { /* Assign bits from those allocated to the GF group */ memcpy(&this_frame_copy, &this_frame, sizeof(this_frame)); assign_std_frame_bits(cpi, &this_frame_copy); } } else { /* Assign bits from those allocated to the GF group */ memcpy(&this_frame_copy, &this_frame, sizeof(this_frame)); assign_std_frame_bits(cpi, &this_frame_copy); } } /* Keep a globally available copy of this and the next frame's iiratio. */ cpi->twopass.this_iiratio = (unsigned int)(this_frame_intra_error / DOUBLE_DIVIDE_CHECK(this_frame_coded_error)); { FIRSTPASS_STATS next_frame; if (lookup_next_frame_stats(cpi, &next_frame) != EOF) { cpi->twopass.next_iiratio = (unsigned int)(next_frame.intra_error / DOUBLE_DIVIDE_CHECK(next_frame.coded_error)); } } /* Set nominal per second bandwidth for this frame */ cpi->target_bandwidth = (int)(cpi->per_frame_bandwidth * cpi->output_framerate); if (cpi->target_bandwidth < 0) cpi->target_bandwidth = 0; /* Account for mv, mode and other overheads. */ overhead_bits = (int)estimate_modemvcost(cpi, &cpi->twopass.total_left_stats); /* Special case code for first frame. */ if (cpi->common.current_video_frame == 0) { cpi->twopass.est_max_qcorrection_factor = 1.0; /* Set a cq_level in constrained quality mode. */ if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) { int est_cq; est_cq = estimate_cq(cpi, &cpi->twopass.total_left_stats, (int)(cpi->twopass.bits_left / frames_left), overhead_bits); cpi->cq_target_quality = cpi->oxcf.cq_level; if (est_cq > cpi->cq_target_quality) cpi->cq_target_quality = est_cq; } /* guess at maxq needed in 2nd pass */ cpi->twopass.maxq_max_limit = cpi->worst_quality; cpi->twopass.maxq_min_limit = cpi->best_quality; tmp_q = estimate_max_q(cpi, &cpi->twopass.total_left_stats, (int)(cpi->twopass.bits_left / frames_left), overhead_bits); /* Limit the maxq value returned subsequently. * This increases the risk of overspend or underspend if the initial * estimate for the clip is bad, but helps prevent excessive * variation in Q, especially near the end of a clip * where for example a small overspend may cause Q to crash */ cpi->twopass.maxq_max_limit = ((tmp_q + 32) < cpi->worst_quality) ? (tmp_q + 32) : cpi->worst_quality; cpi->twopass.maxq_min_limit = ((tmp_q - 32) > cpi->best_quality) ? (tmp_q - 32) : cpi->best_quality; cpi->active_worst_quality = tmp_q; cpi->ni_av_qi = tmp_q; } /* The last few frames of a clip almost always have to few or too many * bits and for the sake of over exact rate control we don't want to make * radical adjustments to the allowed quantizer range just to use up a * few surplus bits or get beneath the target rate. */ else if ((cpi->common.current_video_frame < (((unsigned int)cpi->twopass.total_stats.count * 255) >> 8)) && ((cpi->common.current_video_frame + cpi->baseline_gf_interval) < (unsigned int)cpi->twopass.total_stats.count)) { if (frames_left < 1) frames_left = 1; tmp_q = estimate_max_q(cpi, &cpi->twopass.total_left_stats, (int)(cpi->twopass.bits_left / frames_left), overhead_bits); /* Move active_worst_quality but in a damped way */ if (tmp_q > cpi->active_worst_quality) { cpi->active_worst_quality++; } else if (tmp_q < cpi->active_worst_quality) { cpi->active_worst_quality--; } cpi->active_worst_quality = ((cpi->active_worst_quality * 3) + tmp_q + 2) / 4; } cpi->twopass.frames_to_key--; /* Update the total stats remaining sturcture */ subtract_stats(&cpi->twopass.total_left_stats, &this_frame); } static