/* MIT License * * Copyright (c) 2016-2022 INRIA, CMU and Microsoft Corporation * Copyright (c) 2022-2023 HACL* Contributors * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "internal/Hacl_Hash_SHA3.h" static uint32_t block_len(Spec_Hash_Definitions_hash_alg a) { switch (a) { case Spec_Hash_Definitions_SHA3_224: { return (uint32_t)144U; } case Spec_Hash_Definitions_SHA3_256: { return (uint32_t)136U; } case Spec_Hash_Definitions_SHA3_384: { return (uint32_t)104U; } case Spec_Hash_Definitions_SHA3_512: { return (uint32_t)72U; } case Spec_Hash_Definitions_Shake128: { return (uint32_t)168U; } case Spec_Hash_Definitions_Shake256: { return (uint32_t)136U; } default: { KRML_HOST_EPRINTF("KaRaMeL incomplete match at %s:%d\n", __FILE__, __LINE__); KRML_HOST_EXIT(253U); } } } static uint32_t hash_len(Spec_Hash_Definitions_hash_alg a) { switch (a) { case Spec_Hash_Definitions_SHA3_224: { return (uint32_t)28U; } case Spec_Hash_Definitions_SHA3_256: { return (uint32_t)32U; } case Spec_Hash_Definitions_SHA3_384: { return (uint32_t)48U; } case Spec_Hash_Definitions_SHA3_512: { return (uint32_t)64U; } default: { KRML_HOST_EPRINTF("KaRaMeL incomplete match at %s:%d\n", __FILE__, __LINE__); KRML_HOST_EXIT(253U); } } } void Hacl_Hash_SHA3_update_multi_sha3( Spec_Hash_Definitions_hash_alg a, uint64_t *s, uint8_t *blocks, uint32_t n_blocks) { for (uint32_t i = (uint32_t)0U; i < n_blocks; i++) { uint8_t *block = blocks + i * block_len(a); Hacl_Impl_SHA3_absorb_inner(block_len(a), block, s); } } void Hacl_Hash_SHA3_update_last_sha3( Spec_Hash_Definitions_hash_alg a, uint64_t *s, uint8_t *input, uint32_t input_len) { uint8_t suffix; if (a == Spec_Hash_Definitions_Shake128 || a == Spec_Hash_Definitions_Shake256) { suffix = (uint8_t)0x1fU; } else { suffix = (uint8_t)0x06U; } uint32_t len = block_len(a); if (input_len == len) { Hacl_Impl_SHA3_absorb_inner(len, input, s); uint8_t lastBlock_[200U] = { 0U }; uint8_t *lastBlock = lastBlock_; memcpy(lastBlock, input + input_len, (uint32_t)0U * sizeof(uint8_t)); lastBlock[0U] = suffix; Hacl_Impl_SHA3_loadState(len, lastBlock, s); if (!((suffix & (uint8_t)0x80U) == (uint8_t)0U) && (uint32_t)0U == len - (uint32_t)1U) { Hacl_Impl_SHA3_state_permute(s); } uint8_t nextBlock_[200U] = { 0U }; uint8_t *nextBlock = nextBlock_; nextBlock[len - (uint32_t)1U] = (uint8_t)0x80U; Hacl_Impl_SHA3_loadState(len, nextBlock, s); Hacl_Impl_SHA3_state_permute(s); return; } uint8_t lastBlock_[200U] = { 0U }; uint8_t *lastBlock = lastBlock_; memcpy(lastBlock, input, input_len * sizeof(uint8_t)); lastBlock[input_len] = suffix; Hacl_Impl_SHA3_loadState(len, lastBlock, s); if (!