/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim: set ts=8 sts=2 et sw=2 tw=80: */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #ifndef LulMainInt_h #define LulMainInt_h #include "PlatformMacros.h" #include "LulMain.h" // for TaggedUWord #include "mozilla/Assertions.h" #include #include // This file is provides internal interface inside LUL. If you are an // end-user of LUL, do not include it in your code. The end-user // interface is in LulMain.h. namespace lul { using std::vector; //////////////////////////////////////////////////////////////// // DW_REG_ constants // //////////////////////////////////////////////////////////////// // These are the Dwarf CFI register numbers, as (presumably) defined // in the ELF ABI supplements for each architecture. enum DW_REG_NUMBER { // No real register has this number. It's convenient to be able to // treat the CFA (Canonical Frame Address) as "just another // register", though. DW_REG_CFA = -1, #if defined(GP_ARCH_arm) // ARM registers DW_REG_ARM_R7 = 7, DW_REG_ARM_R11 = 11, DW_REG_ARM_R12 = 12, DW_REG_ARM_R13 = 13, DW_REG_ARM_R14 = 14, DW_REG_ARM_R15 = 15, #elif defined(GP_ARCH_arm64) // aarch64 registers DW_REG_AARCH64_X29 = 29, DW_REG_AARCH64_X30 = 30, DW_REG_AARCH64_SP = 31, #elif defined(GP_ARCH_amd64) // Because the X86 (32 bit) and AMD64 (64 bit) summarisers are // combined, a merged set of register constants is needed. DW_REG_INTEL_XBP = 6, DW_REG_INTEL_XSP = 7, DW_REG_INTEL_XIP = 16, #elif defined(GP_ARCH_x86) DW_REG_INTEL_XBP = 5, DW_REG_INTEL_XSP = 4, DW_REG_INTEL_XIP = 8, #elif defined(GP_ARCH_mips64) DW_REG_MIPS_SP = 29, DW_REG_MIPS_FP = 30, DW_REG_MIPS_PC = 34, #else # error "Unknown arch" #endif }; //////////////////////////////////////////////////////////////// // PfxExpr // //////////////////////////////////////////////////////////////// enum PfxExprOp { // meaning of mOperand effect on stack PX_Start, // bool start-with-CFA? start, with CFA on stack, or not PX_End, // none stop; result is at top of stack PX_SImm32, // int32 push signed int32 PX_DwReg, // DW_REG_NUMBER push value of the specified reg PX_Deref, // none pop X ; push *X PX_Add, // none pop X ; pop Y ; push Y + X PX_Sub, // none pop X ; pop Y ; push Y - X PX_And, // none pop X ; pop Y ; push Y & X PX_Or, // none pop X ; pop Y ; push Y | X PX_CmpGES, // none pop X ; pop Y ; push (Y >=s X) ? 1 : 0 PX_Shl // none pop X ; pop Y ; push Y << X }; struct PfxInstr { PfxInstr(PfxExprOp opcode, int32_t operand) : mOpcode(opcode), mOperand(operand) {} explicit PfxInstr(PfxExprOp opcode) : mOpcode(opcode), mOperand(0) {} bool operator==(const PfxInstr& other) const { return mOpcode == other.mOpcode && mOperand == other.mOperand; } PfxExprOp mOpcode; int32_t mOperand; }; static_assert(sizeof(PfxInstr) <= 8, "PfxInstr size changed unexpectedly"); // Evaluate the prefix expression whose PfxInstrs start at aPfxInstrs[start]. // In the case of any mishap (stack over/underflow, running off the end of // the instruction vector, obviously malformed sequences), // return an invalid TaggedUWord. // RUNS IN NO-MALLOC CONTEXT TaggedUWord EvaluatePfxExpr(int32_t start, const UnwindRegs* aOldRegs, TaggedUWord aCFA, const StackImage* aStackImg, const vector& aPfxInstrs); //////////////////////////////////////////////////////////////// // LExpr // //////////////////////////////////////////////////////////////// // An expression -- very primitive. Denotes either "register + // offset", a dereferenced version of the same, or a reference to a // prefix expression stored elsewhere. So as to allow convenient // handling of Dwarf-derived unwind info, the register may also denote // the CFA. A large number of these need to be stored, so we ensure // it fits into 8 bytes. See comment below on RuleSet to see how // expressions fit into the bigger picture. enum LExprHow { UNKNOWN = 0, // This LExpr denotes no value. NODEREF, // Value is (mReg + mOffset). DEREF, // Value is *(mReg + mOffset). PFXEXPR // Value is EvaluatePfxExpr(secMap->mPfxInstrs[mOffset]) }; inline static const char* NameOf_LExprHow(LExprHow how) { switch (how) { case UNKNOWN: return "UNKNOWN"; case NODEREF: return "NODEREF"; case DEREF: return "DEREF"; case PFXEXPR: return "PFXEXPR"; default: return "LExpr-??"; } } struct LExpr { // Denotes an expression with no value. LExpr() : mHow(UNKNOWN), mReg(0), mOffset(0) {} // Denotes any expressible expression. LExpr(LExprHow