// Copyright 2022 Google Inc. All Rights Reserved. // // Use of this source code is governed by a BSD-style license // that can be found in the COPYING file in the root of the source // tree. An additional intellectual property rights grant can be found // in the file PATENTS. All contributing project authors may // be found in the AUTHORS file in the root of the source tree. // ----------------------------------------------------------------------------- // // Gamma correction utilities. #include "sharpyuv/sharpyuv_gamma.h" #include #include #include "src/webp/types.h" // Gamma correction compensates loss of resolution during chroma subsampling. // Size of pre-computed table for converting from gamma to linear. #define GAMMA_TO_LINEAR_TAB_BITS 10 #define GAMMA_TO_LINEAR_TAB_SIZE (1 << GAMMA_TO_LINEAR_TAB_BITS) static uint32_t kGammaToLinearTabS[GAMMA_TO_LINEAR_TAB_SIZE + 2]; #define LINEAR_TO_GAMMA_TAB_BITS 9 #define LINEAR_TO_GAMMA_TAB_SIZE (1 << LINEAR_TO_GAMMA_TAB_BITS) static uint32_t kLinearToGammaTabS[LINEAR_TO_GAMMA_TAB_SIZE + 2]; static const double kGammaF = 1. / 0.45; #define GAMMA_TO_LINEAR_BITS 16 static volatile int kGammaTablesSOk = 0; void SharpYuvInitGammaTables(void) { assert(GAMMA_TO_LINEAR_BITS <= 16); if (!kGammaTablesSOk) { int v; const double a = 0.09929682680944; const double thresh = 0.018053968510807; const double final_scale = 1 << GAMMA_TO_LINEAR_BITS; // Precompute gamma to linear table. { const double norm = 1. / GAMMA_TO_LINEAR_TAB_SIZE; const double a_rec = 1. / (1. + a); for (v = 0; v <= GAMMA_TO_LINEAR_TAB_SIZE; ++v) { const double g = norm * v; double value; if (g <= thresh * 4.5) { value = g / 4.5; } else { value = pow(a_rec * (g + a), kGammaF); } kGammaToLinearTabS[v] = (uint32_t)(value * final_scale + .5); } // to prevent small rounding errors to cause read-overflow: kGammaToLinearTabS[GAMMA_TO_LINEAR_TAB_SIZE + 1] = kGammaToLinearTabS[GAMMA_TO_LINEAR_TAB_SIZE]; } // Precompute linear to gamma table. { const double scale = 1. / LINEAR_TO_GAMMA_TAB_SIZE; for (v = 0; v <= LINEAR_TO_GAMMA_TAB_SIZE; ++v) { const double g = scale * v; double value; if (g <= thresh) { value = 4.5 * g; } else { value = (1. + a) * pow(g, 1. / kGammaF) - a; } kLinearToGammaTabS[v] = (uint32_t)(final_scale * value + 0.5); } // to prevent small rounding errors to cause read-overflow: kLinearToGammaTabS[LINEAR_TO_GAMMA_TAB_SIZE + 1] = kLinearToGammaTabS[LINEAR_TO_GAMMA_TAB_SIZE]; } kGammaTablesSOk = 1; } } static WEBP_INLINE int Shift(int v, int shift) { return (shift >= 0) ? (v << shift) : (v >> -shift); } static WEBP_INLINE uint32_t FixedPointInterpolation(int v, uint32_t* tab, int tab_pos_shift_right, int tab_value_shift) { const uint32_t tab_pos = Shift(v, -tab_pos_shift_right); // fractional part, in 'tab_pos_shift' fixed-point precision const uint32_t x = v - (tab_pos << tab_pos_shift_right); // fractional part // v0 / v1 are in kGammaToLinearBits fixed-point precision (range [0..1]) const uint32_t v0 = Shift(tab[tab_pos + 0], tab_value_shift); const uint32_t v1 = Shift(tab[tab_pos + 1], tab_value_shift); // Final interpolation. const uint32_t v2 = (v1 - v0) * x; // note: v1 >= v0. const int half = (tab_pos_shift_right > 0) ? 1 << (tab_pos_shift_right - 1) : 0; const uint32_t result = v0 + ((v2 + half) >> tab_pos_shift_right); return result; } uint32_t SharpYuvGammaToLinear(uint16_t v, int bit_depth) { const int shift = GAMMA_TO_LINEAR_TAB_BITS - bit_depth; if (shift > 0) { return kGammaToLinearTabS[v << shift]; } return FixedPointInterpolation(v, kGammaToLinearTabS, -shift, 0); } uint16_t SharpYuvLinearToGamma(uint32_t value, int bit_depth) { return FixedPointInterpolation( value, kLinearToGammaTabS, (GAMMA_TO_LINEAR_BITS - LINEAR_TO_GAMMA_TAB_BITS), bit_depth - GAMMA_TO_LINEAR_BITS); }