int test_candidate_kf(VP8_COMP *cpi, FIRSTPASS_STATS *last_frame, FIRSTPASS_STATS *this_frame, FIRSTPASS_STATS *next_frame) { int is_viable_kf = 0; /* Does the frame satisfy the primary criteria of a key frame * If so, then examine how well it predicts subsequent frames */ if ((this_frame->pcnt_second_ref < 0.10) && (next_frame->pcnt_second_ref < 0.10) && ((this_frame->pcnt_inter < 0.05) || (((this_frame->pcnt_inter - this_frame->pcnt_neutral) < .25) && ((this_frame->intra_error / DOUBLE_DIVIDE_CHECK(this_frame->coded_error)) < 2.5) && ((fabs(last_frame->coded_error - this_frame->coded_error) / DOUBLE_DIVIDE_CHECK(this_frame->coded_error) > .40) || (fabs(last_frame->intra_error - this_frame->intra_error) / DOUBLE_DIVIDE_CHECK(this_frame->intra_error) > .40) || ((next_frame->intra_error / DOUBLE_DIVIDE_CHECK(next_frame->coded_error)) > 3.5))))) { int i; FIRSTPASS_STATS *start_pos; FIRSTPASS_STATS local_next_frame; double boost_score = 0.0; double old_boost_score = 0.0; double decay_accumulator = 1.0; double next_iiratio; memcpy(&local_next_frame, next_frame, sizeof(*next_frame)); /* Note the starting file position so we can reset to it */ start_pos = cpi->twopass.stats_in; /* Examine how well the key frame predicts subsequent frames */ for (i = 0; i < 16; ++i) { next_iiratio = (IIKFACTOR1 * local_next_frame.intra_error / DOUBLE_DIVIDE_CHECK(local_next_frame.coded_error)); if (next_iiratio > RMAX) next_iiratio = RMAX; /* Cumulative effect of decay in prediction quality */ if (local_next_frame.pcnt_inter > 0.85) { decay_accumulator = decay_accumulator * local_next_frame.pcnt_inter; } else { decay_accumulator = decay_accumulator * ((0.85 + local_next_frame.pcnt_inter) / 2.0); } /* Keep a running total */ boost_score += (decay_accumulator * next_iiratio); /* Test various breakout clauses */ if ((local_next_frame.pcnt_inter < 0.05) || (next_iiratio < 1.5) || (((local_next_frame.pcnt_inter - local_next_frame.pcnt_neutral) < 0.20) && (next_iiratio < 3.0)) || ((boost_score - old_boost_score) < 0.5) || (local_next_frame.intra_error < 200)) { break; } old_boost_score = boost_score; /* Get the next frame details */ if (EOF == input_stats(cpi, &local_next_frame)) break; } /* If there is tolerable prediction for at least the next 3 frames * then break out else discard this pottential key frame and move on */ if (boost_score > 5.0 && (i > 3)) { is_viable_kf = 1; } else { /* Reset the file position */ reset_fpf_position(cpi, start_pos); is_viable_kf = 0; } } return is_viable_kf; } static void find_next_key_frame(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) { int i, j; FIRSTPASS_STATS last_frame; FIRSTPASS_STATS first_frame; FIRSTPASS_STATS next_frame; FIRSTPASS_STATS *start_position; double decay_accumulator = 1.0; double boost_score = 0; double old_boost_score = 0.0; double loop_decay_rate; double kf_mod_err = 0.0; double kf_group_err = 0.0; double kf_group_intra_err = 0.0; double kf_group_coded_err = 0.0; double recent_loop_decay[8] = { 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 }; memset(&next_frame, 0, sizeof(next_frame)); vpx_clear_system_state(); start_position = cpi->twopass.stats_in; cpi->common.frame_type = KEY_FRAME; /* is this a forced key frame by interval */ cpi->this_key_frame_forced = cpi->next_key_frame_forced; /* Clear the alt ref active flag as this can never be active on a key * frame */ cpi->source_alt_ref_active = 0; /* Kf is always