/*- * Copyright (c) 1980, 1986, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * */ #ifndef _USER_ROUTE_H_ #define _USER_ROUTE_H_ /* * Kernel resident routing tables. * * The routing tables are initialized when interface addresses * are set by making entries for all directly connected interfaces. */ /* * A route consists of a destination address and a reference * to a routing entry. These are often held by protocols * in their control blocks, e.g. inpcb. */ struct sctp_route { struct sctp_rtentry *ro_rt; struct sockaddr ro_dst; }; /* * These numbers are used by reliable protocols for determining * retransmission behavior and are included in the routing structure. */ struct sctp_rt_metrics_lite { uint32_t rmx_mtu; /* MTU for this path */ #if 0 u_long rmx_expire; /* lifetime for route, e.g. redirect */ u_long rmx_pksent; /* packets sent using this route */ #endif }; /* * We distinguish between routes to hosts and routes to networks, * preferring the former if available. For each route we infer * the interface to use from the gateway address supplied when * the route was entered. Routes that forward packets through * gateways are marked so that the output routines know to address the * gateway rather than the ultimate destination. */ struct sctp_rtentry { #if 0 struct radix_node rt_nodes[2]; /* tree glue, and other values */ /* * XXX struct rtentry must begin with a struct radix_node (or two!) * because the code does some casts of a 'struct radix_node *' * to a 'struct rtentry *' */ #define rt_key(r) (*((struct sockaddr **)(&(r)->rt_nodes->rn_key))) #define rt_mask(r) (*((struct sockaddr **)(&(r)->rt_nodes->rn_mask))) struct sockaddr *rt_gateway; /* value */ u_long rt_flags; /* up/down?, host/net */ #endif struct ifnet *rt_ifp; /* the answer: interface to use */ struct ifaddr *rt_ifa; /* the answer: interface address to use */ struct sctp_rt_metrics_lite rt_rmx; /* metrics used by rx'ing protocols */ long rt_refcnt; /* # held references */ #if 0 struct sockaddr *rt_genmask; /* for generation of cloned routes */ caddr_t rt_llinfo; /* pointer to link level info cache */ struct rtentry *rt_gwroute; /* implied entry for gatewayed routes */ struct rtentry *rt_parent; /* cloning parent of this route */ #endif struct mtx rt_mtx; /* mutex for routing entry */ }; #define RT_LOCK_INIT(_rt) mtx_init(&(_rt)->rt_mtx, "rtentry", NULL, MTX_DEF | MTX_DUPOK) #define RT_LOCK(_rt) mtx_lock(&(_rt)->rt_mtx) #define RT_UNLOCK(_rt) mtx_unlock(&(_rt)->rt_mtx) #define RT_LOCK_DESTROY(_rt) mtx_destroy(&(_rt)->rt_mtx) #define RT_LOCK_ASSERT(_rt) mtx_assert(&(_rt)->rt_mtx, MA_OWNED) #define RT_ADDREF(_rt) do { \ RT_LOCK_ASSERT(_rt); \ KASSERT((_rt)->rt_refcnt >= 0, \ ("negative refcnt %ld", (_rt)->rt_refcnt)); \ (_rt)->rt_refcnt++; \ } while (0) #define RT_REMREF(_rt) do { \ RT_LOCK_ASSERT(_rt); \ KASSERT((_rt)->rt_refcnt > 0, \ ("bogus refcnt %ld", (_rt)->rt_refcnt)); \ (_rt)->rt_refcnt--; \ } while (0) #define RTFREE_LOCKED(_rt) do { \ if ((_rt)->rt_refcnt <= 1) { \ rtfree(_rt); \ } else { \ RT_REMREF(_rt); \ RT_UNLOCK(_rt); \ } \ /* guard against invalid refs */ \ _rt = NULL; \ } while (0) #define RTFREE(_rt) do { \ RT_LOCK(_rt); \ RTFREE_LOCKED(_rt); \ } while (0) #endif