how, int16_t reg, int32_t offset) : mHow(how), mReg(reg), mOffset(offset) { switch (how) { case UNKNOWN: MOZ_ASSERT(reg == 0 && offset == 0); break; case NODEREF: break; case DEREF: break; case PFXEXPR: MOZ_ASSERT(reg == 0 && offset >= 0); break; default: MOZ_ASSERT(0, "LExpr::LExpr: invalid how"); } } // Change the offset for an expression that references memory. LExpr add_delta(long delta) { MOZ_ASSERT(mHow == NODEREF); // If this is a non-debug build and the above assertion would have // failed, at least return LExpr() so that the machinery that uses // the resulting expression fails in a repeatable way. return (mHow == NODEREF) ? LExpr(mHow, mReg, mOffset + delta) : LExpr(); // Gone bad } // Dereference an expression that denotes a memory address. LExpr deref() { MOZ_ASSERT(mHow == NODEREF); // Same rationale as for add_delta(). return (mHow == NODEREF) ? LExpr(DEREF, mReg, mOffset) : LExpr(); // Gone bad } // Print a rule for recovery of |aNewReg| whose recovered value // is this LExpr. std::string ShowRule(const char* aNewReg) const; // Evaluate this expression, producing a TaggedUWord. |aOldRegs| // holds register values that may be referred to by the expression. // |aCFA| holds the CFA value, if any, that applies. |aStackImg| // contains a chuck of stack that will be consulted if the expression // references memory. |aPfxInstrs| holds the vector of PfxInstrs // that will be consulted if this is a PFXEXPR. // RUNS IN NO-MALLOC CONTEXT TaggedUWord EvaluateExpr(const UnwindRegs* aOldRegs, TaggedUWord aCFA, const StackImage* aStackImg, const vector* aPfxInstrs) const; // Representation of expressions. If |mReg| is DW_REG_CFA (-1) then // it denotes the CFA. All other allowed values for |mReg| are // nonnegative and are DW_REG_ values. LExprHow mHow : 8; int16_t mReg; // A DW_REG_ value int32_t mOffset; // 32-bit signed offset should be more than enough. }; static_assert(sizeof(LExpr) <= 8, "LExpr size changed unexpectedly"); //////////////////////////////////////////////////////////////// // RuleSet // //////////////////////////////////////////////////////////////// // This is platform-dependent. For some address range, describes how // to recover the CFA and then how to recover the registers for the // previous frame. // // The set of LExprs contained in a given RuleSet describe a DAG which // says how to compute the caller's registers ("new registers") from // the callee's registers ("old registers"). The DAG can contain a // single internal node, which is the value of the CFA for the callee. // It would be possible to construct a DAG that omits the CFA, but // including it makes the summarisers simpler, and the Dwarf CFI spec // has the CFA as a central concept. // // For this to make sense, |mCfaExpr| can't have // |mReg| == DW_REG_CFA since we have no previous value for the CFA. // All of the other |Expr| fields can -- and usually do -- specify // |mReg| == DW_REG_CFA. // // With that in place, the unwind algorithm proceeds as follows. // // (0) Initially: we have values for the old registers, and a memory // image. // // (1) Compute the CFA by evaluating |mCfaExpr|. Add the computed // value to the set of "old registers". // // (2) Compute values for the registers by evaluating all of the other // |Expr| fields in the RuleSet. These can depend on both the old // register values and the just-computed CFA. // // If we are unwinding without computing a CFA, perhaps because the // RuleSets are derived from EXIDX instead of Dwarf, then // |mCfaExpr.mHow| will be LExpr::UNKNOWN, so the computed value will // be invalid -- that is, TaggedUWord() -- and so any attempt to use // that will result in the same value. But that's OK because the // RuleSet would make no sense if depended on the CFA but specified no // way to compute it. // // A RuleSet is not allowed to cover zero address range. Having zero // length would break binary searching in SecMaps and PriMaps. class RuleSet { public: RuleSet(); void Print(void (*aLog)(const char*)) const; // Find the LExpr* for a given DW_REG_ value in this class. LExpr* ExprForRegno(DW_REG_NUMBER aRegno); uintptr_t mAddr; uintptr_t mLen; // How to compute the CFA. LExpr mCfaExpr; // How to compute caller register values. These may reference the // value defined by |mCfaExpr|. #if defined(GP_ARCH_amd64) || defined(GP_ARCH_x86) LExpr mXipExpr; // return address LExpr mXspExpr; LExpr mXbpExpr; #elif