a gf so clear frames till next gf counter */ cpi->frames_till_gf_update_due = 0; cpi->twopass.frames_to_key = 1; /* Take a copy of the initial frame details */ memcpy(&first_frame, this_frame, sizeof(*this_frame)); cpi->twopass.kf_group_bits = 0; cpi->twopass.kf_group_error_left = 0; kf_mod_err = calculate_modified_err(cpi, this_frame); /* find the next keyframe */ i = 0; while (cpi->twopass.stats_in < cpi->twopass.stats_in_end) { /* Accumulate kf group error */ kf_group_err += calculate_modified_err(cpi, this_frame); /* These figures keep intra and coded error counts for all frames * including key frames in the group. The effect of the key frame * itself can be subtracted out using the first_frame data * collected above */ kf_group_intra_err += this_frame->intra_error; kf_group_coded_err += this_frame->coded_error; /* Load the next frame's stats. */ memcpy(&last_frame, this_frame, sizeof(*this_frame)); input_stats(cpi, this_frame); /* Provided that we are not at the end of the file... */ if (cpi->oxcf.auto_key && lookup_next_frame_stats(cpi, &next_frame) != EOF) { /* Normal scene cut check */ if ((i >= MIN_GF_INTERVAL) && test_candidate_kf(cpi, &last_frame, this_frame, &next_frame)) { break; } /* How fast is prediction quality decaying */ loop_decay_rate = get_prediction_decay_rate(&next_frame); /* We want to know something about the recent past... rather than * as used elsewhere where we are concened with decay in prediction * quality since the last GF or KF. */ recent_loop_decay[i % 8] = loop_decay_rate; decay_accumulator = 1.0; for (j = 0; j < 8; ++j) { decay_accumulator = decay_accumulator * recent_loop_decay[j]; } /* Special check for transition or high motion followed by a * static scene. */ if (detect_transition_to_still(cpi, i, ((int)(cpi->key_frame_frequency) - (int)i), loop_decay_rate, decay_accumulator)) { break; } /* Step on to the next frame */ cpi->twopass.frames_to_key++; /* If we don't have a real key frame within the next two * forcekeyframeevery intervals then break out of the loop. */ if (cpi->twopass.frames_to_key >= 2 * (int)cpi->key_frame_frequency) { break; } } else { cpi->twopass.frames_to_key++; } i++; } /* If there is a max kf interval set by the user we must obey it. * We already breakout of the loop above at 2x max. * This code centers the extra kf if the actual natural * interval is between 1x and 2x */ if (cpi->oxcf.auto_key && cpi->twopass.frames_to_key > (int)cpi->key_frame_frequency) { FIRSTPASS_STATS *current_pos = cpi->twopass.stats_in; FIRSTPASS_STATS tmp_frame; cpi->twopass.frames_to_key /= 2; /* Copy first frame details */ memcpy(&tmp_frame, &first_frame, sizeof(first_frame)); /* Reset to the start of the group */ reset_fpf_position(cpi, start_position); kf_group_err = 0; kf_group_intra_err = 0; kf_group_coded_err = 0; /* Rescan to get the correct error data for the forced kf group */ for (i = 0; i < cpi->twopass.frames_to_key; ++i) { /* Accumulate kf group errors */ kf_group_err += calculate_modified_err(cpi, &tmp_frame); kf_group_intra_err += tmp_frame.intra_error; kf_group_coded_err += tmp_frame.coded_error; /* Load a the next frame's stats */ input_stats(cpi, &tmp_frame); } /* Reset to the start of the group */ reset_fpf_position(cpi, current_pos); cpi->next_key_frame_forced = 1; } else { cpi->next_key_frame_forced = 0; } /* Special case for the last frame of the file */ if (cpi->twopass.stats_in >= cpi->twopass.stats_in_end) { /* Accumulate kf group error */ kf_group_err += calculate_modified_err(cpi, this_frame); /* These figures keep intra and coded error counts for all frames * including key frames in the group. The effect of the key frame * itself can be subtracted out using the first_frame data * collected above */ kf_group_intra_err += this_frame->intra_error; kf_group_coded_err += this_frame->coded_error; } /* Calculate the number of bits that should be assigned to the kf group. */ if ((cpi->twopass.bits_left > 0) && (cpi->twopass.modified_error_left > 0.0)) { /* Max for a single normal frame (not key frame) */ int max_bits = frame_max_bits(cpi); /* Maximum bits for the kf group */ int64_t max_grp_bits; /* Default allocation based on bits left and relative * complexity of the section */ cpi->twopass.kf_group_bits = (int64_t)(cpi->twopass.bits_left * (kf_group_err / cpi->twopass.modified_error_left)); /* Clip based on maximum per frame rate defined by the user. */ max_grp_bits = (int64_t)max_bits * (int64_t)cpi->twopass.frames_to_key; if (cpi->twopass.kf_group_bits > max_grp_bits) { cpi->twopass.kf_group_bits = max_grp_bits; } /* Additional special case for CBR if buffer is getting full. */ if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) { int64_t opt_buffer_lvl = cpi->oxcf.optimal_buffer_level; int64_t buffer_lvl = cpi->buffer_level; /* If the buffer is near or above the optimal and this kf group is * not being allocated much then increase the allocation a bit. */ if (buffer_lvl >= opt_buffer_lvl) { int64_t high_water_mark = (opt_buffer_lvl + cpi->oxcf.maximum_buffer_size) >> 1; int64_t av_group_bits; /* Av bits per frame * number of frames */ av_group_bits = (int64_t)cpi->av_per_frame_bandwidth * (int64_t)cpi->twopass.frames_to_key; /* We are at or above the maximum. */ if (cpi->buffer_level >= high_water_mark) { int64_t min_group_bits; min_group_bits = av_group_bits + (int64_t)(buffer_lvl - high_water_mark); if (cpi->twopass.kf_group_bits < min_group_bits) { cpi->twopass.kf_group_bits = min_group_bits; } } /* We are above optimal but below the maximum */ else if (cpi->twopass.kf_group_bits < av_group_bits) { int64_t bits_below_av = av_group_bits - cpi->twopass.kf_group_bits; cpi->twopass.kf_group_bits += (int64_t)( (double)bits_below_av * (double)(buffer_lvl - opt_buffer_lvl) / (double)(high_water_mark - opt_buffer_lvl)); } } } } else { cpi->twopass.kf_group_bits = 0; } /* Reset the first pass file position */ reset_fpf_position(cpi, start_position); /* determine how big to make this keyframe based on how well the * subsequent frames use inter blocks */ decay_accumulator = 1.0; boost_score = 0.0; for (i = 0; i < cpi->twopass.frames_to_key; ++i) { double r; if (EOF == input_stats(cpi, &next_frame)) break; if (next_frame.intra_error > cpi->twopass.kf_intra_err_min) { r = (IIKFACTOR2 * next_frame.intra_error / DOUBLE_DIVIDE_CHECK(next_frame.coded_error)); } else { r = (IIKFACTOR2 * cpi->twopass.kf_intra_err_min / DOUBLE_DIVIDE_CHECK(next_frame.coded_error)); } if (r > RMAX) r = RMAX; /* How fast is prediction quality decaying */ loop_decay_rate = get_prediction_decay_rate(&next_frame); decay_accumulator = decay_accumulator * loop_decay_rate; decay_accumulator = decay_accumulator < 0.1 ? 