/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ /* * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "nssrenam.h" #include "nss.h" #include "ssl.h" #include "sslproto.h" #include "sslimpl.h" #include "pk11pub.h" #include "blapit.h" #include "prinit.h" #include "selfencrypt.h" #include "ssl3ext.h" #include "ssl3exthandle.h" #include "tls13ech.h" #include "tls13exthandle.h" /* For tls13_ServerSendStatusRequestXtn. */ PRBool ssl_ShouldSendSNIExtension(const sslSocket *ss, const char *url) { PRNetAddr netAddr; /* must have a hostname */ if (!url || !url[0]) { return PR_FALSE; } /* must not be an IPv4 or IPv6 address */ if (PR_SUCCESS == PR_StringToNetAddr(url, &netAddr)) { /* is an IP address (v4 or v6) */ return PR_FALSE; } return PR_TRUE; } /* Format an SNI extension, using the name from the socket's URL, * unless that name is a dotted decimal string. * Used by client and server. */ SECStatus ssl3_ClientFormatServerNameXtn(const sslSocket *ss, const char *url, unsigned int len, TLSExtensionData *xtnData, sslBuffer *buf) { SECStatus rv; /* length of server_name_list */ rv = sslBuffer_AppendNumber(buf, len + 3, 2); if (rv != SECSuccess) { return SECFailure; } /* Name Type (sni_host_name) */ rv = sslBuffer_AppendNumber(buf, 0, 1); if (rv != SECSuccess) { return SECFailure; } /* HostName (length and value) */ rv = sslBuffer_AppendVariable(buf, (const PRUint8 *)url, len, 2); if (rv != SECSuccess) { return SECFailure; } return SECSuccess; } SECStatus ssl3_ClientSendServerNameXtn(const sslSocket *ss, TLSExtensionData *xtnData, sslBuffer *buf, PRBool *added) { SECStatus rv; const char *url = ss->url; if (!ssl_ShouldSendSNIExtension(ss, url)) { return SECSuccess; } /* If ECH, write the public name. The real server name * is emplaced while constructing CHInner extensions. */ sslEchConfig *cfg = (sslEchConfig *)PR_LIST_HEAD(&ss->echConfigs); const char *sniContents = PR_CLIST_IS_EMPTY(&ss->echConfigs) ? url : cfg->contents.publicName; rv = ssl3_ClientFormatServerNameXtn(ss, sniContents, strlen(sniContents), xtnData, buf); if (rv != SECSuccess) { return SECFailure; } *added = PR_TRUE; return SECSuccess; } SECStatus ssl3_HandleServerNameXtn(const sslSocket *ss, TLSExtensionData *xtnData, SECItem *data) { SECItem *names = NULL; PRUint32 listLenBytes = 0; SECStatus rv; if (!ss->sec.isServer) { return SECSuccess; /* ignore extension */ } /* Server side - consume client data and register server sender. */ /* do not parse the data if don't have user extension handling function. */ if (!ss->sniSocketConfig) { return SECSuccess; } /* length of server_name_list */ rv = ssl3_ExtConsumeHandshakeNumber(ss, &listLenBytes, 2, &data->data, &data->len); if (rv != SECSuccess) { goto loser; /* alert already sent */ } if (listLenBytes == 0 || listLenBytes != data->len) { goto alert_loser; } /* Read ServerNameList. */ while (data->len > 0) { SECItem tmp; PRUint32 type; /* Read Name Type. */ rv = ssl3_ExtConsumeHandshakeNumber(ss, &type, 1, &data->data, &data->len); if (rv != SECSuccess) { /* alert sent in ConsumeHandshakeNumber */ goto loser; } /* Read ServerName (length and value). */ rv = ssl3_ExtConsumeHandshakeVariable(ss, &tmp, 2, &data->data, &data->len); if (rv != SECSuccess) { goto loser; } /* Record the value for host_name(0). */ if (type == sni_nametype_hostname) { /* Fail if we encounter a second host_name entry. */ if (names) { goto alert_loser; } /* Create an array for the only supported NameType. */ names = PORT_ZNewArray(SECItem, 1); if (!names) { goto loser; } /* Copy ServerName into the array. */ if (SECITEM_CopyItem(NULL, &names[0], &tmp) != SECSuccess) { goto loser; } } /* Even if we don't support NameTypes other than host_name at the * moment, we continue parsing the whole list to check its validity. * We do not check for duplicate entries with NameType != host_name(0). */ } if (names) { /* Free old and set the new data. */ ssl3_FreeSniNameArray(xtnData); xtnData->sniNameArr = names; xtnData->sniNameArrSize = 1; xtnData->negotiated[xtnData->numNegotiated++] = ssl_server_name_xtn; } return SECSuccess; alert_loser: ssl3_ExtDecodeError(ss); loser: if (names) { PORT_Free(names); } return SECFailure; } /* Frees a given xtnData->sniNameArr and its elements. */ void ssl3_FreeSniNameArray(TLSExtensionData *xtnData) { PRUint32 i; if (!xtnData->sniNameArr) { return; } for (i = 0; i < xtnData->sniNameArrSize; i++) { SECITEM_FreeItem(&xtnData->sniNameArr[i], PR_FALSE); } PORT_Free(xtnData->sniNameArr); xtnData->sniNameArr = NULL; xtnData->sniNameArrSize = 0; } /* Called by both clients and servers. * Clients sends a filled in session ticket if one is available, and otherwise * sends an empty ticket. Servers always send empty tickets. */ SECStatus ssl3_ClientSendSessionTicketXtn(const sslSocket *ss, TLSExtensionData *xtnData, sslBuffer *buf, PRBool *added) { NewSessionTicket *session_ticket = NULL; sslSessionID *sid = ss->sec.ci.sid; SECStatus rv; PORT_Assert(!ss->sec.isServer); /* Never send an extension with a ticket for TLS 1.3, but * OK to send the empty one in case the server does 1.2. */ if ((sid->cached == in_client_cache || sid->cached == in_external_cache) && sid->version >= SSL_LIBRARY_VERSION_TLS_1_3) { return SECSuccess; } /* Ignore the SessionTicket extension if processing is disabled. */ if (!ss->opt.enableSessionTickets) { return SECSuccess; } /* Send a session ticket if one is available. * * The caller must be holding sid->u.ssl3.lock for reading. We cannot * just acquire and release the lock within this function because the * caller will call this function twice, and we need the inputs to be * consistent between the two calls. Note that currently the caller * will only be holding the lock when we are the client and when we're * attempting to resume an existing session. */ session_ticket = &sid->u.ssl3.locked.sessionTicket; if (session_ticket->ticket.data && (xtnData->ticketTimestampVerified || ssl_TicketTimeValid(ss, session_ticket))) { xtnData->ticketTimestampVerified = PR_FALSE; rv = sslBuffer_Append(buf, session_ticket->ticket.data, session_ticket->ticket.len); if (rv != SECSuccess) { return SECFailure; } xtnData->sentSessionTicketInClientHello = PR_TRUE; } *added = PR_TRUE; return SECSuccess; } PRBool ssl_AlpnTagAllowed(const sslSocket *ss, const SECItem *tag) { const unsigned char *data = ss->opt.nextProtoNego.data; unsigned int length = ss->opt.nextProtoNego.len; unsigned int offset = 0; if (!tag->len) return PR_TRUE; while (offset < length) { unsigned int taglen = (unsigned int)data[offset]; if ((taglen == tag->len) && !PORT_Memcmp(data + offset + 1, tag->data, tag->len)) return PR_TRUE; offset += 1 + taglen; } return PR_FALSE; } /* ssl3_ValidateAppProtocol checks that the given block of data is valid: none * of the lengths may be 0 and the sum of the lengths must equal the length of * the block. */ SECStatus ssl3_ValidateAppProtocol(const unsigned char *data, unsigned int length) { unsigned int offset = 0; while (offset < length) { unsigned int newOffset = offset + 1 + (unsigned int)data[offset]; /* Reject embedded nulls to protect against buggy applications that * store protocol identifiers in null-terminated strings. */ if (newOffset > length || data[offset] == 0) { return SECFailure; } offset = newOffset; } return SECSuccess; } /* Protocol selection handler for ALPN. */ static SECStatus ssl3_SelectAppProtocol(const sslSocket *ss, TLSExtensionData *xtnData, PRUint16 extension, SECItem *data) { SECStatus rv; unsigned char resultBuffer[255]; SECItem result = { siBuffer, resultBuffer, 0 }; rv = ssl3_ValidateAppProtocol(data->data, data->len); if (rv != SECSuccess) { ssl3_ExtSendAlert(ss, alert_fatal, decode_error); PORT_SetError(SSL_ERROR_NEXT_PROTOCOL_DATA_INVALID); return SECFailure; } PORT_Assert(ss->nextProtoCallback); /* Neither the cipher suite nor ECH are selected yet Note that extensions * sometimes affect what cipher suite is selected, e.g., for ECC. */ PORT_Assert((ss->ssl3.hs.preliminaryInfo & ssl_preinfo_all & ~ssl_preinfo_cipher_suite & ~ssl_preinfo_ech) == (ssl_preinfo_all & ~ssl_preinfo_cipher_suite & ~ssl_preinfo_ech)); /* The callback has to make sure that either rv != SECSuccess or that result * is not set if there is no common protocol. */ rv = ss->nextProtoCallback(ss->nextProtoArg, ss->fd, data->data, data->len, result.data, &result.len, sizeof(resultBuffer)); if (rv != SECSuccess) { /* Expect callback to call PORT_SetError() */ ssl3_ExtSendAlert(ss, alert_fatal, internal_error); return SECFailure; } /* If the callback wrote more than allowed to |result| it has corrupted our * stack. */ if (result.len > sizeof(resultBuffer)) { PORT_SetError(SEC_ERROR_OUTPUT_LEN); PORT_Assert(PR_FALSE); return SECFailure; } SECITEM_FreeItem(&xtnData->nextProto, PR_FALSE); if (result.len < 1 || !result.data) { /* Check that we actually got a result. */ ssl3_ExtSendAlert(ss, alert_fatal, no_application_protocol); PORT_SetError(SSL_ERROR_NEXT_PROTOCOL_NO_PROTOCOL); return SECFailure; } xtnData->nextProtoState = SSL_NEXT_PROTO_NEGOTIATED; xtnData->negotiated[xtnData->numNegotiated++] = extension; return SECITEM_CopyItem(NULL, &xtnData->nextProto, &result); } /* handle an incoming ALPN extension at the server */ SECStatus ssl3_ServerHandleAppProtoXtn(const sslSocket *ss, TLSExtensionData *xtnData, SECItem *data) { PRUint32 count; SECStatus rv; /* We expressly don't want to allow ALPN on renegotiation, * despite it being permitted by the spec. */ if (ss->firstHsDone || data->len == 0) { /* Clients MUST send a non-empty ALPN extension. */ ssl3_ExtSendAlert(ss, alert_fatal, illegal_parameter); PORT_SetError(SSL_ERROR_NEXT_PROTOCOL_DATA_INVALID); return SECFailure; } /* ALPN has extra redundant length information so that * the extension is the same in both ClientHello and ServerHello. */ rv = ssl3_ExtConsumeHandshakeNumber(ss, &count, 2, &data->data, &data->len); if (rv != SECSuccess || count != data->len) { ssl3_ExtDecodeError(ss); return SECFailure; } if (!ss->nextProtoCallback) { /* we're not configured for it */ return SECSuccess; } rv = ssl3_SelectAppProtocol(ss, xtnData, ssl_app_layer_protocol_xtn, data); if (rv != SECSuccess) { return rv; } /* prepare to send back a response, if we negotiated */ if (xtnData->nextProtoState == SSL_NEXT_PROTO_NEGOTIATED) { rv = ssl3_RegisterExtensionSender(ss, xtnData, ssl_app_layer_protocol_xtn, ssl3_ServerSendAppProtoXtn); if (rv != SECSuccess) { ssl3_ExtSendAlert(ss, alert_fatal, internal_error); PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return rv; } } return SECSuccess; } SECStatus ssl3_ClientHandleAppProtoXtn(const sslSocket *ss, TLSExtensionData *xtnData, SECItem *data) { SECStatus rv; PRUint32 list_len; SECItem protocol_name; if (ssl3_ExtensionNegotiated(ss, ssl_next_proto_nego_xtn)) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return SECFailure; } /* The extension data from the server has the following format: * uint16 name_list_len; * uint8 len; // where len >= 1 * uint8 protocol_name[len]; */ if (data->len < 4 || data->len > 2 + 1 + 255) { ssl3_ExtSendAlert(ss, alert_fatal, decode_error); PORT_SetError(SSL_ERROR_NEXT_PROTOCOL_DATA_INVALID); return SECFailure; } rv = ssl3_ExtConsumeHandshakeNumber(ss, &list_len, 2, &data->data, &data->len); /* The list has to be the entire extension. */ if (rv != SECSuccess || list_len != data->len) { ssl3_ExtSendAlert(ss, alert_fatal, decode_error); PORT_SetError(SSL_ERROR_NEXT_PROTOCOL_DATA_INVALID); return SECFailure; } rv = ssl3_ExtConsumeHandshakeVariable(ss, &protocol_name, 1, &data->data, &data->len); /* The list must have exactly one value. */ if (rv != SECSuccess || data->len != 0) { ssl3_ExtSendAlert(ss, alert_fatal, decode_error); PORT_SetError(SSL_ERROR_NEXT_PROTOCOL_DATA_INVALID); return SECFailure; } if (!ssl_AlpnTagAllowed(ss, &protocol_name)) { ssl3_ExtSendAlert(ss, alert_fatal, illegal_parameter); PORT_SetError(SSL_ERROR_NEXT_PROTOCOL_DATA_INVALID); return SECFailure; } SECITEM_FreeItem(&xtnData->nextProto, PR_FALSE); xtnData->nextProtoState = SSL_NEXT_PROTO_SELECTED; xtnData->negotiated[xtnData->numNegotiated++] = ssl_app_layer_protocol_xtn; return SECITEM_CopyItem(NULL, &xtnData->nextProto, &protocol_name); } SECStatus ssl3_ClientSendAppProtoXtn(const sslSocket *ss, TLSExtensionData *xtnData, sslBuffer *buf, PRBool *added) { SECStatus rv; /* Renegotiations do not send this extension. */ if (!ss->opt.enableALPN || !ss->opt.nextProtoNego.len || ss->firstHsDone) { PR_ASSERT(!ss->opt.nextProtoNego.data); return SECSuccess; } PRBool addGrease = ss->opt.enableGrease && ss->vrange.max >= SSL_LIBRARY_VERSION_TLS_1_3; /* The list of protocol strings is prefixed with a 2-byte length */ rv = sslBuffer_AppendNumber(buf, ss->opt.nextProtoNego.len + (addGrease ? 