defined(GP_ARCH_arm) LExpr mR15expr; // return address LExpr mR14expr; LExpr mR13expr; LExpr mR12expr; LExpr mR11expr; LExpr mR7expr; #elif defined(GP_ARCH_arm64) LExpr mX29expr; // frame pointer register LExpr mX30expr; // link register LExpr mSPexpr; #elif defined(GP_ARCH_mips64) LExpr mPCexpr; LExpr mFPexpr; LExpr mSPexpr; #else # error "Unknown arch" #endif }; // Returns |true| for Dwarf register numbers which are members // of the set of registers that LUL unwinds on this target. static inline bool registerIsTracked(DW_REG_NUMBER reg) { switch (reg) { #if defined(GP_ARCH_amd64) || defined(GP_ARCH_x86) case DW_REG_INTEL_XBP: case DW_REG_INTEL_XSP: case DW_REG_INTEL_XIP: return true; #elif defined(GP_ARCH_arm) case DW_REG_ARM_R7: case DW_REG_ARM_R11: case DW_REG_ARM_R12: case DW_REG_ARM_R13: case DW_REG_ARM_R14: case DW_REG_ARM_R15: return true; #elif defined(GP_ARCH_arm64) case DW_REG_AARCH64_X29: case DW_REG_AARCH64_X30: case DW_REG_AARCH64_SP: return true; #elif defined(GP_ARCH_mips64) case DW_REG_MIPS_FP: case DW_REG_MIPS_SP: case DW_REG_MIPS_PC: return true; #else # error "Unknown arch" #endif default: return false; } } //////////////////////////////////////////////////////////////// // SecMap // //////////////////////////////////////////////////////////////// // A SecMap may have zero address range, temporarily, whilst RuleSets // are being added to it. But adding a zero-range SecMap to a PriMap // will make it impossible to maintain the total order of the PriMap // entries, and so that can't be allowed to happen. class SecMap { public: // These summarise the contained mRuleSets, in that they give // exactly the lowest and highest addresses that any of the entries // in this SecMap cover. Hence invariants: // // mRuleSets is nonempty // <=> mSummaryMinAddr <= mSummaryMaxAddr // && mSummaryMinAddr == mRuleSets[0].mAddr // && mSummaryMaxAddr == mRuleSets[#rulesets-1].mAddr // + mRuleSets[#rulesets-1].mLen - 1; // // This requires that no RuleSet has zero length. // // mRuleSets is empty // <=> mSummaryMinAddr > mSummaryMaxAddr // // This doesn't constrain mSummaryMinAddr and mSummaryMaxAddr uniquely, // so let's use mSummaryMinAddr == 1 and mSummaryMaxAddr == 0 to denote // this case. explicit SecMap(void (*aLog)(const char*)); ~SecMap(); // Binary search mRuleSets to find one that brackets |ia|, or nullptr // if none is found. It's not allowable to do this until PrepareRuleSets // has been called first. RuleSet* FindRuleSet(uintptr_t ia); // Add a RuleSet to the collection. The rule is copied in. Calling // this makes the map non-searchable. void AddRuleSet(const RuleSet* rs); // Add a PfxInstr to the vector of such instrs, and return the index // in the vector. Calling this makes the map non-searchable. uint32_t AddPfxInstr(PfxInstr pfxi); // Returns the entire vector of PfxInstrs. const vector* GetPfxInstrs() { return &mPfxInstrs; } // Prepare the map for searching. Also, remove any rules for code // address ranges which don't fall inside [start, +len). |len| may // not be zero. void PrepareRuleSets(uintptr_t start, size_t len); bool IsEmpty(); size_t Size() { return mRuleSets.size(); } size_t SizeOfIncludingThis(mozilla::MallocSizeOf aMallocSizeOf) const; // The min and max addresses of the addresses in the contained // RuleSets. See comment above for invariants. uintptr_t mSummaryMinAddr; uintptr_t mSummaryMaxAddr; private: // False whilst adding entries; true once it is safe to call FindRuleSet. // Transition (false->true) is caused by calling PrepareRuleSets(). bool mUsable; // A vector of RuleSets, sorted, nonoverlapping (post Prepare()). vector mRuleSets; // A vector of PfxInstrs, which are referred to by the RuleSets. // These are provided as a representation of Dwarf expressions // (DW_CFA_val_expression, DW_CFA_expression, DW_CFA_def_cfa_expression), // are relatively expensive to evaluate, and and are therefore // expected to be used only occasionally. // // The vector holds a bunch of separate PfxInstr programs, each one // starting with a PX_Start and terminated by a PX_End, all // concatenated together. When a RuleSet can't recover a value // using a self-contained LExpr, it uses a PFXEXPR whose mOffset is // the index in this vector of start of the necessary PfxInstr program. vector mPfxInstrs; // A logging sink, for debugging. void (*mLog)(const char*); }; } // namespace lul #endif // ndef LulMainInt_h