((suffix & (uint8_t)0x80U) == (uint8_t)0U) && input_len == len - (uint32_t)1U) { Hacl_Impl_SHA3_state_permute(s); } uint8_t nextBlock_[200U] = { 0U }; uint8_t *nextBlock = nextBlock_; nextBlock[len - (uint32_t)1U] = (uint8_t)0x80U; Hacl_Impl_SHA3_loadState(len, nextBlock, s); Hacl_Impl_SHA3_state_permute(s); } typedef struct hash_buf2_s { Hacl_Streaming_Keccak_hash_buf fst; Hacl_Streaming_Keccak_hash_buf snd; } hash_buf2; Spec_Hash_Definitions_hash_alg Hacl_Streaming_Keccak_get_alg(Hacl_Streaming_Keccak_state *s) { Hacl_Streaming_Keccak_hash_buf block_state = (*s).block_state; return block_state.fst; } Hacl_Streaming_Keccak_state * Hacl_Streaming_Keccak_malloc(Spec_Hash_Definitions_hash_alg a) { KRML_CHECK_SIZE(sizeof(uint8_t), block_len(a)); uint8_t *buf0 = (uint8_t *)KRML_HOST_CALLOC(block_len(a), sizeof(uint8_t)); uint64_t *buf = (uint64_t *)KRML_HOST_CALLOC((uint32_t)25U, sizeof(uint64_t)); Hacl_Streaming_Keccak_hash_buf block_state = { .fst = a, .snd = buf }; Hacl_Streaming_Keccak_state s = { .block_state = block_state, .buf = buf0, .total_len = (uint64_t)(uint32_t)0U }; Hacl_Streaming_Keccak_state *p = (Hacl_Streaming_Keccak_state *)KRML_HOST_MALLOC(sizeof(Hacl_Streaming_Keccak_state)); p[0U] = s; uint64_t *s1 = block_state.snd; memset(s1, 0U, (uint32_t)25U * sizeof(uint64_t)); return p; } void Hacl_Streaming_Keccak_free(Hacl_Streaming_Keccak_state *s) { Hacl_Streaming_Keccak_state scrut = *s; uint8_t *buf = scrut.buf; Hacl_Streaming_Keccak_hash_buf block_state = scrut.block_state; uint64_t *s1 = block_state.snd; KRML_HOST_FREE(s1); KRML_HOST_FREE(buf); KRML_HOST_FREE(s); } Hacl_Streaming_Keccak_state * Hacl_Streaming_Keccak_copy(Hacl_Streaming_Keccak_state *s0) { Hacl_Streaming_Keccak_state scrut0 = *s0; Hacl_Streaming_Keccak_hash_buf block_state0 = scrut0.block_state; uint8_t *buf0 = scrut0.buf; uint64_t total_len0 = scrut0.total_len; Spec_Hash_Definitions_hash_alg i = block_state0.fst; KRML_CHECK_SIZE(sizeof(uint8_t), block_len(i)); uint8_t *buf1 = (uint8_t *)KRML_HOST_CALLOC(block_len(i), sizeof(uint8_t)); memcpy(buf1, buf0, block_len(i) * sizeof(uint8_t)); uint64_t *buf = (uint64_t *)KRML_HOST_CALLOC((uint32_t)25U, sizeof(uint64_t)); Hacl_Streaming_Keccak_hash_buf block_state = { .fst = i, .snd = buf }; hash_buf2 scrut = { .fst = block_state0, .snd = block_state }; uint64_t *s_dst = scrut.snd.snd; uint64_t *s_src = scrut.fst.snd; memcpy(s_dst, s_src, (uint32_t)25U * sizeof(uint64_t)); Hacl_Streaming_Keccak_state s = { .block_state = block_state, .buf = buf1, .total_len = total_len0 }; Hacl_Streaming_Keccak_state *p = (Hacl_Streaming_Keccak_state *)KRML_HOST_MALLOC(sizeof(Hacl_Streaming_Keccak_state)); p[0U] = s; return p; } void Hacl_Streaming_Keccak_reset(Hacl_Streaming_Keccak_state *s) { Hacl_Streaming_Keccak_state scrut = *s; uint8_t *buf = scrut.buf; Hacl_Streaming_Keccak_hash_buf block_state = scrut.block_state; Spec_Hash_Definitions_hash_alg i = block_state.fst; KRML_HOST_IGNORE(i); uint64_t *s1 = block_state.snd; memset(s1, 0U, (uint32_t)25U * sizeof(uint64_t)); Hacl_Streaming_Keccak_state tmp = { .block_state = block_state, .buf = buf, .total_len = (uint64_t)(uint32_t)0U }; s[0U] = tmp; } Hacl_Streaming_Types_error_code Hacl_Streaming_Keccak_update(Hacl_Streaming_Keccak_state *p, uint8_t *data, uint32_t len) { Hacl_Streaming_Keccak_state