/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim: set ts=8 sts=2 et sw=2 tw=80: */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ /* A template class for tagged unions. */ #include <new> #include <stdint.h> #include "mozilla/Assertions.h" #include "mozilla/HashFunctions.h" #include "mozilla/OperatorNewExtensions.h" #include "mozilla/TemplateLib.h" #include <type_traits> #include <utility> #ifndef mozilla_Variant_h # define mozilla_Variant_h namespace IPC { template <typename T> struct ParamTraits; } // namespace IPC namespace mozilla { namespace ipc { template <typename T> struct IPDLParamTraits; } // namespace ipc template <typename... Ts> class Variant; namespace detail { // Nth<N, types...>::Type is the Nth type (0-based) in the list of types Ts. template <size_t N, typename... Ts> struct Nth; template <typename T, typename... Ts> struct Nth<0, T, Ts...> { using Type = T; }; template <size_t N, typename T, typename... Ts> struct Nth<N, T, Ts...> { using Type = typename Nth<N - 1, Ts...>::Type; }; /// SelectVariantTypeHelper is used in the implementation of SelectVariantType. template <typename T, typename... Variants> struct SelectVariantTypeHelper; template <typename T> struct SelectVariantTypeHelper<T> { static constexpr size_t count = 0; }; template <typename T, typename... Variants> struct SelectVariantTypeHelper<T, T, Variants...> { typedef T Type; static constexpr size_t count = 1 + SelectVariantTypeHelper<T, Variants...>::count; }; template <typename T, typename... Variants> struct SelectVariantTypeHelper<T, const T, Variants...> { typedef const T Type; static constexpr size_t count = 1 + SelectVariantTypeHelper<T, Variants...>::count; }; template <typename T, typename... Variants> struct SelectVariantTypeHelper<T, const T&, Variants...> { typedef const T& Type; static constexpr size_t count = 1 + SelectVariantTypeHelper<T, Variants...>::count; }; template <typename T, typename... Variants> struct SelectVariantTypeHelper<T, T&&, Variants...> { typedef T&& Type; static constexpr size_t count = 1 + SelectVariantTypeHelper<T, Variants...>::count; }; template <typename T, typename Head, typename... Variants> struct SelectVariantTypeHelper<T, Head, Variants...> : public SelectVariantTypeHelper<T, Variants...> {}; /** * SelectVariantType takes a type T and a list of variant types Variants and * yields a type Type, selected from Variants, that can store a value of type T * or a reference to type T. If no such type was found, Type is not defined. * SelectVariantType also has a `count` member that contains the total number of * selectable types (which will be used to check that a requested type is not * ambiguously present twice.) */ template <typename T, typename... Variants> struct SelectVariantType : public SelectVariantTypeHelper< std::remove_const_t<std::remove_reference_t<T>>, Variants...> {}; // Compute a fast, compact type that can be used to hold integral values that // distinctly map to every type in Ts. template <typename... Ts> struct VariantTag { private: static const size_t TypeCount = sizeof...(Ts); public: using Type = std::conditional_t< (TypeCount <= 2), bool, std::conditional_t<(TypeCount <= size_t(UINT_FAST8_MAX)), uint_fast8_t, size_t // stop caring past a certain // point :-) >>; }; // TagHelper gets the given sentinel tag value for the given type T. This has to // be split out from VariantImplementation because you can't nest a partial // template specialization within a template class. template <typename Tag, size_t N, typename T, typename U, typename Next, bool isMatch> struct TagHelper; // In the case where T != U, we continue recursion. template <typename Tag, size_t N, typename T, typename U, typename Next> struct TagHelper<Tag, N, T, U, Next, false> { static Tag tag() { return Next::template tag<U>(); } }; // In the case where T == U, return the tag number. template <typename Tag, size_t N, typename T, typename U, typename Next> struct TagHelper<Tag, N, T, U, Next, true> { static Tag tag() { return Tag(N); } }; // The VariantImplementation template provides the guts of mozilla::Variant. We // create a VariantImplementation for each T in Ts... which handles // construction, destruction, etc for when