/* * Copyright 2022 The LibYuv Project Authors. All rights reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include #include "../unit_test/unit_test.h" #include "libyuv/cpu_id.h" #include "libyuv/scale_rgb.h" namespace libyuv { #define STRINGIZE(line) #line #define FILELINESTR(file, line) file ":" STRINGIZE(line) #if !defined(DISABLE_SLOW_TESTS) || defined(__x86_64__) || defined(__i386__) // SLOW TESTS are those that are unoptimized C code. // FULL TESTS are optimized but test many variations of the same code. #define ENABLE_FULL_TESTS #endif // Test scaling with C vs Opt and return maximum pixel difference. 0 = exact. static int RGBTestFilter(int src_width, int src_height, int dst_width, int dst_height, FilterMode f, int benchmark_iterations, int disable_cpu_flags, int benchmark_cpu_info) { if (!SizeValid(src_width, src_height, dst_width, dst_height)) { return 0; } int i, j; const int b = 0; // 128 to test for padding/stride. int64_t src_rgb_plane_size = (Abs(src_width) + b * 3) * (Abs(src_height) + b * 3) * 3LL; int src_stride_rgb = (b * 3 + Abs(src_width)) * 3; align_buffer_page_end(src_rgb, src_rgb_plane_size); if (!src_rgb) { printf("Skipped. Alloc failed " FILELINESTR(__FILE__, __LINE__) "\n"); return 0; } MemRandomize(src_rgb, src_rgb_plane_size); int64_t dst_rgb_plane_size = (dst_width + b * 3) * (dst_height + b * 3) * 3LL; int dst_stride_rgb = (b * 3 + dst_width) * 3; align_buffer_page_end(dst_rgb_c, dst_rgb_plane_size); align_buffer_page_end(dst_rgb_opt, dst_rgb_plane_size); if (!dst_rgb_c || !dst_rgb_opt) { printf("Skipped. Alloc failed " FILELINESTR(__FILE__, __LINE__) "\n"); return 0; } memset(dst_rgb_c, 2, dst_rgb_plane_size); memset(dst_rgb_opt, 3, dst_rgb_plane_size); // Warm up both versions for consistent benchmarks. MaskCpuFlags(disable_cpu_flags); // Disable all CPU optimization. RGBScale(src_rgb + (src_stride_rgb * b) + b * 3, src_stride_rgb, src_width, src_height, dst_rgb_c + (dst_stride_rgb * b) + b * 3, dst_stride_rgb, dst_width, dst_height, f); MaskCpuFlags(benchmark_cpu_info); // Enable all CPU optimization. RGBScale(src_rgb + (src_stride_rgb * b) + b * 3, src_stride_rgb, src_width, src_height, dst_rgb_opt + (dst_stride_rgb * b) + b * 3, dst_stride_rgb, dst_width, dst_height, f); MaskCpuFlags(disable_cpu_flags); // Disable all CPU optimization. double c_time = get_time(); RGBScale(src_rgb + (src_stride_rgb * b) + b * 3, src_stride_rgb, src_width, src_height, dst_rgb_c + (dst_stride_rgb * b) + b * 3, dst_stride_rgb, dst_width, dst_height, f); c_time = (get_time() - c_time); MaskCpuFlags(benchmark_cpu_info); // Enable all CPU optimization. double opt_time = get_time(); for (i = 0; i < benchmark_iterations; ++i) { RGBScale(src_rgb + (src_stride_rgb * b) + b * 3, src_stride_rgb, src_width, src_height, dst_rgb_opt + (dst_stride_rgb * b) + b * 3, dst_stride_rgb, dst_width, dst_height, f); } opt_time = (get_time() - opt_time) / benchmark_iterations; // Report performance