3 : 0), 2); if (rv != SECSuccess) { return SECFailure; } /* The list of protocol strings */ rv = sslBuffer_Append(buf, ss->opt.nextProtoNego.data, ss->opt.nextProtoNego.len); if (rv != SECSuccess) { return SECFailure; } /* A client MAY select one or more GREASE ALPN identifiers and advertise * them in the "application_layer_protocol_negotiation" extension, if sent * [RFC8701, Section 3.1]. */ if (addGrease) { rv = sslBuffer_AppendNumber(buf, 2, 1); if (rv != SECSuccess) { return SECFailure; } rv = sslBuffer_AppendNumber(buf, ss->ssl3.hs.grease->idx[grease_alpn], 2); if (rv != SECSuccess) { return SECFailure; } } *added = PR_TRUE; return SECSuccess; } SECStatus ssl3_ServerSendAppProtoXtn(const sslSocket *ss, TLSExtensionData *xtnData, sslBuffer *buf, PRBool *added) { SECStatus rv; /* We're in over our heads if any of these fail */ PORT_Assert(ss->opt.enableALPN); PORT_Assert(xtnData->nextProto.data); PORT_Assert(xtnData->nextProto.len > 0); PORT_Assert(xtnData->nextProtoState == SSL_NEXT_PROTO_NEGOTIATED); PORT_Assert(!ss->firstHsDone); rv = sslBuffer_AppendNumber(buf, xtnData->nextProto.len + 1, 2); if (rv != SECSuccess) { return SECFailure; } rv = sslBuffer_AppendVariable(buf, xtnData->nextProto.data, xtnData->nextProto.len, 1); if (rv != SECSuccess) { return SECFailure; } *added = PR_TRUE; return SECSuccess; } SECStatus ssl3_ServerHandleStatusRequestXtn(const sslSocket *ss, TLSExtensionData *xtnData, SECItem *data) { sslExtensionBuilderFunc sender; PORT_Assert(ss->sec.isServer); /* remember that we got this extension. */ xtnData->negotiated[xtnData->numNegotiated++] = ssl_cert_status_xtn; if (ss->version >= SSL_LIBRARY_VERSION_TLS_1_3) { sender = tls13_ServerSendStatusRequestXtn; } else { sender = ssl3_ServerSendStatusRequestXtn; } return ssl3_RegisterExtensionSender(ss, xtnData, ssl_cert_status_xtn, sender); } SECStatus ssl3_ServerSendStatusRequestXtn(const sslSocket *ss, TLSExtensionData *xtnData, sslBuffer *buf, PRBool *added) { const sslServerCert *serverCert = ss->sec.serverCert; if (!serverCert->certStatusArray || !serverCert->certStatusArray->len) { return SECSuccess; } *added = PR_TRUE; return SECSuccess; } /* ssl3_ClientSendStatusRequestXtn builds the status_request extension on the * client side. See RFC 6066 section 8. */ SECStatus ssl3_ClientSendStatusRequestXtn(const sslSocket *ss, TLSExtensionData *xtnData, sslBuffer *buf, PRBool *added) { SECStatus rv; if (!ss->opt.enableOCSPStapling) { return SECSuccess; } rv = sslBuffer_AppendNumber(buf, 1 /* status_type ocsp */, 1); if (rv != SECSuccess) { return SECFailure; } /* A zero length responder_id_list means that the responders are * implicitly known to the server. */ rv = sslBuffer_AppendNumber(buf, 0, 2); if (rv != SECSuccess) { return SECFailure; } /* A zero length request_extensions means that there are no extensions. * Specifically, we don't set the id-pkix-ocsp-nonce extension. This * means that the server can replay a cached OCSP response to us. */ rv = sslBuffer_AppendNumber(buf, 0, 2); if (rv != SECSuccess) { return SECFailure; } *added = PR_TRUE; return SECSuccess; } SECStatus ssl3_ClientHandleStatusRequestXtn(const sslSocket *ss, TLSExtensionData *xtnData, SECItem *data) { /* In TLS 1.3, the extension carries the OCSP response. */ if (ss->version >= SSL_LIBRARY_VERSION_TLS_1_3) { SECStatus rv; rv = ssl_ReadCertificateStatus(CONST_CAST(sslSocket, ss), data->data, data->len); if (rv != SECSuccess) { return SECFailure; /* code already set */ } } else if (data->len != 0) { ssl3_ExtSendAlert(ss, alert_fatal, illegal_parameter); PORT_SetError(SSL_ERROR_RX_MALFORMED_SERVER_HELLO); return SECFailure; } /* Keep track of negotiated extensions. */ xtnData->negotiated[xtnData->numNegotiated++] = ssl_cert_status_xtn; return SECSuccess; } #define TLS_EX_SESS_TICKET_VERSION (0x010a) /* * Called from ssl3_SendNewSessionTicket, tls13_SendNewSessionTicket */ SECStatus ssl3_EncodeSessionTicket(sslSocket *ss, const NewSessionTicket *ticket, const PRUint8 *appToken, unsigned int appTokenLen, PK11SymKey *secret, SECItem *ticket_data) { SECStatus rv; sslBuffer plaintext = SSL_BUFFER_EMPTY; SECItem ticket_buf = { 0, NULL, 0 }; sslSessionID sid; unsigned char wrapped_ms[SSL3_MASTER_SECRET_LENGTH]; SECItem ms_item = { 0, NULL, 0 }; PRTime now; SECItem *srvName = NULL; CK_MECHANISM_TYPE msWrapMech; SECItem *alpnSelection = NULL; PRUint32 ticketAgeBaseline; SSL_TRC(3, ("%d: SSL3[%d]: send session_ticket handshake", SSL_GETPID(), ss->fd)); PORT_Assert(ss->opt.noLocks || ssl_HaveXmitBufLock(ss)); PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss)); /* Extract the master secret wrapped. */ PORT_Memset(&sid, 0, sizeof(sslSessionID)); PORT_Assert(secret); rv = ssl3_CacheWrappedSecret(ss, &sid, secret); if (rv == SECSuccess) { if (sid.u.ssl3.keys.wrapped_master_secret_len > sizeof(wrapped_ms)) goto loser; memcpy(wrapped_ms, sid.u.ssl3.keys.wrapped_master_secret, sid.u.ssl3.keys.wrapped_master_secret_len); ms_item.data = wrapped_ms; ms_item.len = sid.u.ssl3.keys.wrapped_master_secret_len; msWrapMech = sid.u.ssl3.masterWrapMech; } else { /* TODO: else send an empty ticket. */ goto loser; } /* Prep to send negotiated name */ srvName = &ss->sec.ci.sid->u.ssl3.srvName; /* ticket version */ rv = sslBuffer_AppendNumber(&plaintext, TLS_EX_SESS_TICKET_VERSION, sizeof(PRUint16)); if (rv != SECSuccess) goto loser; /* ssl_version */ rv = sslBuffer_AppendNumber(&plaintext, ss->version, sizeof(SSL3ProtocolVersion)); if (rv != SECSuccess) goto loser; /* ciphersuite */ rv = sslBuffer_AppendNumber(&plaintext, ss->ssl3.hs.cipher_suite, sizeof(ssl3CipherSuite)); if (rv != SECSuccess) goto loser; /* cipher spec parameters */ rv = sslBuffer_AppendNumber(&plaintext, ss->sec.authType, 1); if (rv != SECSuccess) goto loser; rv = sslBuffer_AppendNumber(&plaintext, ss->sec.authKeyBits, 4); if (rv != SECSuccess) goto loser; rv = sslBuffer_AppendNumber(&plaintext, ss->sec.keaType, 1); if (rv != SECSuccess) goto loser; rv = sslBuffer_AppendNumber(&plaintext, ss->sec.keaKeyBits, 4); if (rv != SECSuccess) goto loser; if (ss->sec.keaGroup) { rv = sslBuffer_AppendNumber(&plaintext, ss->sec.keaGroup->name, 4); if (rv != SECSuccess) goto loser; } else { /* No kea group. Write 0 as invalid value. */ rv = sslBuffer_AppendNumber(&plaintext, 0, 4); if (rv != SECSuccess) goto loser; } rv = sslBuffer_AppendNumber(&plaintext, ss->sec.signatureScheme, 4); if (rv != SECSuccess) goto loser; /* certificate type */ PORT_Assert(SSL_CERT_IS(ss->sec.serverCert, ss->sec.authType)); if (SSL_CERT_IS_EC(ss->sec.serverCert)) { const sslServerCert *cert = ss->sec.serverCert; PORT_Assert(cert->namedCurve); /* EC curves only use the second of the two bytes. */ PORT_Assert(cert->namedCurve->name < 256); rv = sslBuffer_AppendNumber(&plaintext, cert->namedCurve->name, 1); } else { rv = sslBuffer_AppendNumber(&plaintext, 0, 1); } if (rv != SECSuccess) goto loser; /* master_secret */ rv = sslBuffer_AppendNumber(&plaintext, msWrapMech, 4); if (rv != SECSuccess) goto loser; rv = sslBuffer_AppendVariable(&plaintext, ms_item.data, ms_item.len, 2); if (rv != SECSuccess) goto loser; /* client identity */ if (ss->opt.requestCertificate && ss->sec.ci.sid->peerCert) { rv = sslBuffer_AppendNumber(&plaintext, CLIENT_AUTH_CERTIFICATE, 1); if (rv != SECSuccess) goto loser; rv = sslBuffer_AppendVariable(&plaintext, ss->sec.ci.sid->peerCert->derCert.data, ss->sec.ci.sid->peerCert->derCert.len, 2); if (rv != SECSuccess) goto loser; } else { rv = sslBuffer_AppendNumber(&plaintext, 0, 1); if (rv != SECSuccess) goto loser; } /* timestamp */ now = ssl_Time(ss); PORT_Assert(sizeof(now) == 8); rv = sslBuffer_AppendNumber(&plaintext, now, 8); if (rv != SECSuccess) goto loser; /* HostName (length and value) */ rv = sslBuffer_AppendVariable(&plaintext, srvName->data, srvName->len, 2); if (rv != SECSuccess) goto loser; /* extendedMasterSecretUsed */ rv = sslBuffer_AppendNumber( &plaintext, ss->sec.ci.sid->u.ssl3.keys.extendedMasterSecretUsed, 1); if (rv != SECSuccess) goto loser; /* Flags */ rv = sslBuffer_AppendNumber(&plaintext, ticket->flags, sizeof(ticket->flags)); if (rv != SECSuccess) goto loser; /* ALPN value. */ PORT_Assert(ss->xtnData.nextProtoState == SSL_NEXT_PROTO_SELECTED || ss->xtnData.nextProtoState == SSL_NEXT_PROTO_NEGOTIATED || ss->xtnData.nextProto.len == 0); alpnSelection = &ss->xtnData.nextProto; PORT_Assert(alpnSelection->len < 256); rv = sslBuffer_AppendVariable(&plaintext, alpnSelection->data, alpnSelection->len, 1); if (rv != SECSuccess) goto loser; rv = sslBuffer_AppendNumber(&plaintext, ss->opt.maxEarlyDataSize, 4); if (rv != SECSuccess) goto loser; /* * We store this in the ticket: * ticket_age_baseline = 1rtt - ticket_age_add * * When the client resumes, it will provide: * obfuscated_age = ticket_age_client + ticket_age_add * * We expect to receive the ticket at: * ticket_create + 1rtt + ticket_age_server * * We calculate the client's estimate of this as: * ticket_create + ticket_age_baseline + obfuscated_age * = ticket_create + 1rtt + ticket_age_client * * This is compared to the expected time, which should differ only as a * result of clock errors or errors in the RTT estimate. */ ticketAgeBaseline = ss->ssl3.hs.rttEstimate / PR_USEC_PER_MSEC; ticketAgeBaseline -= ticket->ticket_age_add; rv = sslBuffer_AppendNumber(&plaintext, ticketAgeBaseline, 4); if (rv != SECSuccess) goto loser; /* Application token */ rv = sslBuffer_AppendVariable(&plaintext, appToken, appTokenLen, 2); if (rv != SECSuccess) goto loser; /* This really only happens if appTokenLen is too much, and that always * comes from the using application. */ if (SSL_BUFFER_LEN(&plaintext) > 0xffff) { PORT_SetError(SEC_ERROR_INVALID_ARGS); goto loser; } ticket_buf.len = ssl_SelfEncryptGetProtectedSize(SSL_BUFFER_LEN(&plaintext)); PORT_Assert(ticket_buf.len > 0); if (SECITEM_AllocItem(NULL, &ticket_buf, ticket_buf.len) == NULL) { goto loser; } /* Finally, encrypt the ticket. */ rv = ssl_SelfEncryptProtect(ss, SSL_BUFFER_BASE(&plaintext), SSL_BUFFER_LEN(&plaintext), ticket_buf.data, &ticket_buf.len, ticket_buf.len); if (rv != SECSuccess) { goto loser; } /* Give ownership of memory to caller. */ *ticket_data = ticket_buf; sslBuffer_Clear(&plaintext); return SECSuccess; loser: sslBuffer_Clear(&plaintext); if (ticket_buf.data) { SECITEM_FreeItem(&ticket_buf, PR_FALSE); } return SECFailure; } /* When a client receives a SessionTicket extension a NewSessionTicket * message is expected during the handshake. */ SECStatus ssl3_ClientHandleSessionTicketXtn(const sslSocket *ss, TLSExtensionData *xtnData, SECItem *data) { PORT_Assert(ss->version < SSL_LIBRARY_VERSION_TLS_1_3); if (data->len != 0) { return SECSuccess; /* Ignore the extension. */ } /* Keep track of negotiated extensions. */ xtnData->negotiated[xtnData->numNegotiated++] = ssl_session_ticket_xtn; return SECSuccess; } PR_STATIC_ASSERT((TLS_EX_SESS_TICKET_VERSION >> 8) == 1); static SECStatus ssl_ParseSessionTicket(sslSocket *ss, const SECItem *decryptedTicket, SessionTicket *parsedTicket) { PRUint32 temp; SECStatus rv; PRUint8 *buffer = decryptedTicket->data; unsigned int len = decryptedTicket->len; PORT_Memset(parsedTicket, 0, sizeof(*parsedTicket)); parsedTicket->valid = PR_FALSE; /* If the decrypted ticket is empty, then report success, but leave the * ticket marked as invalid. */ if (decryptedTicket->len == 0) { return SECSuccess; } /* Read ticket version. */ rv = ssl3_ExtConsumeHandshakeNumber(ss, &temp, 2, &buffer, &len); if (rv != SECSuccess) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return SECFailure; } /* All ticket versions start with 0x01, so check to see if this * is a ticket or some other self-encrypted thing. */ if ((temp >> 8) != 1) { PORT_SetError(SSL_ERROR_RX_MALFORMED_CLIENT_HELLO); return SECFailure; } /* Skip the ticket if the version is wrong. This won't result in a * handshake failure, just a failure to resume. */ if (temp != TLS_EX_SESS_TICKET_VERSION) { return SECSuccess; } /* Read SSLVersion. */ rv = ssl3_ExtConsumeHandshakeNumber(ss, &temp, 2, &buffer, &len); if (rv != SECSuccess) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return SECFailure; } parsedTicket->ssl_version = (SSL3ProtocolVersion)temp; if (!ssl3_VersionIsSupported(ss->protocolVariant, parsedTicket->ssl_version)) { /* This socket doesn't support the version from the ticket. */ return SECSuccess; } /* Read cipher_suite. */ rv = ssl3_ExtConsumeHandshakeNumber(ss, &temp, 2, &buffer, &len); if (rv != SECSuccess) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return SECFailure; } parsedTicket->cipher_suite = (ssl3CipherSuite)temp; /* Read cipher spec parameters. */ rv = ssl3_ExtConsumeHandshakeNumber(ss, &temp, 1, &buffer, &len); if (rv != SECSuccess) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return SECFailure; } #ifndef UNSAFE_FUZZER_MODE PORT_Assert(temp < ssl_auth_size); #else temp %= (8 * sizeof(SSLAuthType)) - 1; #endif parsedTicket->authType = (SSLAuthType)temp; rv = ssl3_ExtConsumeHandshakeNumber(ss, &temp, 4, &buffer, &len); if (rv != SECSuccess) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return SECFailure; } parsedTicket->authKeyBits = temp; rv = ssl3_ExtConsumeHandshakeNumber(ss, &temp, 1, &buffer, &len); if (rv != SECSuccess) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return SECFailure; } parsedTicket->keaType = (SSLKEAType)temp; rv = ssl3_ExtConsumeHandshakeNumber(ss, &temp, 4, &buffer, &len); if (rv != SECSuccess) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return SECFailure; } parsedTicket->keaKeyBits = temp; rv = ssl3_ExtConsumeHandshakeNumber(ss, &temp, 4, &buffer, &len); if (rv != SECSuccess) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return SECFailure; } parsedTicket->originalKeaGroup = temp; rv = ssl3_ExtConsumeHandshakeNumber(ss, &temp, 4, &buffer, &len); if (rv != SECSuccess) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return SECFailure; } parsedTicket->signatureScheme = (SSLSignatureScheme)temp; /* Read the optional named curve. */ rv = ssl3_ExtConsumeHandshakeNumber(ss, &temp, 1, &buffer, &len); if (rv != SECSuccess) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return SECFailure; } if (parsedTicket->authType == ssl_auth_ecdsa || parsedTicket->authType == ssl_auth_ecdh_rsa || parsedTicket->authType == ssl_auth_ecdh_ecdsa) { const sslNamedGroupDef *group = ssl_LookupNamedGroup((SSLNamedGroup)temp); if (!group || group->keaType != ssl_kea_ecdh) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return SECFailure; } parsedTicket->namedCurve = group; } /* Read the master secret (and how it is wrapped). */ rv = ssl3_ExtConsumeHandshakeNumber(ss, &temp, 4, &buffer, &len); if (rv != SECSuccess) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return SECFailure; } parsedTicket->msWrapMech = (CK_MECHANISM_TYPE)temp; rv = ssl3_ExtConsumeHandshakeNumber(ss, &temp, 2, &buffer, &len); if (rv != SECSuccess) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return SECFailure; } if (temp == 0 || temp > sizeof(parsedTicket->master_secret)) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return SECFailure; } parsedTicket->ms_length = (PRUint16)temp; /* Read the master secret. */ rv = ssl3_ExtConsumeHandshake(ss, parsedTicket->master_secret, parsedTicket->ms_length, &buffer, &len); if (rv != SECSuccess) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return SECFailure; } /* Read client identity */ rv = ssl3_ExtConsumeHandshakeNumber(ss, &temp, 1, &buffer, &len); if (rv != SECSuccess) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return SECFailure; } parsedTicket->client_auth_type = (ClientAuthenticationType)temp; switch (parsedTicket->client_auth_type) { case CLIENT_AUTH_ANONYMOUS: break; case CLIENT_AUTH_CERTIFICATE: rv = ssl3_ExtConsumeHandshakeVariable(ss, &parsedTicket->peer_cert, 2, &buffer, &len); if (rv != SECSuccess) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return SECFailure; } break; default: PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return SECFailure; } /* Read timestamp. This is a 64-bit value and * ssl3_ExtConsumeHandshakeNumber only reads 32-bits at a time. */ rv = ssl3_ExtConsumeHandshakeNumber(ss, &temp, 4, &buffer, &len); if (rv != SECSuccess) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return SECFailure; } /* Cast to avoid undefined behavior if the top bit is set. */ parsedTicket->timestamp = (PRTime)((PRUint64)temp << 32); rv = ssl3_ExtConsumeHandshakeNumber(ss, &temp, 4, &buffer, &len); if (rv != SECSuccess) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return SECFailure; } parsedTicket->timestamp |= (PRTime)temp; /* Read server name */ rv = ssl3_ExtConsumeHandshakeVariable(ss, &parsedTicket->srvName, 2, &buffer, &len); if (rv != SECSuccess) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return SECFailure; } /* Read extendedMasterSecretUsed */ rv = ssl3_ExtConsumeHandshakeNumber(ss, &temp, 1, &buffer, &len); if (rv != SECSuccess) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return SECFailure; } #ifndef UNSAFE_FUZZER_MODE /* A well-behaving server should only write 0 or 1. */ PORT_Assert(temp == PR_TRUE || temp == PR_FALSE); #endif parsedTicket->extendedMasterSecretUsed = temp ? PR_TRUE : PR_FALSE; rv = ssl3_ExtConsumeHandshake(ss, &temp, 4, &buffer, &len); if (rv != SECSuccess) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return SECFailure; } parsedTicket->flags = PR_ntohl(temp); rv = ssl3_ExtConsumeHandshakeVariable(ss, &parsedTicket->alpnSelection, 1, &buffer, &len); PORT_Assert(parsedTicket->alpnSelection.len < 256); if (rv != SECSuccess) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return SECFailure; } rv = ssl3_ExtConsumeHandshakeNumber(ss, &temp, 4, &buffer, &len); if (rv != SECSuccess) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return SECFailure; } parsedTicket->maxEarlyData = temp; rv = ssl3_ExtConsumeHandshakeNumber(ss, &temp, 4, &buffer, &len); if (rv != SECSuccess) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return SECFailure; } parsedTicket->ticketAgeBaseline = temp; rv = ssl3_ExtConsumeHandshakeVariable(ss, &parsedTicket->applicationToken, 2, &buffer, &len); if (rv != SECSuccess) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return SECFailure; } #ifndef UNSAFE_FUZZER_MODE /* Done parsing. Check that all bytes have been consumed. */ if (len != 0) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return SECFailure; } #endif parsedTicket->valid = PR_TRUE; return SECSuccess; } static SECStatus ssl_CreateSIDFromTicket(sslSocket *ss, const SECItem *rawTicket, SessionTicket *parsedTicket, sslSessionID **out) { sslSessionID *sid; SECStatus rv; sid = ssl3_NewSessionID(ss, PR_TRUE); if (sid == NULL) { return SECFailure; } /* Copy over parameters. */ sid->version = parsedTicket->ssl_version; sid->creationTime = parsedTicket->timestamp; sid->u.ssl3.cipherSuite = parsedTicket->cipher_suite; sid->authType = parsedTicket->authType; sid->authKeyBits = parsedTicket->authKeyBits; sid->keaType = parsedTicket->keaType; sid->keaKeyBits = parsedTicket->keaKeyBits; sid->keaGroup = parsedTicket->originalKeaGroup; sid->namedCurve = parsedTicket->namedCurve; sid->sigScheme = parsedTicket->signatureScheme; rv = SECITEM_CopyItem(NULL, &sid->u.ssl3.locked.sessionTicket.ticket, rawTicket); if (rv != SECSuccess) { goto loser; } sid->u.ssl3.locked.sessionTicket.flags = parsedTicket->flags; sid->u.ssl3.locked.sessionTicket.max_early_data_size = parsedTicket->maxEarlyData; if (parsedTicket->ms_length > sizeof(sid->u.ssl3.keys.wrapped_master_secret)) { goto loser; } PORT_Memcpy(sid->u.ssl3.keys.wrapped_master_secret, parsedTicket->master_secret, parsedTicket->ms_length); sid->u.ssl3.keys.wrapped_master_secret_len = parsedTicket->ms_length; sid->u.ssl3.masterWrapMech = parsedTicket->msWrapMech; sid->u.ssl3.masterValid = PR_TRUE; sid->u.ssl3.keys.resumable = PR_TRUE; sid->u.ssl3.keys.extendedMasterSecretUsed = parsedTicket->extendedMasterSecretUsed; /* Copy over client cert from session ticket if there is one. */ if (parsedTicket->peer_cert.data != NULL) { PORT_Assert(!sid->peerCert); sid->peerCert = CERT_NewTempCertificate(ss->dbHandle, &parsedTicket->peer_cert, NULL, PR_FALSE, PR_TRUE); if (!sid->peerCert) { goto loser; } } /* Transfer ownership of the remaining items. */ if (parsedTicket->srvName.data != NULL) { SECITEM_FreeItem(&sid->u.ssl3.srvName, PR_FALSE); rv = SECITEM_CopyItem(NULL, &sid->u.ssl3.srvName, &parsedTicket->srvName); if (rv != SECSuccess) { goto loser; } } if (parsedTicket->alpnSelection.data != NULL) { SECITEM_FreeItem(&sid->u.ssl3.alpnSelection, PR_FALSE); rv = SECITEM_CopyItem(NULL, &sid->u.ssl3.alpnSelection, &parsedTicket->alpnSelection); if (rv != SECSuccess) { goto loser; } } *out = sid; return SECSuccess; loser: ssl_FreeSID(sid); return SECFailure; } /* Generic ticket processing code, common to all TLS versions. */ SECStatus ssl3_ProcessSessionTicketCommon(sslSocket *ss, const SECItem *ticket, SECItem *appToken) { SECItem decryptedTicket = { siBuffer, NULL, 0 }; SessionTicket parsedTicket; sslSessionID *sid = NULL; SECStatus rv; if (ss->sec.ci.sid != NULL) { ssl_UncacheSessionID(ss); ssl_FreeSID(ss->sec.ci.sid); ss->sec.ci.sid = NULL; } if (!SECITEM_AllocItem(NULL, &decryptedTicket, ticket->len)) { return SECFailure; } /* Decrypt the ticket. */ rv = ssl_SelfEncryptUnprotect(ss, ticket->data, ticket->len, decryptedTicket.data, &decryptedTicket.len, decryptedTicket.len); if (rv != SECSuccess) { /* Ignore decryption failure if we are doing TLS 1.3; that * means the server rejects the client's resumption * attempt. In TLS 1.2, however, it's a hard failure, unless * it's just because we're not the recipient of the ticket. */ if (ss->version >= SSL_LIBRARY_VERSION_TLS_1_3 || PORT_GetError() == SEC_ERROR_NOT_A_RECIPIENT) { SECITEM_ZfreeItem(&decryptedTicket, PR_FALSE); return SECSuccess; } SSL3_SendAlert(ss, alert_fatal, illegal_parameter); goto loser; } rv = ssl_ParseSessionTicket(ss, &decryptedTicket, &parsedTicket); if (rv != SECSuccess) { SSL3Statistics *ssl3stats; SSL_DBG(("%d: SSL[%d]: Session ticket parsing failed.", SSL_GETPID(), ss->fd)); ssl3stats = SSL_GetStatistics(); SSL_AtomicIncrementLong(&ssl3stats->hch_sid_ticket_parse_failures); goto loser; /* code already set */ } /* Use the ticket if it is valid and unexpired. */ PRTime end = parsedTicket.timestamp + (ssl_ticket_lifetime * PR_USEC_PER_SEC); if (end > ssl_Time(ss)) { rv = ssl_CreateSIDFromTicket(ss, ticket, &parsedTicket, &sid); if (rv != SECSuccess) { goto loser; /* code already set */ } if (appToken && parsedTicket.applicationToken.len) { rv = SECITEM_CopyItem(NULL, appToken, &parsedTicket.applicationToken); if (rv != SECSuccess) { goto loser; /* code already set */ } } ss->statelessResume = PR_TRUE; ss->sec.ci.sid = sid; /* We have the baseline value for the obfuscated ticket age here. Save * that in xtnData temporarily. This value is updated in * tls13_ServerHandlePreSharedKeyXtn with the final estimate. */ ss->xtnData.ticketAge = parsedTicket.ticketAgeBaseline; } SECITEM_ZfreeItem(&decryptedTicket, PR_FALSE); PORT_Memset(&parsedTicket, 0, sizeof(parsedTicket)); return SECSuccess; loser: if (sid) { ssl_FreeSID(sid); } SECITEM_ZfreeItem(&decryptedTicket, PR_FALSE); PORT_Memset(&parsedTicket, 0, sizeof(parsedTicket)); return SECFailure; } SECStatus ssl3_ServerHandleSessionTicketXtn(const sslSocket *ss, TLSExtensionData *xtnData, SECItem *data) { PORT_Assert(ss->version < SSL_LIBRARY_VERSION_TLS_1_3); /* Ignore the SessionTicket extension if processing is disabled. */ if (!ss->opt.enableSessionTickets) { return SECSuccess; } /* If we are doing TLS 1.3, then