the Variant's type is T. If the // Variant's type isn't T, it punts the request on to the next // VariantImplementation. template <typename Tag, size_t N, typename... Ts> struct VariantImplementation; // The singly typed Variant / recursion base case. template <typename Tag, size_t N, typename T> struct VariantImplementation<Tag, N, T> { template <typename U> static Tag tag() { static_assert(std::is_same_v<T, U>, "mozilla::Variant: tag: bad type!"); return Tag(N); } template <typename Variant> static void copyConstruct(void* aLhs, const Variant& aRhs) { ::new (KnownNotNull, aLhs) T(aRhs.template as<N>()); } template <typename Variant> static void moveConstruct(void* aLhs, Variant&& aRhs) { ::new (KnownNotNull, aLhs) T(aRhs.template extract<N>()); } template <typename Variant> static void destroy(Variant& aV) { aV.template as<N>().~T(); } template <typename Variant> static bool equal(const Variant& aLhs, const Variant& aRhs) { return aLhs.template as<N>() == aRhs.template as<N>(); } template <typename Matcher, typename ConcreteVariant> static decltype(auto) match(Matcher&& aMatcher, ConcreteVariant&& aV) { if constexpr (std::is_invocable_v<Matcher, Tag, decltype(std::forward<ConcreteVariant>(aV) .template as<N>())>) { return std::forward<Matcher>(aMatcher)( Tag(N), std::forward<ConcreteVariant>(aV).template as<N>()); } else { return std::forward<Matcher>(aMatcher)( std::forward<ConcreteVariant>(aV).template as<N>()); } } template <typename ConcreteVariant, typename Matcher> static decltype(auto) matchN(ConcreteVariant&& aV, Matcher&& aMatcher) { if constexpr (std::is_invocable_v<Matcher, Tag, decltype(std::forward<ConcreteVariant>(aV) .template as<N>())>) { return std::forward<Matcher>(aMatcher)( Tag(N), std::forward<ConcreteVariant>(aV).template as<N>()); } else { return std::forward<Matcher>(aMatcher)( std::forward<ConcreteVariant>(aV).template as<N>()); } } }; // VariantImplementation for some variant type T. template <typename Tag, size_t N, typename T, typename... Ts> struct VariantImplementation<Tag, N, T, Ts...> { // The next recursive VariantImplementation. using Next = VariantImplementation<Tag, N + 1, Ts...>; template <typename U> static Tag tag() { return TagHelper<Tag, N, T, U, Next, std::is_same_v<T, U>>::tag(); } template <typename Variant> static void copyConstruct(void* aLhs, const Variant& aRhs) { if (aRhs.template is<N>()) { ::new (KnownNotNull, aLhs) T(aRhs.template as<N>()); } else { Next::copyConstruct(aLhs, aRhs); } } template <typename Variant> static void moveConstruct(void* aLhs, Variant&& aRhs) { if (aRhs.template is<N>()) { ::new (KnownNotNull, aLhs) T(aRhs.template extract<N>()); } else { Next::moveConstruct(aLhs, std::move(aRhs)); } } template <typename Variant> static void destroy(Variant& aV) { if (aV.template is<N>()) { aV.template as<N>().~T(); } else { Next::destroy(aV); } } template <typename Variant> static bool equal(const Variant& aLhs, const Variant& aRhs) { if (aLhs.template is<N>()) { MOZ_ASSERT(aRhs.template is<N>()); return aLhs.template as<N>() == aRhs.template as<N>(); } else { return Next::equal(aLhs, aRhs); } } template <typename Matcher, typename ConcreteVariant> static decltype(auto) match(Matcher&& aMatcher, ConcreteVariant&& aV) { if (aV.template is<N>()) { if constexpr (std::is_invocable_v<Matcher, Tag, decltype(std::forward<ConcreteVariant>( aV) .template as<N>())>) { return std::forward<Matcher>(aMatcher)( Tag(N), std::forward<ConcreteVariant>(aV).template as<N>()); } else { return std::forward<Matcher>(aMatcher)( std::forward<ConcreteVariant>(aV).template as<N>()); } } else { // If you're seeing compilation errors here like "no matching // function for call to 'match'" then that means that the // Matcher doesn't exhaust all variant types. There must exist a // Matcher::operator()(T&) for every variant type T. // // If you're seeing compilation errors here like "cannot initialize // return object of type <...> with an rvalue of type <...