s = *p; Hacl_Streaming_Keccak_hash_buf block_state = s.block_state; uint64_t total_len = s.total_len; Spec_Hash_Definitions_hash_alg i = block_state.fst; if ((uint64_t)len > (uint64_t)0xFFFFFFFFFFFFFFFFU - total_len) { return Hacl_Streaming_Types_MaximumLengthExceeded; } uint32_t sz; if (total_len % (uint64_t)block_len(i) == (uint64_t)0U && total_len > (uint64_t)0U) { sz = block_len(i); } else { sz = (uint32_t)(total_len % (uint64_t)block_len(i)); } if (len <= block_len(i) - sz) { Hacl_Streaming_Keccak_state s1 = *p; Hacl_Streaming_Keccak_hash_buf block_state1 = s1.block_state; uint8_t *buf = s1.buf; uint64_t total_len1 = s1.total_len; uint32_t sz1; if (total_len1 % (uint64_t)block_len(i) == (uint64_t)0U && total_len1 > (uint64_t)0U) { sz1 = block_len(i); } else { sz1 = (uint32_t)(total_len1 % (uint64_t)block_len(i)); } uint8_t *buf2 = buf + sz1; memcpy(buf2, data, len * sizeof(uint8_t)); uint64_t total_len2 = total_len1 + (uint64_t)len; *p = ((Hacl_Streaming_Keccak_state){ .block_state = block_state1, .buf = buf, .total_len = total_len2 }); } else if (sz == (uint32_t)0U) { Hacl_Streaming_Keccak_state s1 = *p; Hacl_Streaming_Keccak_hash_buf block_state1 = s1.block_state; uint8_t *buf = s1.buf; uint64_t total_len1 = s1.total_len; uint32_t sz1; if (total_len1 % (uint64_t)block_len(i) == (uint64_t)0U && total_len1 > (uint64_t)0U) { sz1 = block_len(i); } else { sz1 = (uint32_t)(total_len1 % (uint64_t)block_len(i)); } if (!(sz1 == (uint32_t)0U)) { Spec_Hash_Definitions_hash_alg a1 = block_state1.fst; uint64_t *s2 = block_state1.snd; Hacl_Hash_SHA3_update_multi_sha3(a1, s2, buf, block_len(i) / block_len(a1)); } uint32_t ite; if ((uint64_t)len % (uint64_t)block_len(i) == (uint64_t)0U && (uint64_t)len > (uint64_t)0U) { ite = block_len(i); } else { ite = (uint32_t)((uint64_t)len % (uint64_t)block_len(i)); } uint32_t n_blocks = (len - ite) / block_len(i); uint32_t data1_len = n_blocks * block_len(i); uint32_t data2_len = len - data1_len; uint8_t *data1 = data; uint8_t *data2 = data + data1_len; Spec_Hash_Definitions_hash_alg a1 = block_state1.fst; uint64_t *s2 = block_state1.snd; Hacl_Hash_SHA3_update_multi_sha3(a1, s2, data1, data1_len / block_len(a1)); uint8_t *dst = buf; memcpy(dst, data2, data2_len * sizeof(uint8_t)); *p = ((Hacl_Streaming_Keccak_state){ .block_state = block_state1, .buf = buf, .total_len = total_len1 + (uint64_t)len }); } else { uint32_t diff = block_len(i) - sz; uint8_t *data1 = data; uint8_t *data2 = data + diff; Hacl_Streaming_Keccak_state s1 = *p; Hacl_Streaming_Keccak_hash_buf block_state10 = s1.block_state; uint8_t *buf0 = s1.buf; uint64_t total_len10 = s1.total_len; uint32_t sz10; if (total_len10 % (uint64_t)block_len(i) == (uint64_t)0U && total_len10 > (uint64_t)0U) { sz10 = block_len(i); } else { sz10 = (uint32_t)(total_len10 % (uint64_t)block_len(i)); } uint8_t *buf2 = buf0 + sz10; memcpy(buf2, data1, diff * sizeof(uint8_t)); uint64_t total_len2 = total_len10 + (uint64_t)diff; *p = ((Hacl_Streaming_Keccak_state){ .block_state = block_state10, .buf = buf0, .total_len = total_len2 }); Hacl_Streaming_Keccak_state s10 = *p; Hacl_Streaming_Keccak_hash_buf block_state1 = s10.block_state; uint8_t *buf = s10.buf; uint64_t total_len1 = s10.total_len; uint32_t sz1; if (total_len1 % (uint64_t)block_len(i) == (uint64_t)0U && total_len1 > (uint64_t)0U) { sz1 = block_len(i); } else { sz1 = (uint32_t)(total_len1 % (uint64_t)block_len(i)); } if (!(sz1 == (uint32_t)0U)) { Spec_Hash_Definitions_hash_alg a1 = block_state1.fst; uint64_t *s2 = block_state1.snd; Hacl_Hash_SHA3_update_multi_sha3(a1, s2, buf, block_len(i) / block_len(a1)); } uint32_t ite; if ( (uint64_t)(len - diff) % (uint64_t)block_len(i) == (uint64_t)0U && (uint64_t)(len - diff) > (uint64_t)0U) { ite = block_len(i); } else { ite = (uint32_t)((uint64_t)(len - diff) % (uint64_t)block_len(i)); } uint32_t n_blocks = (len - diff - ite) / block_len(i); uint32_t data1_len = n_blocks * block_len(i); uint32_t data2_len = len - diff - data1_len; uint8_t *data11 = data2; uint8_t *data21 = data2 + data1_len; Spec_Hash_Definitions_hash_alg a1 = block_state1.fst; uint64_t *s2 = block_state1.snd; Hacl_Hash_SHA3_update_multi_sha3(a1, s2, data11, data1_len / block_len(a1)); uint8_t *dst = buf; memcpy(dst, data21, data2_len * sizeof(uint8_t)); *p = ((Hacl_Streaming_Keccak_state){ .block_state = block_state1, .buf = buf, .total_len = total_len1 + (uint64_t)(len - diff) }); } return Hacl_Streaming_Types_Success; } static void finish_( Spec_Hash_Definitions_hash_alg a, Hacl_Streaming_Keccak_state *p, uint8_t *dst, uint32_t l) { Hacl_Streaming_Keccak_state scrut0 = *p; Hacl_Streaming_Keccak_hash_buf block_state = scrut0.block_state; uint8_t *buf_ = scrut0.buf; uint64_t total_len = scrut0.total_len; uint32_t r; if (total_len % (uint64_t)block_len(a) == (uint64_t)0U && total_len > (uint64_t)0U) { r = block_len(a); } else { r = (uint32_t)(total_len % (uint64_t)block_len(a)); } uint8_t *buf_1 = buf_; uint64_t buf[25U] = { 0U }; Hacl_Streaming_Keccak_hash_buf tmp_block_state = { .fst = a, .snd = buf }; hash_buf2 scrut = { .fst = block_state, .snd = tmp_block_state }; uint64_t *s_dst = scrut.snd.snd; uint64_t *s_src = scrut.fst.snd; memcpy(s_dst, s_src, (uint32_t)25U * sizeof(uint64_t)); uint32_t ite; if (r % block_len(a) == (uint32_t)0U && r > (uint32_t)0U) { ite = block_len(a); } else { ite = r % block_len(a); } uint8_t *buf_last = buf_1 + r - ite; uint8_t *buf_multi = buf_1; Spec_Hash_Definitions_hash_alg a1 = tmp_block_state.fst; uint64_t *s0 = tmp_block_state.snd; Hacl_Hash_SHA3_update_multi_sha3(a1, s0, buf_multi, (uint32_t)0U / block_len(a1)); Spec_Hash_Definitions_hash_alg a10 = tmp_block_state.fst; uint64_t *s1 = tmp_block_state.snd; Hacl_Hash_SHA3_update_last_sha3(a10, s1, buf_last, r); Spec_Hash_Definitions_hash_alg a11 = tmp_block_state.fst; uint64_t *s = tmp_block_state.snd; if (a11 == Spec_Hash_Definitions_Shake128 || a11 == Spec_Hash_Definitions_Shake256) { Hacl_Impl_SHA3_squeeze(s, block_len(a11), l, dst); return; } Hacl_Impl_SHA3_squeeze(s, block_len(a11), hash_len(a11), dst); } Hacl_Streaming_Types_error_code Hacl_Streaming_Keccak_finish(Hacl_Streaming_Keccak_state *s, uint8_t *dst) { Spec_Hash_Definitions_hash_alg a1 = Hacl_Streaming_Keccak_get_alg(s); if (a1 == Spec_Hash_Definitions_Shake128 || a1 == Spec_Hash_Definitions_Shake256) { return Hacl_Streaming_Types_InvalidAlgorithm; } finish_(a1, s, dst, hash_len(a1)); return Hacl_Streaming_Types_Success; } Hacl_Streaming_Types_error_code Hacl_Streaming_Keccak_squeeze(Hacl_Streaming_Keccak_state *s, uint8_t *dst, uint32_t l) { Spec_Hash_Definitions_hash_alg a1 = Hacl_Streaming_Keccak_get_alg(s); if (!(a1 == Spec_Hash_Definitions_Shake128 || a1 == Spec_Hash_Definitions_Shake256)) { return Hacl_Streaming_Types_InvalidAlgorithm; } if (l == (uint32_t)0U) { return Hacl_Streaming_Types_InvalidLength; } finish_(a1, s, dst, l); return Hacl_Streaming_Types_Success; } uint32_t Hacl_Streaming_Keccak_block_len(Hacl_Streaming_Keccak_state *s) { Spec_Hash_Definitions_hash_alg a1 = Hacl_Streaming_Keccak_get_alg(s); return block_len(a1); } uint32_t Hacl_Streaming_Keccak_hash_len(Hacl_Streaming_Keccak_state *s) { Spec_Hash_Definitions_hash_alg a1 = Hacl_Streaming_Keccak_get_alg(s); return hash_len(a1); } bool Hacl_Streaming_Keccak_is_shake(Hacl_Streaming_Keccak_state *s) { Spec_Hash_Definitions_hash_alg uu____0 = Hacl_Streaming_Keccak_get_alg(s); return uu____0 == Spec_Hash_Definitions_Shake128 || uu____0 == Spec_Hash_Definitions_Shake256; } void Hacl_SHA3_shake128_hacl( uint32_t inputByteLen, uint8_t *input, uint32_t outputByteLen, uint8_t *output) { Hacl_Impl_SHA3_keccak((uint32_t)1344U, (uint32_t)256U, inputByteLen, input, (uint8_t)0x1FU, outputByteLen, output); } void Hacl_SHA3_shake256_hacl( uint32_t inputByteLen, uint8_t *input, uint32_t outputByteLen, uint8_t *output) { Hacl_Impl_SHA3_keccak((uint32_t)1088U, (uint32_t)512U, inputByteLen, input, (uint8_t)0x1FU, outputByteLen, output); } void Hacl_SHA3_sha3_224(uint32_t inputByteLen, uint8_t *input, uint8_t *output) { Hacl_Impl_SHA3_keccak((uint32_t)1152U, (uint32_t)448U, inputByteLen, input, (uint8_t)0x06U, (uint32_t)28U, output); } void Hacl_SHA3_sha3_256(uint32_t inputByteLen, uint8_t *input, uint8_t *output) { Hacl_Impl_SHA3_keccak((uint32_t)1088U, (uint32_t)512U, inputByteLen, input, (uint8_t)0x06U, (uint32_t)32U, output); } void Hacl_SHA3_sha3_384(uint32_t inputByteLen, uint8_t *input, uint8_t *output) { Hacl_Impl_SHA3_keccak((uint32_t)832U, (uint32_t)768U, inputByteLen, input, (uint8_t)0x06U, (uint32_t)48U, output); } void Hacl_SHA3_sha3_512(uint32_t inputByteLen, uint8_t *input, uint8_t *output) { Hacl_Impl_SHA3_keccak((uint32_t)576U, (uint32_t)1024U, inputByteLen, input, (uint8_t)0x06U, (uint32_t)64U, output); } static const uint32_t