0.1 : decay_accumulator; boost_score += (decay_accumulator * r); if ((i > MIN_GF_INTERVAL) && ((boost_score - old_boost_score) < 1.0)) { break; } old_boost_score = boost_score; } if (1) { FIRSTPASS_STATS sectionstats; double Ratio; zero_stats(§ionstats); reset_fpf_position(cpi, start_position); for (i = 0; i < cpi->twopass.frames_to_key; ++i) { input_stats(cpi, &next_frame); accumulate_stats(§ionstats, &next_frame); } avg_stats(§ionstats); cpi->twopass.section_intra_rating = (unsigned int)(sectionstats.intra_error / DOUBLE_DIVIDE_CHECK(sectionstats.coded_error)); Ratio = sectionstats.intra_error / DOUBLE_DIVIDE_CHECK(sectionstats.coded_error); cpi->twopass.section_max_qfactor = 1.0 - ((Ratio - 10.0) * 0.025); if (cpi->twopass.section_max_qfactor < 0.80) { cpi->twopass.section_max_qfactor = 0.80; } } /* When using CBR apply additional buffer fullness related upper limits */ if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) { double max_boost; if (cpi->drop_frames_allowed) { int df_buffer_level = (int)(cpi->oxcf.drop_frames_water_mark * (cpi->oxcf.optimal_buffer_level / 100)); if (cpi->buffer_level > df_buffer_level) { max_boost = ((double)((cpi->buffer_level - df_buffer_level) * 2 / 3) * 16.0) / DOUBLE_DIVIDE_CHECK((double)cpi->av_per_frame_bandwidth); } else { max_boost = 0.0; } } else if (cpi->buffer_level > 0) { max_boost = ((double)(cpi->buffer_level * 2 / 3) * 16.0) / DOUBLE_DIVIDE_CHECK((double)cpi->av_per_frame_bandwidth); } else { max_boost = 0.0; } if (boost_score > max_boost) boost_score = max_boost; } /* Reset the first pass file position */ reset_fpf_position(cpi, start_position); /* Work out how many bits to allocate for the key frame itself */ if (1) { int kf_boost = (int)boost_score; int allocation_chunks; int Counter = cpi->twopass.frames_to_key; int alt_kf_bits; YV12_BUFFER_CONFIG *lst_yv12 = &cpi->common.yv12_fb[cpi->common.lst_fb_idx]; /* Min boost based on kf interval */ #if 0 while ((kf_boost < 48) && (Counter > 0)) { Counter -= 2; kf_boost ++; } #endif if (kf_boost < 48) { kf_boost += ((Counter + 1) >> 1); if (kf_boost > 48) kf_boost = 48; } /* bigger frame sizes need larger kf boosts, smaller frames smaller * boosts... */ if ((lst_yv12->y_width * lst_yv12->y_height) > (320 * 240)) { kf_boost += 2 * (lst_yv12->y_width * lst_yv12->y_height) / (320 * 240); } else if ((lst_yv12->y_width * lst_yv12->y_height) < (320 * 240)) { kf_boost -= 4 * (320 * 240) / (lst_yv12->y_width * lst_yv12->y_height); } /* Min KF boost */ kf_boost = (int)((double)kf_boost * 100.0) >> 4; /* Scale 16 to 100 */ if (kf_boost < 250) kf_boost = 250; /* * We do three calculations for kf size. * The first is based on the error score for the whole kf group. * The second (optionaly) on the key frames own error if this is * smaller than the average for the group. * The final one insures that the frame receives at least the * allocation it would have received based on its own error score vs * the error score remaining * Special case if the sequence appears almost totaly static * as measured by the decay accumulator. In this case we want to * spend almost all of the bits on the key frame. * cpi->twopass.frames_to_key-1 because key frame itself is taken * care of by kf_boost. */ if (decay_accumulator >= 0.99) { allocation_chunks = ((cpi->twopass.frames_to_key - 1) * 10) + kf_boost; } else { allocation_chunks = ((cpi->twopass.frames_to_key - 1) * 100) + kf_boost; } /* Normalize Altboost and allocations chunck down to prevent overflow */ while (kf_boost > 1000) { kf_boost /= 2; allocation_chunks /= 2; } cpi->twopass.kf_group_bits = (cpi->twopass.kf_group_bits < 0) ? 