>" then that // means that the Matcher::operator()(T&) overloads are returning // different types. They must all return the same type. return Next::match(std::forward<Matcher>(aMatcher), std::forward<ConcreteVariant>(aV)); } } template <typename ConcreteVariant, typename Mi, typename... Ms> static decltype(auto) matchN(ConcreteVariant&& aV, Mi&& aMi, Ms&&... aMs) { if (aV.template is<N>()) { if constexpr (std::is_invocable_v<Mi, Tag, decltype(std::forward<ConcreteVariant>( aV) .template as<N>())>) { static_assert( std::is_same_v< decltype(std::forward<Mi>(aMi)( Tag(N), std::forward<ConcreteVariant>(aV).template as<N>())), decltype(Next::matchN(std::forward<ConcreteVariant>(aV), std::forward<Ms>(aMs)...))>, "all matchers must have the same return type"); return std::forward<Mi>(aMi)( Tag(N), std::forward<ConcreteVariant>(aV).template as<N>()); } else { static_assert( std::is_same_v< decltype(std::forward<Mi>(aMi)( std::forward<ConcreteVariant>(aV).template as<N>())), decltype(Next::matchN(std::forward<ConcreteVariant>(aV), std::forward<Ms>(aMs)...))>, "all matchers must have the same return type"); return std::forward<Mi>(aMi)( std::forward<ConcreteVariant>(aV).template as<N>()); } } else { // If you're seeing compilation errors here like "no matching // function for call to 'match'" then that means that the // Matchers don't exhaust all variant types. There must exist a // Matcher (with its operator()(T&)) for every variant type T, in the // exact same order. return Next::matchN(std::forward<ConcreteVariant>(aV), std::forward<Ms>(aMs)...); } } }; /** * AsVariantTemporary stores a value of type T to allow construction of a * Variant value via type inference. Because T is copied and there's no * guarantee that the copy can be elided, AsVariantTemporary is best used with * primitive or very small types. */ template <typename T> struct AsVariantTemporary { explicit AsVariantTemporary(const T& aValue) : mValue(aValue) {} template <typename U> explicit AsVariantTemporary(U&& aValue) : mValue(std::forward<U>(aValue)) {} AsVariantTemporary(const AsVariantTemporary& aOther) : mValue(aOther.mValue) {} AsVariantTemporary(AsVariantTemporary&& aOther) : mValue(std::move(aOther.mValue)) {} AsVariantTemporary() = delete; void operator=(const AsVariantTemporary&) = delete; void operator=(AsVariantTemporary&&) = delete; std::remove_const_t<std::remove_reference_t<T>> mValue; }; } // namespace detail // Used to unambiguously specify one of the Variant's type. template <typename T> struct VariantType { using Type = T; }; // Used to specify one of the Variant's type by index. template <size_t N> struct VariantIndex { static constexpr size_t index = N; }; /** * # mozilla::Variant * * A variant / tagged union / heterogenous disjoint union / sum-type template * class. Similar in concept to (but not derived from) `boost::variant`. * * Sometimes, you may wish to use a C union with non-POD types. However, this is * forbidden in C++ because it is not clear which type in the union should have * its constructor and destructor run on creation and deletion * respectively. This is the problem that `mozilla::Variant` solves. * * ## Usage * * A `mozilla::Variant` instance is constructed (via move or copy) from one of * its variant types (ignoring const and references). It does *not* support * construction from subclasses of variant types or types that coerce to one of * the variant types. * * Variant<char, uint32_t> v1('a'); * Variant<UniquePtr<A>, B, C> v2(MakeUnique<A>()); * Variant<bool, char> v3(VariantType<char>, 0); // disambiguation needed * Variant<int, int> v4(VariantIndex<1>, 0); // 2nd int * * Because specifying the full type of a Variant value is often verbose, * there are two easier ways to construct values: * * A. AsVariant() can be used to construct a Variant value using type inference * in contexts such as expressions or when returning values from functions. * Because AsVariant() must copy or move the value into a temporary and this * cannot necessarily be elided by the compiler, it's mostly appropriate only * for use with primitive or very small types. * * Variant<char, uint32_t> Foo() { return AsVariant('x'); } * // ... * Variant<char, uint32_t> v1 = Foo(); // v1 holds char('x'). * * B. Brace-construction with VariantType or VariantIndex; this also allows * in-place construction with any number of arguments. * * struct AB { AB(int, int){...