of C vs OPT printf("filter %d - %8d us C - %8d us OPT\n", f, static_cast(c_time * 1e6), static_cast(opt_time * 1e6)); // C version may be a little off from the optimized. Order of // operations may introduce rounding somewhere. So do a difference // of the buffers and look to see that the max difference isn't // over 2. int max_diff = 0; for (i = b; i < (dst_height + b); ++i) { for (j = b * 3; j < (dst_width + b) * 3; ++j) { int abs_diff = Abs(dst_rgb_c[(i * dst_stride_rgb) + j] - dst_rgb_opt[(i * dst_stride_rgb) + j]); if (abs_diff > max_diff) { max_diff = abs_diff; } } } free_aligned_buffer_page_end(dst_rgb_c); free_aligned_buffer_page_end(dst_rgb_opt); free_aligned_buffer_page_end(src_rgb); return max_diff; } // The following adjustments in dimensions ensure the scale factor will be // exactly achieved. #define DX(x, nom, denom) static_cast((Abs(x) / nom) * nom) #define SX(x, nom, denom) static_cast((x / nom) * denom) #define TEST_FACTOR1(name, filter, nom, denom, max_diff) \ TEST_F(LibYUVScaleTest, RGBScaleDownBy##name##_##filter) { \ int diff = RGBTestFilter( \ SX(benchmark_width_, nom, denom), SX(benchmark_height_, nom, denom), \ DX(benchmark_width_, nom, denom), DX(benchmark_height_, nom, denom), \ kFilter##filter, benchmark_iterations_, disable_cpu_flags_, \ benchmark_cpu_info_); \ EXPECT_LE(diff, max_diff); \ } #if defined(ENABLE_FULL_TESTS) // Test a scale factor with all 4 filters. Expect unfiltered to be exact, but // filtering is different fixed point implementations for SSSE3, Neon and C. #define TEST_FACTOR(name, nom, denom) \ TEST_FACTOR1(name, None, nom, denom, 0) \ TEST_FACTOR1(name, Linear, nom, denom, 3) \ TEST_FACTOR1(name, Bilinear, nom, denom, 3) \ TEST_FACTOR1(name, Box, nom, denom, 3) #else // Test a scale factor with Bilinear. #define TEST_FACTOR(name, nom, denom) \ TEST_FACTOR1(name, Bilinear, nom, denom, 3) #endif TEST_FACTOR(2, 1, 2) #ifndef DISABLE_SLOW_TESTS TEST_FACTOR(4, 1, 4) // TEST_FACTOR(8, 1, 8) Disable for benchmark performance. TEST_FACTOR(3by4, 3, 4) TEST_FACTOR(3by8, 3, 8) TEST_FACTOR(3, 1, 3) #endif #undef TEST_FACTOR1 #undef TEST_FACTOR #undef SX #undef DX #define TEST_SCALETO1(name, width, height, filter, max_diff) \ TEST_F(LibYUVScaleTest, name##To##width##x##height##_##filter) { \ int diff = RGBTestFilter(benchmark_width_, benchmark_height_, width, \ height, kFilter##filter, benchmark_iterations_, \ disable_cpu_flags_, benchmark_cpu_info_); \ EXPECT_LE(diff, max_diff); \ } \ TEST_F(LibYUVScaleTest, name##From##width##x##height##_##filter) { \ int diff = RGBTestFilter(width, height, Abs(benchmark_width_), \ Abs(benchmark_height_), kFilter##filter, \ benchmark_iterations_, disable_cpu_flags_, \ benchmark_cpu_info_); \ EXPECT_LE(diff, max_diff); \ } #if defined(ENABLE_FULL_TESTS) /// Test scale to a specified size with all 4 filters. #define TEST_SCALETO(name, width, height) \ TEST_SCALETO1(name, width, height, None, 0) \ TEST_SCALETO1(name, width, height, Linear, 