/* MIT License * * Copyright (c) 2016-2022 INRIA, CMU and Microsoft Corporation * Copyright (c) 2022-2023 HACL* Contributors * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "Hacl_Curve25519_64.h" #include "internal/Vale.h" #include "internal/Hacl_Krmllib.h" #include "config.h" #include "curve25519-inline.h" static inline void add_scalar0(uint64_t *out, uint64_t *f1, uint64_t f2) { #if HACL_CAN_COMPILE_INLINE_ASM add_scalar(out, f1, f2); #else uint64_t uu____0 = add_scalar_e(out, f1, f2); #endif } static inline void fadd0(uint64_t *out, uint64_t *f1, uint64_t *f2) { #if HACL_CAN_COMPILE_INLINE_ASM fadd(out, f1, f2); #else uint64_t uu____0 = fadd_e(out, f1, f2); #endif } static inline void fsub0(uint64_t *out, uint64_t *f1, uint64_t *f2) { #if HACL_CAN_COMPILE_INLINE_ASM fsub(out, f1, f2); #else uint64_t uu____0 = fsub_e(out, f1, f2); #endif } static inline void fmul0(uint64_t *out, uint64_t *f1, uint64_t *f2, uint64_t *tmp) { #if HACL_CAN_COMPILE_INLINE_ASM fmul(out, f1, f2, tmp); #else uint64_t uu____0 = fmul_e(tmp, f1, out, f2); #endif } static inline void fmul20(uint64_t *out, uint64_t *f1, uint64_t *f2, uint64_t *tmp) { #if HACL_CAN_COMPILE_INLINE_ASM fmul2(out, f1, f2, tmp); #else uint64_t uu____0 = fmul2_e(tmp, f1, out, f2); #endif } static inline void fmul_scalar0(uint64_t *out, uint64_t *f1, uint64_t f2) { #if HACL_CAN_COMPILE_INLINE_ASM fmul_scalar(out, f1, f2); #else uint64_t uu____0 = fmul_scalar_e(out, f1, f2); #endif } static inline void fsqr0(uint64_t *out, uint64_t *f1, uint64_t *tmp) { #if HACL_CAN_COMPILE_INLINE_ASM fsqr(out, f1, tmp); #else uint64_t uu____0 = fsqr_e(tmp, f1, out); #endif } static inline void fsqr20(uint64_t *out, uint64_t *f, uint64_t *tmp) { #if HACL_CAN_COMPILE_INLINE_ASM fsqr2(out, f, tmp); #else uint64_t uu____0 = fsqr2_e(tmp, f, out); #endif } static inline void cswap20(uint64_t bit, uint64_t *p1, uint64_t *p2) { #if HACL_CAN_COMPILE_INLINE_ASM cswap2(bit, p1, p2); #else uint64_t uu____0 = cswap2_e(bit, p1, p2); #endif } static const uint8_t g25519[32U] = { (uint8_t)9U }; static void point_add_and_double(uint64_t *q, uint64_t *p01_tmp1, uint64_t *tmp2) { uint64_t *nq = p01_tmp1; uint64_t *nq_p1 = p01_tmp1 + (uint32_t)8U; uint64_t *tmp1 = p01_tmp1 + (uint32_t)16U; uint64_t *x1 = q; uint64_t *x2 = nq; uint64_t *z2 = nq + (uint32_t)4U; uint64_t *z3 = nq_p1 + (uint32_t)4U; uint64_t *a = tmp1; uint64_t *b = tmp1 + (uint32_t)4U; uint64_t *ab = tmp1; uint64_t *dc = tmp1 + (uint32_t)8U; fadd0(a, x2, z2); fsub0(b, x2, z2); uint64_t *x3 = nq_p1; uint64_t *z31 = nq_p1 + (uint32_t)4U; uint64_t *d0 = dc; uint64_t *c0 = dc + (uint32_t)4U; fadd0(c0, x3, z31); fsub0(d0, x3, z31); fmul20(dc, dc, ab, tmp2); fadd0(x3, d0, c0); fsub0(z31, d0, c0); uint64_t *a1 = tmp1; uint64_t *b1 = tmp1 + (uint32_t)4U; uint64_t *d = tmp1 + (uint32_t)8U; uint64_t *c = tmp1 + (uint32_t)12U; uint64_t *ab1 = tmp1; uint64_t *dc1 = tmp1 + (uint32_t)8U; fsqr20(dc1, ab1, tmp2); fsqr20(nq_p1, nq_p1, tmp2); a1[0U] = c[0U]; a1[1U] = c[1U]; a1[2U] = c[2U]; a1[3U] = c[3U]; fsub0(c, d, c); fmul_scalar0(b1, c, (uint64_t)121665U); fadd0(b1, b1, d); fmul20(nq, dc1, ab1, tmp2); fmul0(z3, z3, x1, tmp2); } static void point_double(uint64_t *nq, uint64_t *tmp1, uint64_t *tmp2) { uint64_t *x2 = nq; uint64_t *z2 = nq + (uint32_t)4U; uint64_t *a = tmp1; uint64_t *b = tmp1 + (uint32_t)4U; uint64_t *d = tmp1 + (uint32_t)8U; uint64_t *c = tmp1 + (uint32_t)12U; uint64_t *ab = tmp1; uint64_t *dc = tmp1 + (uint32_t)8U; fadd0(a, x2, z2); fsub0(b, x2, z2); fsqr20(dc, ab, tmp2); a[0U] = c[0U]; a[1U] = c[1U]; a[2U] = c[2U]; a[3U] = c[3U]; fsub0(c, d, c); fmul_scalar0(b, c, (uint64_t)121665U); fadd0(b, b, d); fmul20(nq, dc, ab, tmp2); } static void montgomery_ladder(uint64_t *out, uint8_t *key, uint64_t *init) { uint64_t tmp2[16U] = { 0U }; uint64_t p01_tmp1_swap[33U] = { 0U }; uint64_t *p0 = p01_tmp1_swap; uint64_t *p01 = p01_tmp1_swap; uint64_t *p03 = p01; uint64_t *p11 = p01 + (uint32_t)8U; memcpy(p11, init, (uint32_t)8U * sizeof(uint64_t)); uint64_t *x0 = p03; uint64_t *z0 = p03 + (uint32_t)4U; x0[0U] = (uint64_t)1U; x0[1U] = (uint64_t)0U; x0[2U] = (uint64_t)0U; x0[3U] = (uint64_t)0U; z0[0U] = (uint64_t)0U; z0[1U] = (uint64_t)0U; z0[2U] = (uint64_t)0U; z0[3U] = (uint64_t)0U; uint64_t *p01_tmp1 = p01_tmp1_swap; uint64_t *p01_tmp11 = p01_tmp1_swap; uint64_t *nq1 = p01_tmp1_swap; uint64_t *nq_p11 = p01_tmp1_swap + (uint32_t)8U; uint64_t *swap = p01_tmp1_swap + (uint32_t)32U; cswap20((uint64_t)1U, nq1, nq_p11); point_add_and_double(init, p01_tmp11, tmp2); swap[0U] = (uint64_t)1U; for (uint32_t i = (uint32_t)0U; i < (uint32_t)251U; i++) { uint64_t *p01_tmp12 = p01_tmp1_swap; uint64_t *swap1 = p01_tmp1_swap + (uint32_t)32U; uint64_t *nq2 = p01_tmp12; uint64_t *nq_p12 = p01_tmp12 + (uint32_t)8U; uint64_t bit = (uint64_t)(key[((uint32_t)253U - i) / (uint32_t)8U] >> ((uint32_t)253U - i) % (uint32_t)8U & (uint8_t)1U); uint64_t sw = swap1[0U] ^ bit; cswap20(sw, nq2, nq_p12); point_add_and_double(init, p01_tmp12, tmp2); swap1[0U] = bit; } uint64_t sw = swap[0U]; cswap20(sw, nq1, nq_p11); uint64_t *nq10 = p01_tmp1; uint64_t *tmp1 = p01_tmp1 + (uint32_t)16U; point_double(nq10, tmp1, tmp2); point_double(nq10, tmp1, tmp2); point_double(nq10, tmp1, tmp2); memcpy(out, p0, (uint32_t)8U * sizeof(uint64_t)); } static void fsquare_times(uint64_t *o, uint64_t *inp, uint64_t *tmp, uint32_t n) { fsqr0(o, inp, tmp); for (uint32_t i = (uint32_t)0U; i < n - (uint32_t)1U; i++) { fsqr0(o, o, tmp); } } static void finv(uint64_t *o, uint64_t *i, uint64_t *tmp) { uint64_t t1[16U] = { 0U }; uint64_t *a1 = t1; uint64_t *b1 = t1 + (uint32_t)4U; uint64_t *t010 = t1 + (uint32_t)12U; uint64_t *tmp10 = tmp; fsquare_times(a1, i, tmp10, (uint32_t)1U); fsquare_times(t010, a1, tmp10, (uint32_t)2U); fmul0(b1, t010, i, tmp); fmul0(a1, b1, a1, tmp); fsquare_times(t010, a1, tmp10, (uint32_t)1U); fmul0(b1, t010, b1, tmp); fsquare_times(t010, b1, tmp10, (uint32_t)5U); fmul0(b1, t010, b1, tmp); uint64_t *b10 = t1 + (uint32_t)4U; uint64_t *c10 = t1 + (uint32_t)8U; uint64_t *t011 = t1 + (uint32_t)12U; uint64_t *tmp11 = tmp; fsquare_times(t011, b10, tmp11, (uint32_t)10U); fmul0(c10, t011, b10, tmp); fsquare_times(t011, c10, tmp11, (uint32_t)20U); fmul0(t011, t011, c10, tmp); fsquare_times(t011, t011, tmp11, (uint32_t)10U); fmul0(b10, t011, b10, tmp); fsquare_times(t011, b10, tmp11, (uint32_t)50U); fmul0(c10, t011, b10, tmp); uint64_t *b11 = t1 + (uint32_t)4U; uint64_t *c1 = t1 + (uint32_t)8U; uint64_t *t01 = t1 + (uint32_t)12U; uint64_t *tmp1 = tmp; fsquare_times(t01, c1, tmp1, (uint32_t)100U); fmul0(t01, t01, c1, tmp); fsquare_times(t01, t01, tmp1, (uint32_t)50U); fmul0(t01, t01, b11, tmp); fsquare_times(t01, t01, tmp1, (uint32_t)5U); uint64_t *a = t1; uint64_t *t0 = t1 + (uint32_t)12U; fmul0(o, t0, a, tmp); } static void store_felem(uint64_t *b, uint64_t *f) { uint64_t f30 = f[3U]; uint64_t top_bit0 = f30 >> (uint32_t)63U; f[3U] = f30 & (uint64_t)0x7fffffffffffffffU; add_scalar0(f, f, (uint64_t)19U * top_bit0); uint64_t f31 = f[3U]; uint64_t top_bit = f31 >> (uint32_t)63U; f[3U] = f31 & (uint64_t)0x7fffffffffffffffU; add_scalar0(f, f, (uint64_t)19U * top_bit); uint64_t f0 = f[0U]; uint64_t f1 = f[1U]; uint64_t f2 = f[2U]; uint64_t f3 = f[3U]; uint64_t m0 = FStar_UInt64_gte_mask(f0, (uint64_t)0xffffffffffffffedU); uint64_t m1 = FStar_UInt64_eq_mask(f1, (uint64_t)0xffffffffffffffffU); uint64_t m2 = FStar_UInt64_eq_mask(f2, (uint64_t)0xffffffffffffffffU); uint64_t m3 = FStar_UInt64_eq_mask(f3, (uint64_t)0x7fffffffffffffffU); uint64_t mask = ((m0 & m1) & m2) & m3; uint64_t f0_ = f0 - (mask & (uint64_t)0xffffffffffffffedU); uint64_t f1_ = f1 - (mask & (uint64_t)0xffffffffffffffffU); uint64_t f2_ = f2 - (mask & (uint64_t)0xffffffffffffffffU); uint64_t f3_ = f3 - (mask & (uint64_t)0x7fffffffffffffffU); uint64_t o0 = f0_; uint64_t o1 = f1_; uint64_t o2 = f2_; uint64_t o3 = f3_; b[0U] = o0; b[1U] = o1; b[2U] = o2; b[3U] = o3; } static void encode_point(uint8_t *o, uint64_t *i) { uint64_t *x = i; uint64_t *z = i + (uint32_t)4U; uint64_t tmp[4U] = { 0U }; uint64_t u64s[4U] = { 0U }; uint64_t tmp_w[16U] = { 0U }; finv(tmp, z, tmp_w); fmul0(tmp, tmp, x, tmp_w); store_felem(u64s, tmp); KRML_MAYBE_FOR4(i0, (uint32_t)0U, (uint32_t)4U, (uint32_t)1U, store64_le(o + i0 * (uint32_t)8U, u64s[i0]);); } /** Compute the scalar multiple of a point. @param out Pointer to 32 bytes of memory, allocated by the caller, where the resulting point is written to. @param priv Pointer to 32 bytes of memory where the secret/private key is read from. @param pub Pointer to 32 bytes of memory where the public point is read from. */ void Hacl_Curve25519_64_scalarmult(uint8_t *out, uint8_t *priv, uint8_t *pub) { uint64_t init[8U] = { 0U }; uint64_t tmp[4U] = { 0U }; KRML_MAYBE_FOR4(i, (uint32_t)0U, (uint32_t)4U, (uint32_t)1U, uint64_t *os = tmp; uint8_t *bj = pub + i * (uint32_t)8U; uint64_t u = load64_le(bj); uint64_t r = u; uint64_t x = r; os[i] = x;); uint64_t tmp3 = tmp[3U]; tmp[3U] = tmp3 & (uint64_t)0x7fffffffffffffffU; uint64_t *x = init; uint64_t *z = init + (uint32_t)4U; z[0U] = (uint64_t)1U; z[1U] = (uint64_t)0U; z[2U] = (uint64_t)0U; z[3U] = (uint64_t)0U; x[0U] = tmp[0U]; x[1U] = tmp[1U]; x[2U] = tmp[2U]; x[3U] = tmp[3U]; montgomery_ladder(init, priv, init); encode_point(out, init); } /** Calculate a public point from a secret/private key. This computes a scalar multiplication of the secret/private key with the curve's basepoint. @param pub Pointer to 32 bytes of memory, allocated by the caller, where the resulting point is written to. @param priv Pointer to 32 bytes of memory where the secret/private key is read from. */ void Hacl_Curve25519_64_secret_to_public(uint8_t *pub, uint8_t *priv) { uint8_t basepoint[32U] = { 0U }; for (uint32_t i = (uint32_t)0U; i < (uint32_t)32U; i++) { uint8_t *os = basepoint; uint8_t x = g25519[i]; os[i] = x; } Hacl_Curve25519_64_scalarmult(pub, priv, basepoint); } /** Execute the diffie-hellmann key exchange. @param out Pointer to 32 bytes of memory, allocated by the caller, where the resulting point is written to. @param priv Pointer to 32 bytes of memory where **our** secret/private key is read from. @param pub Pointer to 32 bytes of memory where **their** public point is read from. */ bool Hacl_Curve25519_64_ecdh(uint8_t *out, uint8_t *priv, uint8_t *pub) { uint8_t zeros[32U] = { 0U }; Hacl_Curve25519_64_scalarmult(out, priv, pub); uint8_t res = (uint8_t)255U; for (uint32_t i = (uint32_t)0U; i < (uint32_t)32U; i++) { uint8_t uu____0 = FStar_UInt8_eq_mask(out[i], zeros[i]); res = uu____0 & res; } uint8_t z = res; bool r = z == (uint8_t)255U; return !r; }