} }; * static Variant<AB, bool> foo() * { * return {VariantIndex<0>{}, 1, 2}; * } * // ... * Variant<AB, bool> v0 = Foo(); // v0 holds AB(1,2). * * All access to the contained value goes through type-safe accessors. * Either the stored type, or the type index may be provided. * * void * Foo(Variant<A, B, C> v) * { * if (v.is<A>()) { * A& ref = v.as<A>(); * ... * } else (v.is<1>()) { // Instead of v.is<B>. * ... * } else { * ... * } * } * * In some situation, a Variant may be constructed from templated types, in * which case it is possible that the same type could be given multiple times by * an external developer. Or seemingly-different types could be aliases. * In this case, repeated types can only be accessed through their index, to * prevent ambiguous access by type. * * // Bad! * template <typename T> * struct ResultOrError * { * Variant<T, int> m; * ResultOrError() : m(int(0)) {} // Error '0' by default * ResultOrError(const T& r) : m(r) {} * bool IsResult() const { return m.is<T>(); } * bool IsError() const { return m.is<int>(); } * }; * // Now instantiante with the result being an int too: * ResultOrError<int> myResult(123); // Fail! * // In Variant<int, int>, which 'int' are we refering to, from inside * // ResultOrError functions? * * // Good! * template <typename T> * struct ResultOrError * { * Variant<T, int> m; * ResultOrError() : m(VariantIndex<1>{}, 0) {} // Error '0' by default * ResultOrError(const T& r) : m(VariantIndex<0>{}, r) {} * bool IsResult() const { return m.is<0>(); } // 0 -> T * bool IsError() const { return m.is<1>(); } // 1 -> int * }; * // Now instantiante with the result being an int too: * ResultOrError<int> myResult(123); // It now works! * * Attempting to use the contained value as type `T1` when the `Variant` * instance contains a value of type `T2` causes an assertion failure. * * A a; * Variant<A, B, C> v(a); * v.as<B>(); // <--- Assertion failure! * * Trying to use a `Variant<Ts...>` instance as some type `U` that is not a * member of the set of `Ts...` is a compiler error. * * A a; * Variant<A, B, C> v(a); * v.as<SomeRandomType>(); // <--- Compiler error! * * Additionally, you can turn a `Variant` that `is<T>` into a `T` by moving it * out of the containing `Variant` instance with the `extract<T>` method: * * Variant<UniquePtr<A>, B, C> v(MakeUnique<A>()); * auto ptr = v.extract<UniquePtr<A>>(); * * Finally, you can exhaustively match on the contained variant and branch into * different code paths depending on which type is contained. This is preferred * to manually checking every variant type T with is<T>() because it provides * compile-time checking that you handled every type, rather than runtime * assertion failures. * * // Bad! * char* foo(Variant<A, B, C, D>& v) { * if (v.is<A>()) { * return ...; * } else if (v.is<B>()) { * return ...; * } else { * return doSomething(v.as<C>()); // Forgot about case D! * } * } * * // Instead, a single function object (that can deal with all possible * // options) may be provided: * struct FooMatcher * { * // The return type of all matchers must be identical. * char* operator()(A& a) { ... } * char* operator()(B& b) { ... } * char* operator()(C& c) { ... } * char* operator()(D& d) { ... } // Compile-time error to forget D! * } * char* foo(Variant<A, B, C, D>& v) { * return v.match(FooMatcher()); * } * * // In some situations, a single generic lambda may also be appropriate: * char* foo(Variant<A, B, C, D>& v) { * return v.match([](auto&) {...}); * } * * // Alternatively, multiple function objects may be provided, each one * // corresponding to an option, in the same order: * char* foo(Variant<A, B, C, D>& v) { * return v.match([](A&) { ... }, * [](B&) { ... }, * [](C&) { ... }, * [](D&) { ... }); * } * * // In rare cases, the index of the currently-active alternative is * // needed, it may be obtained by adding a first parameter in the matcner * // callback, which will receive the index in its most compact type (just * // use `size_t` if the exact type is not important), e.g.: * char* foo(Variant<A, B, C, D>& v) { * return v.match([](auto aIndex, auto& aAlternative) {...}); * // --OR-- * return v.match([](size_t aIndex, auto& aAlternative) {...