keccak_rotc[24U] = { (uint32_t)1U, (uint32_t)3U, (uint32_t)6U, (uint32_t)10U, (uint32_t)15U, (uint32_t)21U, (uint32_t)28U, (uint32_t)36U, (uint32_t)45U, (uint32_t)55U, (uint32_t)2U, (uint32_t)14U, (uint32_t)27U, (uint32_t)41U, (uint32_t)56U, (uint32_t)8U, (uint32_t)25U, (uint32_t)43U, (uint32_t)62U, (uint32_t)18U, (uint32_t)39U, (uint32_t)61U, (uint32_t)20U, (uint32_t)44U }; static const uint32_t keccak_piln[24U] = { (uint32_t)10U, (uint32_t)7U, (uint32_t)11U, (uint32_t)17U, (uint32_t)18U, (uint32_t)3U, (uint32_t)5U, (uint32_t)16U, (uint32_t)8U, (uint32_t)21U, (uint32_t)24U, (uint32_t)4U, (uint32_t)15U, (uint32_t)23U, (uint32_t)19U, (uint32_t)13U, (uint32_t)12U, (uint32_t)2U, (uint32_t)20U, (uint32_t)14U, (uint32_t)22U, (uint32_t)9U, (uint32_t)6U, (uint32_t)1U }; static const uint64_t keccak_rndc[24U] = { (uint64_t)0x0000000000000001U, (uint64_t)0x0000000000008082U, (uint64_t)0x800000000000808aU, (uint64_t)0x8000000080008000U, (uint64_t)0x000000000000808bU, (uint64_t)0x0000000080000001U, (uint64_t)0x8000000080008081U, (uint64_t)0x8000000000008009U, (uint64_t)0x000000000000008aU, (uint64_t)0x0000000000000088U, (uint64_t)0x0000000080008009U, (uint64_t)0x000000008000000aU, (uint64_t)0x000000008000808bU, (uint64_t)0x800000000000008bU, (uint64_t)0x8000000000008089U, (uint64_t)0x8000000000008003U, (uint64_t)0x8000000000008002U, (uint64_t)0x8000000000000080U, (uint64_t)0x000000000000800aU, (uint64_t)0x800000008000000aU, (uint64_t)0x8000000080008081U, (uint64_t)0x8000000000008080U, (uint64_t)0x0000000080000001U, (uint64_t)0x8000000080008008U }; void Hacl_Impl_SHA3_state_permute(uint64_t *s) { for (uint32_t i0 = (uint32_t)0U; i0 < (uint32_t)24U; i0++) { uint64_t _C[5U] = { 0U }; KRML_MAYBE_FOR5(i, (uint32_t)0U, (uint32_t)5U, (uint32_t)1U, _C[i] = s[i + (uint32_t)0U] ^ (s[i + (uint32_t)5U] ^ (s[i + (uint32_t)10U] ^ (s[i + (uint32_t)15U] ^ s[i + (uint32_t)20U])));); KRML_MAYBE_FOR5(i1, (uint32_t)0U, (uint32_t)5U, (uint32_t)1U, uint64_t uu____0 = _C[(i1 + (uint32_t)1U) % (uint32_t)5U]; uint64_t _D = _C[(i1 + (uint32_t)4U) % (uint32_t)5U] ^ (uu____0 << (uint32_t)1U | uu____0 >> (uint32_t)63U); KRML_MAYBE_FOR5(i, (uint32_t)0U, (uint32_t)5U, (uint32_t)1U, s[i1 + (uint32_t)5U * i] = s[i1 + (uint32_t)5U * i] ^ _D;);); uint64_t x = s[1U]; uint64_t current = x; for (uint32_t i = (uint32_t)0U; i < (uint32_t)24U; i++) { uint32_t _Y = keccak_piln[i]; uint32_t r = keccak_rotc[i]; uint64_t temp = s[_Y]; uint64_t uu____1 = current; s[_Y] = uu____1 << r | uu____1 >> ((uint32_t)64U - r); current = temp; } KRML_MAYBE_FOR5(i, (uint32_t)0U, (uint32_t)5U, (uint32_t)1U, uint64_t v0 = s[(uint32_t)0U + (uint32_t)5U * i] ^ (~s[(uint32_t)1U + (uint32_t)5U * i] & s[(uint32_t)2U + (uint32_t)5U * i]); uint64_t v1 = s[(uint32_t)1U + (uint32_t)5U * i] ^ (~s[(uint32_t)2U + (uint32_t)5U * i] & s[(uint32_t)3U + (uint32_t)5U * i]); uint64_t v2 = s[(uint32_t)2U + (uint32_t)5U * i] ^ (~s[(uint32_t)3U + (uint32_t)5U * i] & s[(uint32_t)4U + (uint32_t)5U * i]); uint64_t v3 = s[(uint32_t)3U + (uint32_t)5U * i] ^ (~s[(uint32_t)4U + (uint32_t)5U * i] & s[(uint32_t)0U + (uint32_t)5U * i]); uint64_t v4 = s[(uint32_t)4U + (uint32_t)5U * i] ^ (~s[(uint32_t)0U + (uint32_t)5U * i] & s[(uint32_t)1U + (uint32_t)5U * i]); s[(uint32_t)0U + (uint32_t)5U * i] = v0; s[(uint32_t)1U + (uint32_t)5U * i] = v1; s[(uint32_t)2U + (uint32_t)5U * i] = v2; s[(uint32_t)3U + (uint32_t)5U * i] = v3; s[(uint32_t)4U + (uint32_t)5U * i] = v4;); uint64_t c = keccak_rndc[i0]; s[0U] = s[0U] ^ c; } } void Hacl_Impl_SHA3_loadState(uint32_t rateInBytes, uint8_t *input, uint64_t *s) { uint8_t block[200U] = { 0U }; memcpy(block, input, rateInBytes * sizeof(uint8_t)); for (uint32_t i = (uint32_t)0U; i < (uint32_t)25U; i++) { uint64_t u = load64_le(block + i * (uint32_t)8U); uint64_t x = u; s[i] = s[i] ^ x; } } static void storeState(uint32_t rateInBytes, uint64_t *s, uint8_t *res) { uint8_t block[200U] = { 0U }; for (uint32_t i = (uint32_t)0U; i < (uint32_t)25U; i++) { uint64_t sj = s[i]; store64_le(block + i * (uint32_t)8U, sj); } memcpy(res, block, rateInBytes * sizeof(uint8_t)); } void Hacl_Impl_SHA3_absorb_inner(uint32_t rateInBytes, uint8_t *block, uint64_t *s) { Hacl_Impl_SHA3_loadState(rateInBytes, block, s); Hacl_Impl_SHA3_state_permute(s); } static void absorb( uint64_t *s, uint32_t rateInBytes, uint32_t inputByteLen, uint8_t *input, uint8_t delimitedSuffix) { uint32_t n_blocks = inputByteLen / rateInBytes; uint32_t rem = inputByteLen % rateInBytes; for (uint32_t i = (uint32_t)0U; i < n_blocks; i++) { uint8_t *block = input + i * rateInBytes; Hacl_Impl_SHA3_absorb_inner(rateInBytes, block, s); } uint8_t *last = input + n_blocks * rateInBytes; uint8_t lastBlock_[200U] = { 0U }; uint8_t *lastBlock = lastBlock_; memcpy(lastBlock, last, rem * sizeof(uint8_t)); lastBlock[rem] = delimitedSuffix; Hacl_Impl_SHA3_loadState(rateInBytes, lastBlock, s); if (!((delimitedSuffix & (uint8_t)0x80U) == (uint8_t)0U) && rem == rateInBytes - (uint32_t)1U) { Hacl_Impl_SHA3_state_permute(s); } uint8_t nextBlock_[200U] = { 0U }; uint8_t *nextBlock = nextBlock_; nextBlock[rateInBytes - (uint32_t)1U] = (uint8_t)0x80U; Hacl_Impl_SHA3_loadState(rateInBytes, nextBlock, s); Hacl_Impl_SHA3_state_permute(s); } void Hacl_Impl_SHA3_squeeze( uint64_t *s, uint32_t rateInBytes, uint32_t outputByteLen, uint8_t *output) { uint32_t outBlocks = outputByteLen / rateInBytes; uint32_t remOut = outputByteLen % rateInBytes; uint8_t *last = output + outputByteLen - remOut; uint8_t *blocks = output; for (uint32_t i = (uint32_t)0U; i < outBlocks; i++) { storeState(rateInBytes, s, blocks + i * rateInBytes); Hacl_Impl_SHA3_state_permute(s); } storeState(remOut, s, last); } void Hacl_Impl_SHA3_keccak( uint32_t rate, uint32_t capacity, uint32_t inputByteLen, uint8_t *input, uint8_t delimitedSuffix, uint32_t outputByteLen, uint8_t *output) { KRML_HOST_IGNORE(capacity); uint32_t rateInBytes = rate / (uint32_t)8U; uint64_t s[25U] = { 0U }; absorb(s, rateInBytes, inputByteLen, input, delimitedSuffix); Hacl_Impl_SHA3_squeeze(s, rateInBytes, outputByteLen, output); }