3) \ TEST_SCALETO1(name, width, height, Bilinear, 3) #else #define TEST_SCALETO(name, width, height) \ TEST_SCALETO1(name, width, height, Bilinear, 3) #endif TEST_SCALETO(RGBScale, 640, 360) #ifndef DISABLE_SLOW_TESTS TEST_SCALETO(RGBScale, 1, 1) TEST_SCALETO(RGBScale, 256, 144) /* 128x72 * 3 */ TEST_SCALETO(RGBScale, 320, 240) TEST_SCALETO(RGBScale, 569, 480) TEST_SCALETO(RGBScale, 1280, 720) TEST_SCALETO(RGBScale, 1920, 1080) #endif // DISABLE_SLOW_TESTS #undef TEST_SCALETO1 #undef TEST_SCALETO #define TEST_SCALESWAPXY1(name, filter, max_diff) \ TEST_F(LibYUVScaleTest, name##SwapXY_##filter) { \ int diff = RGBTestFilter(benchmark_width_, benchmark_height_, \ benchmark_height_, benchmark_width_, \ kFilter##filter, benchmark_iterations_, \ disable_cpu_flags_, benchmark_cpu_info_); \ EXPECT_LE(diff, max_diff); \ } #if defined(ENABLE_FULL_TESTS) // Test scale with swapped width and height with all 3 filters. TEST_SCALESWAPXY1(RGBScale, None, 0) TEST_SCALESWAPXY1(RGBScale, Linear, 0) TEST_SCALESWAPXY1(RGBScale, Bilinear, 0) #else TEST_SCALESWAPXY1(RGBScale, Bilinear, 0) #endif #undef TEST_SCALESWAPXY1 TEST_F(LibYUVScaleTest, RGBTest3x) { const int kSrcStride = 480 * 3; const int kDstStride = 160 * 3; const int kSize = kSrcStride * 3; align_buffer_page_end(orig_pixels, kSize); for (int i = 0; i < 480 * 3; ++i) { orig_pixels[i * 3 + 0] = i; orig_pixels[i * 3 + 1] = 255 - i; } align_buffer_page_end(dest_pixels, kDstStride); int iterations160 = (benchmark_width_ * benchmark_height_ + (160 - 1)) / 160 * benchmark_iterations_; for (int i = 0; i < iterations160; ++i) { RGBScale(orig_pixels, kSrcStride, 480, 3, dest_pixels, kDstStride, 160, 1, kFilterBilinear); } EXPECT_EQ(225, dest_pixels[0]); EXPECT_EQ(255 - 225, dest_pixels[1]); RGBScale(orig_pixels, kSrcStride, 480, 3, dest_pixels, kDstStride, 160, 1, kFilterNone); EXPECT_EQ(225, dest_pixels[0]); EXPECT_EQ(255 - 225, dest_pixels[1]); free_aligned_buffer_page_end(dest_pixels); free_aligned_buffer_page_end(orig_pixels); } TEST_F(LibYUVScaleTest, RGBTest4x) { const int kSrcStride = 640 * 3; const int kDstStride = 160 * 3; const int kSize = kSrcStride * 4; align_buffer_page_end(orig_pixels, kSize); for (int i = 0; i < 640 * 4; ++i) { orig_pixels[i * 3 + 0] = i; orig_pixels[i * 3 + 1] = 255 - i; } align_buffer_page_end(dest_pixels, kDstStride); int iterations160 = (benchmark_width_ * benchmark_height_ + (160 - 1)) / 160 * benchmark_iterations_; for (int i = 0; i < iterations160; ++i) { RGBScale(orig_pixels, kSrcStride, 640, 4, dest_pixels, kDstStride, 160, 1, kFilterBilinear); } EXPECT_EQ(66, dest_pixels[0]); EXPECT_EQ(190, dest_pixels[1]); RGBScale(orig_pixels, kSrcStride, 64, 4, dest_pixels, kDstStride, 16, 1, kFilterNone); EXPECT_EQ(2, dest_pixels[0]); // expect the 3rd pixel of the 3rd row EXPECT_EQ(255 - 2, dest_pixels[1]); free_aligned_buffer_page_end(dest_pixels); free_aligned_buffer_page_end(orig_pixels); } } // namespace libyuv