}); * } * * ## Examples * * A tree is either an empty leaf, or a node with a value and two children: * * struct Leaf { }; * * template<typename T> * struct Node * { * T value; * Tree<T>* left; * Tree<T>* right; * }; * * template<typename T> * using Tree = Variant<Leaf, Node<T>>; * * A copy-on-write string is either a non-owning reference to some existing * string, or an owning reference to our copy: * * class CopyOnWriteString * { * Variant<const char*, UniquePtr<char[]>> string; * * ... * }; * * Because Variant must be aligned suitable to hold any value stored within it, * and because |alignas| requirements don't affect platform ABI with respect to * how parameters are laid out in memory, Variant can't be used as the type of a * function parameter. Pass Variant to functions by pointer or reference * instead. */ template <typename... Ts> class MOZ_INHERIT_TYPE_ANNOTATIONS_FROM_TEMPLATE_ARGS MOZ_NON_PARAM Variant { friend struct IPC::ParamTraits<mozilla::Variant<Ts...>>; friend struct mozilla::ipc::IPDLParamTraits<mozilla::Variant<Ts...>>; using Tag = typename detail::VariantTag<Ts...>::Type; using Impl = detail::VariantImplementation<Tag, 0, Ts...>; static constexpr size_t RawDataAlignment = tl::Max<alignof(Ts)...>::value; static constexpr size_t RawDataSize = tl::Max<sizeof(Ts)...>::value; // Raw storage for the contained variant value. alignas(RawDataAlignment) unsigned char rawData[RawDataSize]; // Each type is given a unique tag value that lets us keep track of the // contained variant value's type. Tag tag; // Some versions of GCC treat it as a -Wstrict-aliasing violation (ergo a // -Werror compile error) to reinterpret_cast<> |rawData| to |T*|, even // through |void*|. Placing the latter cast in these separate functions // breaks the chain such that affected GCC versions no longer warn/error. void* ptr() { return rawData; } const void* ptr() const { return rawData; } public: /** Perfect forwarding construction for some variant type T. */ template <typename RefT, // RefT captures both const& as well as && (as intended, to support // perfect forwarding), so we have to remove those qualifiers here // when ensuring that T is a variant of this type, and getting T's // tag, etc. typename T = typename detail::SelectVariantType<RefT, Ts...>::Type> explicit Variant(RefT&& aT) : tag(Impl::template tag<T>()) { static_assert( detail::SelectVariantType<RefT, Ts...>::count == 1, "Variant can only be selected by type if that type is unique"); ::new (KnownNotNull, ptr()) T(std::forward<RefT>(aT)); } /** * Perfect forwarding construction for some variant type T, by * explicitly giving the type. * This is necessary to construct from any number of arguments, * or to convert from a type that is not in the Variant's type list. */ template <typename T, typename... Args> MOZ_IMPLICIT Variant(const VariantType<T>&, Args&&... aTs) : tag(Impl::template tag<T>()) { ::new (KnownNotNull, ptr()) T(std::forward<Args>(aTs)...); } /** * Perfect forwarding construction for some variant type T, by * explicitly giving the type index. * This is necessary to construct from any number of arguments, * or to convert from a type that is not in the Variant's type list, * or to construct a type that is present more than once in the Variant. */ template <size_t N, typename... Args> MOZ_IMPLICIT Variant(const VariantIndex<N>&, Args&&... aTs) : tag(N) { using T = typename detail::Nth<N, Ts...>::Type; ::new (KnownNotNull, ptr()) T(std::forward<Args>(aTs)...); } /** * Constructs this Variant from an AsVariantTemporary<T> such that T can be * stored in one of the types allowable in this Variant. This is used in the * implementation of AsVariant(). */ template <typename RefT> MOZ_IMPLICIT Variant(detail::AsVariantTemporary<RefT>&& aValue) : tag(Impl::template tag< typename detail::SelectVariantType<RefT, Ts...>::Type>()) { using T = typename detail::SelectVariantType<RefT, Ts...>::Type; static_assert( detail::SelectVariantType<RefT, Ts...