0 : cpi->twopass.kf_group_bits; /* Calculate the number of bits to be spent on the key frame */ cpi->twopass.kf_bits = (int)((double)kf_boost * ((double)cpi->twopass.kf_group_bits / (double)allocation_chunks)); /* Apply an additional limit for CBR */ if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) { if (cpi->twopass.kf_bits > (int)((3 * cpi->buffer_level) >> 2)) { cpi->twopass.kf_bits = (int)((3 * cpi->buffer_level) >> 2); } } /* If the key frame is actually easier than the average for the * kf group (which does sometimes happen... eg a blank intro frame) * Then use an alternate calculation based on the kf error score * which should give a smaller key frame. */ if (kf_mod_err < kf_group_err / cpi->twopass.frames_to_key) { double alt_kf_grp_bits = ((double)cpi->twopass.bits_left * (kf_mod_err * (double)cpi->twopass.frames_to_key) / DOUBLE_DIVIDE_CHECK(cpi->twopass.modified_error_left)); alt_kf_bits = (int)((double)kf_boost * (alt_kf_grp_bits / (double)allocation_chunks)); if (cpi->twopass.kf_bits > alt_kf_bits) { cpi->twopass.kf_bits = alt_kf_bits; } } /* Else if it is much harder than other frames in the group make sure * it at least receives an allocation in keeping with its relative * error score */ else { alt_kf_bits = (int)((double)cpi->twopass.bits_left * (kf_mod_err / DOUBLE_DIVIDE_CHECK( cpi->twopass.modified_error_left))); if (alt_kf_bits > cpi->twopass.kf_bits) { cpi->twopass.kf_bits = alt_kf_bits; } } cpi->twopass.kf_group_bits -= cpi->twopass.kf_bits; /* Add in the minimum frame allowance */ cpi->twopass.kf_bits += cpi->min_frame_bandwidth; /* Peer frame bit target for this frame */ cpi->per_frame_bandwidth = cpi->twopass.kf_bits; /* Convert to a per second bitrate */ cpi->target_bandwidth = (int)(cpi->twopass.kf_bits * cpi->output_framerate); } /* Note the total error score of the kf group minus the key frame itself */ cpi->twopass.kf_group_error_left = (int)(kf_group_err - kf_mod_err); /* Adjust the count of total modified error left. The count of bits left * is adjusted elsewhere based on real coded frame sizes */ cpi->twopass.modified_error_left -= kf_group_err; if (cpi->oxcf.allow_spatial_resampling) { int resample_trigger = 0; int last_kf_resampled = 0; int kf_q; int scale_val = 0; int hr, hs, vr, vs; int new_width = cpi->oxcf.Width; int new_height = cpi->oxcf.Height; int projected_buffer_level; int tmp_q; double projected_bits_perframe; double group_iiratio = (kf_group_intra_err - first_frame.intra_error) / (kf_group_coded_err - first_frame.coded_error); double err_per_frame = kf_group_err / cpi->twopass.frames_to_key; double bits_per_frame; double av_bits_per_frame; double effective_size_ratio; if ((cpi->common.Width != cpi->oxcf.Width) || (cpi->common.Height != cpi->oxcf.Height)) { last_kf_resampled = 1; } /* Set back to unscaled by defaults */ cpi->common.horiz_scale = VP8E_NORMAL; cpi->common.vert_scale = VP8E_NORMAL; /* Calculate Average bits per frame. */ av_bits_per_frame = cpi->oxcf.target_bandwidth / DOUBLE_DIVIDE_CHECK((double)cpi->framerate); /* CBR... Use the clip average as the target for deciding resample */ if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) { bits_per_frame = av_bits_per_frame; } /* In VBR we want to avoid downsampling in easy section unless we * are under extreme pressure So use the larger of target bitrate * for this section or average bitrate for sequence */ else { /* This