>::count == 1, "Variant can only be selected by type if that type is unique"); ::new (KnownNotNull, ptr()) T(std::move(aValue.mValue)); } /** Copy construction. */ Variant(const Variant& aRhs) : tag(aRhs.tag) { Impl::copyConstruct(ptr(), aRhs); } /** Move construction. */ Variant(Variant&& aRhs) : tag(aRhs.tag) { Impl::moveConstruct(ptr(), std::move(aRhs)); } /** Copy assignment. */ Variant& operator=(const Variant& aRhs) { MOZ_ASSERT(&aRhs != this, "self-assign disallowed"); this->~Variant(); ::new (KnownNotNull, this) Variant(aRhs); return *this; } /** Move assignment. */ Variant& operator=(Variant&& aRhs) { MOZ_ASSERT(&aRhs != this, "self-assign disallowed"); this->~Variant(); ::new (KnownNotNull, this) Variant(std::move(aRhs)); return *this; } /** Move assignment from AsVariant(). */ template <typename T> Variant& operator=(detail::AsVariantTemporary<T>&& aValue) { static_assert( detail::SelectVariantType<T, Ts...>::count == 1, "Variant can only be selected by type if that type is unique"); this->~Variant(); ::new (KnownNotNull, this) Variant(std::move(aValue)); return *this; } ~Variant() { Impl::destroy(*this); } template <typename T, typename... Args> T& emplace(Args&&... aTs) { Impl::destroy(*this); tag = Impl::template tag<T>(); ::new (KnownNotNull, ptr()) T(std::forward<Args>(aTs)...); return as<T>(); } template <size_t N, typename... Args> typename detail::Nth<N, Ts...>::Type& emplace(Args&&... aTs) { using T = typename detail::Nth<N, Ts...>::Type; Impl::destroy(*this); tag = N; ::new (KnownNotNull, ptr()) T(std::forward<Args>(aTs)...); return as<N>(); } /** Check which variant type is currently contained. */ template <typename T> bool is() const { static_assert( detail::SelectVariantType<T, Ts...>::count == 1, "provided a type not uniquely found in this Variant's type list"); return Impl::template tag<T>() == tag; } template <size_t N> bool is() const { static_assert(N < sizeof...(Ts), "provided an index outside of this Variant's type list"); return N == size_t(tag); } /** * Operator == overload that defers to the variant type's operator== * implementation if the rhs is tagged as the same type as this one. */ bool operator==(const Variant& aRhs) const { return tag == aRhs.tag && Impl::equal(*this, aRhs); } /** * Operator != overload that defers to the negation of the variant type's * operator== implementation if the rhs is tagged as the same type as this * one. */ bool operator!=(const Variant& aRhs) const { return !(*this == aRhs); } // Accessors for working with the contained variant value. /** Mutable lvalue-reference. */ template <typename T> T& as() & { static_assert( detail::SelectVariantType<T, Ts...>::count == 1, "provided a type not uniquely found in this Variant's type list"); MOZ_RELEASE_ASSERT(is<T>()); return *static_cast<T*>(ptr()); } template <size_t N> typename detail::Nth<N, Ts...>::Type& as() & { static_assert(N < sizeof...(Ts), "provided an index outside of this Variant's type list"); MOZ_RELEASE_ASSERT(is<N>()); return *static_cast<typename detail::Nth<N, Ts...>::Type*>(ptr()); } /** Immutable const lvalue-reference. */ template <typename T> const T& as() const& { static_assert(detail::SelectVariantType<T, Ts...>::count == 1, "provided a type not found in this Variant's type list"); MOZ_RELEASE_ASSERT(is<T>()); return *static_cast<const T*>(ptr()); } template <size_t N> const typename detail::Nth<N, Ts...>::Type& as() const& { static_assert(N < sizeof...(Ts), "provided an index outside of this Variant's type list"); MOZ_RELEASE_ASSERT(is<N>()); return *static_cast<const typename detail::Nth<N, Ts...>::Type*>(ptr()); } /** Mutable rvalue-reference. */ template <typename T> T&& as() && { static_assert( detail::SelectVariantType<T, Ts...>::count == 1, "provided a type not uniquely found in this Variant's type list"); MOZ_RELEASE_ASSERT(is<T>()); return std::move(*static_cast<T*>(ptr())); } template <size_t N> typename detail::Nth<N, Ts...>::Type&& as() && { static_assert(N < sizeof...(Ts), "provided an index outside of this Variant's type list"); MOZ_RELEASE_ASSERT(is<N>()); return std::move( *static_cast<typename detail::Nth<N, Ts...>::Type*>(ptr())); } /** Immutable const rvalue-reference. */ template <typename T> const T&& as() const&& { static_assert(detail::SelectVariantType<T, Ts...>::count == 1, "provided a type not found in this Variant's type list"); MOZ_RELEASE_ASSERT(is<T>()); return std::move(*static_cast<const T*>(ptr())); } template <size_t N> const typename detail::Nth<N, Ts...>::Type&& as() const&& { static_assert(N < sizeof...(Ts), "provided an index outside of this Variant's type list"); MOZ_RELEASE_ASSERT(is<N>()); return std::move( *static_cast<const typename detail::Nth<N, Ts...>::Type*>(ptr())); } /** * Extract the contained variant value from this container into a temporary * value. On completion, the value in the variant will be in a * safely-destructible state, as determined by the behavior of T's move * constructor when provided the variant's internal value. */ template <typename T> T extract() { static_assert( detail::SelectVariantType<T, Ts...>::count == 1, "provided a type not uniquely found in this Variant's type list"); MOZ_ASSERT(is<T>()); return T(std::move(as<T>())); } template <size_t N> typename detail::Nth<N, Ts...>::Type extract() { static_assert(N < sizeof...(Ts), "provided an index outside of this Variant's type list"); MOZ_RELEASE_ASSERT(is<N>()); return typename detail::Nth<N, Ts...>::Type(std::move(as<N>())); } // Exhaustive matching of all variant types on the contained value. /** Match on an immutable const lvalue-reference. */ template <typename Matcher> decltype(auto) match(Matcher&& aMatcher) const& { return Impl::match(std::forward<Matcher>(aMatcher), *this); } template <typename M0, typename M1, typename... Ms> decltype(auto) match(M0&& aM0, M1&& aM1, Ms&&... aMs) const& { return matchN(*this, std::forward<M0>(aM0), std::forward<M1>(aM1), std::forward<Ms>(aMs)...); } /** Match on a mutable non-const lvalue-reference. */ template <typename Matcher> decltype(auto) match(Matcher&& aMatcher) & { return Impl::match(std::forward<Matcher>(aMatcher), *this); } template <typename M0, typename M1, typename... Ms> decltype(auto) match(M0&& aM0, M1&& aM1, Ms&&... aMs) & { return matchN(*this, std::forward<M0>(aM0), std::forward<M1>(aM1), std::forward<Ms>(aMs)...); } /** Match on an immutable const rvalue-reference. */ template <typename Matcher> decltype(auto) match(Matcher&& aMatcher) const&& { return Impl::match(std::forward<Matcher>(aMatcher), std::move(*this)); } template <typename M0, typename M1, typename... Ms> decltype(auto) match(M0&& aM0, M1&& aM1, Ms&&... aMs) const&& { return matchN(std::move(*this), std::forward<M0>(aM0), std::forward<M1>(aM1), std::forward<Ms>(aMs)...); } /** Match on a mutable non-const rvalue-reference. */ template <typename Matcher> decltype(auto) match(Matcher&& aMatcher) && { return Impl::match(std::forward<Matcher>(aMatcher), std::move(*this)); } template <typename M0, typename M1, typename... Ms> decltype(auto) match(M0&& aM0, M1&& aM1, Ms&&... aMs) && { return matchN(std::move(*this), std::forward<M0>(aM0), std::forward<M1>(aM1), std::forward<Ms>(aMs)...); } /** * Incorporate the current variant's tag into hashValue. * Note that this does not hash the actual contents; you must take * care of that yourself, perhaps by using a match. */ mozilla::HashNumber addTagToHash(mozilla::HashNumber hashValue) const { return mozilla::AddToHash(hashValue, tag); } private: template <typename ConcreteVariant, typename M0, typename M1, typename... Ms> static decltype(auto) matchN(ConcreteVariant&& aVariant, M0&& aM0, M1&& aM1, Ms&&... aMs) { static_assert( 2 + sizeof...(Ms) == sizeof...(Ts), "Variant<T...>::match() takes either one callable argument that " "accepts every type T; or one for each type T, in order"); return Impl::matchN(std::forward<ConcreteVariant>(aVariant), std::forward<M0>(aM0), std::forward<M1>(aM1), std::forward<Ms>(aMs)...); } }; /* * AsVariant() is used to construct a Variant<T,...> value containing the * provided T value using type inference. It can be used to construct Variant * values in expressions or return them from functions without specifying the * entire Variant type. * * Because AsVariant() must copy or move the value into a temporary and this * cannot necessarily be elided by the compiler, it's mostly appropriate only * for use with primitive or very small types. * * AsVariant() returns a AsVariantTemporary value which is implicitly * convertible to any Variant that can hold a value of type T. */ template <typename T> detail::AsVariantTemporary<T> AsVariant(T&& aValue) { return detail::AsVariantTemporary<T>(std::forward<T>(aValue)); } } // namespace mozilla #endif /* mozilla_Variant_h */