accounts for how hard the section is... */ bits_per_frame = (double)(cpi->twopass.kf_group_bits / cpi->twopass.frames_to_key); /* Don't turn to resampling in easy sections just because they * have been assigned a small number of bits */ if (bits_per_frame < av_bits_per_frame) { bits_per_frame = av_bits_per_frame; } } /* bits_per_frame should comply with our minimum */ if (bits_per_frame < (cpi->oxcf.target_bandwidth * cpi->oxcf.two_pass_vbrmin_section / 100)) { bits_per_frame = (cpi->oxcf.target_bandwidth * cpi->oxcf.two_pass_vbrmin_section / 100); } /* Work out if spatial resampling is necessary */ kf_q = estimate_kf_group_q(cpi, err_per_frame, (int)bits_per_frame, group_iiratio); /* If we project a required Q higher than the maximum allowed Q then * make a guess at the actual size of frames in this section */ projected_bits_perframe = bits_per_frame; tmp_q = kf_q; while (tmp_q > cpi->worst_quality) { projected_bits_perframe *= 1.04; tmp_q--; } /* Guess at buffer level at the end of the section */ projected_buffer_level = (int)(cpi->buffer_level - (int)((projected_bits_perframe - av_bits_per_frame) * cpi->twopass.frames_to_key)); /* The trigger for spatial resampling depends on the various * parameters such as whether we are streaming (CBR) or VBR. */ if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) { /* Trigger resample if we are projected to fall below down * sample level or resampled last time and are projected to * remain below the up sample level */ if ((projected_buffer_level < (cpi->oxcf.resample_down_water_mark * cpi->oxcf.optimal_buffer_level / 100)) || (last_kf_resampled && (projected_buffer_level < (cpi->oxcf.resample_up_water_mark * cpi->oxcf.optimal_buffer_level / 100)))) { resample_trigger = 1; } else { resample_trigger = 0; } } else { int64_t clip_bits = (int64_t)( cpi->twopass.total_stats.count * cpi->oxcf.target_bandwidth / DOUBLE_DIVIDE_CHECK((double)cpi->framerate)); int64_t over_spend = cpi->oxcf.starting_buffer_level - cpi->buffer_level; /* If triggered last time the threshold for triggering again is * reduced: * * Projected Q higher than allowed and Overspend > 5% of total * bits */ if ((last_kf_resampled && (kf_q > cpi->worst_quality)) || ((kf_q > cpi->worst_quality) && (over_spend > clip_bits / 20))) { resample_trigger = 1; } else { resample_trigger = 0; } } if (resample_trigger) { while ((kf_q >= cpi->worst_quality) && (scale_val < 6)) { scale_val++; cpi->common.vert_scale = vscale_lookup[scale_val]; cpi->common.horiz_scale = hscale_lookup[scale_val]; Scale2Ratio(cpi->common.horiz_scale, &hr, &hs); Scale2Ratio(cpi->common.vert_scale, &vr, &vs); new_width = ((hs - 1) + (cpi->oxcf.Width * hr)) / hs; new_height = ((vs - 1) + (cpi->oxcf.Height * vr)) / vs; /* Reducing the area to 1/4 does not reduce the complexity * (err_per_frame) to 1/4... effective_sizeratio attempts * to provide a crude correction for this */ effective_size_ratio = (double)(new_width * new_height) / (double)(cpi->oxcf.Width * cpi->oxcf.Height); effective_size_ratio = (1.0 + (3.0 * effective_size_ratio)) / 4.0; /* Now try again and see what Q we get with the smaller * image size */ kf_q = estimate_kf_group_q(cpi, err_per_frame * effective_size_ratio, (int)bits_per_frame, group_iiratio); } } if ((cpi->common.Width != new_width) || (cpi->common.Height != new_height)) { cpi->common.Width = new_width; cpi->common.Height = new_height; vp8_alloc_compressor_data(cpi); } } }