ignore this. */ if (ss->version >= SSL_LIBRARY_VERSION_TLS_1_3) { return SECSuccess; } /* Keep track of negotiated extensions. */ xtnData->negotiated[xtnData->numNegotiated++] = ssl_session_ticket_xtn; /* Parse the received ticket sent in by the client. We are * lenient about some parse errors, falling back to a fullshake * instead of terminating the current connection. */ if (data->len == 0) { xtnData->emptySessionTicket = PR_TRUE; return SECSuccess; } return ssl3_ProcessSessionTicketCommon(CONST_CAST(sslSocket, ss), data, NULL); } /* Extension format: * Extension number: 2 bytes * Extension length: 2 bytes * Verify Data Length: 1 byte * Verify Data (TLS): 12 bytes (client) or 24 bytes (server) * Verify Data (SSL): 36 bytes (client) or 72 bytes (server) */ SECStatus ssl3_SendRenegotiationInfoXtn(const sslSocket *ss, TLSExtensionData *xtnData, sslBuffer *buf, PRBool *added) { PRInt32 len = 0; SECStatus rv; /* In RFC 5746, it is NOT RECOMMENDED to send both the SCSV and the empty * RI, so when we send SCSV in the initial handshake, we don't also send RI. */ if (ss->ssl3.hs.sendingSCSV) { return 0; } if (ss->firstHsDone) { len = ss->sec.isServer ? ss->ssl3.hs.finishedBytes * 2 : ss->ssl3.hs.finishedBytes; } /* verify_Data from previous Finished message(s) */ rv = sslBuffer_AppendVariable(buf, ss->ssl3.hs.finishedMsgs.data, len, 1); if (rv != SECSuccess) { return SECFailure; } *added = PR_TRUE; return SECSuccess; } /* This function runs in both the client and server. */ SECStatus ssl3_HandleRenegotiationInfoXtn(const sslSocket *ss, TLSExtensionData *xtnData, SECItem *data) { SECStatus rv = SECSuccess; PRUint32 len = 0; PORT_Assert(ss->version < SSL_LIBRARY_VERSION_TLS_1_3); if (ss->firstHsDone) { len = ss->sec.isServer ? ss->ssl3.hs.finishedBytes : ss->ssl3.hs.finishedBytes * 2; } if (data->len != 1 + len || data->data[0] != len) { ssl3_ExtDecodeError(ss); return SECFailure; } if (len && NSS_SecureMemcmp(ss->ssl3.hs.finishedMsgs.data, data->data + 1, len)) { ssl3_ExtSendAlert(ss, alert_fatal, handshake_failure); PORT_SetError(SSL_ERROR_BAD_HANDSHAKE_HASH_VALUE); return SECFailure; } /* remember that we got this extension and it was correct. */ CONST_CAST(sslSocket, ss) ->peerRequestedProtection = 1; xtnData->negotiated[xtnData->numNegotiated++] = ssl_renegotiation_info_xtn; if (ss->sec.isServer) { /* prepare to send back the appropriate response */ rv = ssl3_RegisterExtensionSender(ss, xtnData, ssl_renegotiation_info_xtn, ssl3_SendRenegotiationInfoXtn); } return rv; } SECStatus ssl3_ClientSendUseSRTPXtn(const sslSocket *ss, TLSExtensionData *xtnData, sslBuffer *buf, PRBool *added) { unsigned int i; SECStatus rv; if (!IS_DTLS(ss) || !ss->ssl3.dtlsSRTPCipherCount) { return SECSuccess; /* Not relevant */ } /* Length of the SRTP cipher list */ rv = sslBuffer_AppendNumber(buf, 2 * ss->ssl3.dtlsSRTPCipherCount, 2); if (rv != SECSuccess) { return SECFailure; } /* The SRTP ciphers */ for (i = 0; i < ss->ssl3.dtlsSRTPCipherCount; i++) { rv = sslBuffer_AppendNumber(buf, ss->ssl3.dtlsSRTPCiphers[i], 2); if (rv != SECSuccess) { return SECFailure; } } /* Empty MKI value */ rv = sslBuffer_AppendNumber(buf, 0, 1); if (rv != SECSuccess) { return SECFailure; } *added = PR_TRUE; return SECSuccess; } SECStatus ssl3_ServerSendUseSRTPXtn(const sslSocket *ss, TLSExtensionData *xtnData, sslBuffer *buf, PRBool *added) { SECStatus rv; /* Length of the SRTP cipher list */ rv = sslBuffer_AppendNumber(buf, 2, 2); if (rv != SECSuccess) { return SECFailure; } /* The selected cipher */ rv = sslBuffer_AppendNumber(buf, xtnData->dtlsSRTPCipherSuite, 2); if (rv != SECSuccess) { return SECFailure; } /* Empty MKI value */ rv = sslBuffer_AppendNumber(buf, 0, 1); if (rv != SECSuccess) { return SECFailure; } *added = PR_TRUE; return SECSuccess; } SECStatus ssl3_ClientHandleUseSRTPXtn(const sslSocket *ss, TLSExtensionData *xtnData, SECItem *data) { SECStatus rv; SECItem ciphers = { siBuffer, NULL, 0 }; PRUint16 i; PRUint16 cipher = 0; PRBool found = PR_FALSE; SECItem litem; if (!data->data || !data->len) { ssl3_ExtDecodeError(ss); return SECFailure; } /* Get the cipher list */ rv = ssl3_ExtConsumeHandshakeVariable(ss, &ciphers, 2, &data->data, &data->len); if (rv != SECSuccess) { return SECFailure; /* fatal alert already sent */ } /* Now check that the server has picked just 1 (i.e., len = 2) */ if (ciphers.len != 2) { ssl3_ExtDecodeError(ss); return SECFailure; } /* Get the selected cipher */ cipher = (ciphers.data[0] << 8) | ciphers.data[1]; /* Now check that this is one of the ciphers we offered */ for (i = 0; i < ss->ssl3.dtlsSRTPCipherCount; i++) { if (cipher == ss->ssl3.dtlsSRTPCiphers[i]) { found = PR_TRUE; break; } } if (!found) { ssl3_ExtSendAlert(ss, alert_fatal, illegal_parameter); PORT_SetError(SSL_ERROR_RX_MALFORMED_SERVER_HELLO); return SECFailure; } /* Get the srtp_mki value */ rv = ssl3_ExtConsumeHandshakeVariable(ss, &litem, 1, &data->data, &data->len); if (rv != SECSuccess) { return SECFailure; /* alert already sent */ } /* We didn't offer an MKI, so this must be 0 length */ if (litem.len != 0) { ssl3_ExtSendAlert(ss, alert_fatal, illegal_parameter); PORT_SetError(SSL_ERROR_RX_MALFORMED_SERVER_HELLO); return SECFailure; } /* extra trailing bytes */ if (data->len != 0) { ssl3_ExtDecodeError(ss); return SECFailure; } /* OK, this looks fine. */ xtnData->negotiated[xtnData->numNegotiated++] = ssl_use_srtp_xtn; xtnData->dtlsSRTPCipherSuite = cipher; return SECSuccess; } SECStatus ssl3_ServerHandleUseSRTPXtn(const sslSocket *ss, TLSExtensionData *xtnData, SECItem *data) { SECStatus rv; SECItem ciphers = { siBuffer, NULL, 0 }; PRUint16 i; unsigned int j; PRUint16 cipher = 0; PRBool found = PR_FALSE; SECItem litem; if (!IS_DTLS(ss) || !ss->ssl3.dtlsSRTPCipherCount) { /* Ignore the extension if we aren't doing DTLS or no DTLS-SRTP * preferences have been set. */ return SECSuccess; } if (!data->data || data->len < 5) { ssl3_ExtDecodeError(ss); return SECFailure; } /* Get the cipher list */ rv = ssl3_ExtConsumeHandshakeVariable(ss, &ciphers, 2, &data->data, &data->len); if (rv != SECSuccess) { return SECFailure; /* alert already sent */ } /* Check that the list is even length */ if (ciphers.len % 2) { ssl3_ExtDecodeError(ss); return SECFailure; } /* Walk through the offered list and pick the most preferred of our * ciphers, if any */ for (i = 0; !found && i < ss->ssl3.dtlsSRTPCipherCount; i++) { for (j = 0; j + 1 < ciphers.len; j += 2) { cipher = (ciphers.data[j] << 8) | ciphers.data[j + 1]; if (cipher == ss->ssl3.dtlsSRTPCiphers[i]) { found = PR_TRUE; break; } } } /* Get the srtp_mki value */ rv = ssl3_ExtConsumeHandshakeVariable(ss, &litem, 1, &data->data, &data->len); if (rv != SECSuccess) { return SECFailure; } if (data->len != 0) { ssl3_ExtDecodeError(ss); /* trailing bytes */ return SECFailure; } /* Now figure out what to do */ if (!found) { /* No matching ciphers, pretend we don't support use_srtp */ return SECSuccess; } /* OK, we have a valid cipher and we've selected it */ xtnData->dtlsSRTPCipherSuite = cipher; xtnData->negotiated[xtnData->numNegotiated++] = ssl_use_srtp_xtn; return ssl3_RegisterExtensionSender(ss, xtnData, ssl_use_srtp_xtn, ssl3_ServerSendUseSRTPXtn); } /* ssl3_HandleSigAlgsXtn handles the signature_algorithms extension from a * client. In TLS 1.3, the client uses this to parse CertificateRequest * extensions. See https://tools.ietf.org/html/rfc5246#section-7.4.1.4.1 */ SECStatus ssl3_HandleSigAlgsXtn(const sslSocket *ss, TLSExtensionData *xtnData, SECItem *data) { SECStatus rv; /* Ignore this extension if we aren't doing TLS 1.2 or greater. */ if (ss->version < SSL_LIBRARY_VERSION_TLS_1_2) { return SECSuccess; } if (xtnData->sigSchemes) { PORT_Free(xtnData->sigSchemes); xtnData->sigSchemes = NULL; } rv = ssl_ParseSignatureSchemes(ss, NULL, &xtnData->sigSchemes, &xtnData->numSigSchemes, &data->data, &data->len); if (rv != SECSuccess) { ssl3_ExtSendAlert(ss, alert_fatal, decode_error); PORT_SetError(SSL_ERROR_RX_MALFORMED_CLIENT_HELLO); return SECFailure; } if (xtnData->numSigSchemes == 0) { ssl3_ExtSendAlert(ss, alert_fatal, handshake_failure); PORT_SetError(SSL_ERROR_UNSUPPORTED_SIGNATURE_ALGORITHM); return SECFailure; } /* Check for trailing data. */ if (data->len != 0) { ssl3_ExtSendAlert(ss, alert_fatal, decode_error); PORT_SetError(SSL_ERROR_RX_MALFORMED_CLIENT_HELLO); return SECFailure; } /* Keep track of negotiated extensions. */ xtnData->negotiated[xtnData->numNegotiated++] = ssl_signature_algorithms_xtn; return SECSuccess; } /* ssl3_ClientSendSigAlgsXtn sends the signature_algorithm extension for TLS * 1.2 ClientHellos. */ SECStatus ssl3_SendSigAlgsXtn(const sslSocket *ss, TLSExtensionData *xtnData, sslBuffer *buf, PRBool *added) { if (ss->vrange.max < SSL_LIBRARY_VERSION_TLS_1_2) { return SECSuccess; } PRUint16 minVersion; if (ss->sec.isServer) { minVersion = ss->version; /* CertificateRequest */ } else { minVersion = ss->vrange.min; /* ClientHello */ } SECStatus rv = ssl3_EncodeSigAlgs(ss, minVersion, PR_TRUE /* forCert */, ss->opt.enableGrease, buf); if (rv != SECSuccess) { return SECFailure; } *added = PR_TRUE; return SECSuccess; } SECStatus ssl3_SendExtendedMasterSecretXtn(const sslSocket *ss, TLSExtensionData *xtnData, sslBuffer *buf, PRBool *added) { if (!ss->opt.enableExtendedMS) { return SECSuccess; } /* Always send the extension in this function, since the * client always sends it and this function is only called on * the server if we negotiated the extension. */ *added = PR_TRUE; return SECSuccess; } SECStatus ssl3_HandleExtendedMasterSecretXtn(const sslSocket *ss, TLSExtensionData *xtnData, SECItem *data) { PORT_Assert(ss->version < SSL_LIBRARY_VERSION_TLS_1_3); if (ss->version < SSL_LIBRARY_VERSION_TLS_1_0) { return SECSuccess; } if (!ss->opt.enableExtendedMS) { return SECSuccess; } if (data->len != 0) { SSL_TRC(30, ("%d: SSL3[%d]: Bogus extended master secret extension", SSL_GETPID(), ss->fd)); ssl3_ExtSendAlert(ss, alert_fatal, decode_error); return SECFailure; } SSL_DBG(("%d: SSL[%d]: Negotiated extended master secret extension.", SSL_GETPID(), ss->fd)); /* Keep track of negotiated extensions. */ xtnData->negotiated[xtnData->numNegotiated++] = ssl_extended_master_secret_xtn; if (ss->sec.isServer) { return ssl3_RegisterExtensionSender(ss, xtnData, ssl_extended_master_secret_xtn, ssl_SendEmptyExtension); } return SECSuccess; } /* ssl3_ClientSendSignedCertTimestampXtn sends the signed_certificate_timestamp * extension for TLS ClientHellos. */ SECStatus ssl3_ClientSendSignedCertTimestampXtn(const sslSocket *ss, TLSExtensionData *xtnData, sslBuffer *buf, PRBool *added) { /* Only send the extension if processing is enabled. */ if (!ss->opt.enableSignedCertTimestamps) { return SECSuccess; } *added = PR_TRUE; return SECSuccess; } SECStatus ssl3_ClientHandleSignedCertTimestampXtn(const sslSocket *ss, TLSExtensionData *xtnData, SECItem *data) { /* We do not yet know whether we'll be resuming a session or creating * a new one, so we keep a pointer to the data in the TLSExtensionData * structure. This pointer is only valid in the scope of * ssl3_HandleServerHello, and, if not resuming a session, the data is * copied once a new session structure has been set up. * All parsing is currently left to the application and we accept * everything, including empty data. */ SECItem *scts = &xtnData->signedCertTimestamps; PORT_Assert(!scts->data && !scts->len); if (!data->len) { /* Empty extension data: RFC 6962 mandates non-empty contents. */ return SECFailure; } *scts = *data; /* Keep track of negotiated extensions. */ xtnData->negotiated[xtnData->numNegotiated++] = ssl_signed_cert_timestamp_xtn; return SECSuccess; } SECStatus ssl3_ServerSendSignedCertTimestampXtn(const sslSocket *ss, TLSExtensionData *xtnData, sslBuffer *buf, PRBool *added) { const SECItem *scts = &ss->sec.serverCert->signedCertTimestamps; SECStatus rv; if (!scts->len) { /* No timestamps to send */ return SECSuccess; } rv = sslBuffer_Append(buf, scts->data, scts->len); if (rv != SECSuccess) { return SECFailure; } *added = PR_TRUE; return SECSuccess; } SECStatus ssl3_ServerHandleSignedCertTimestampXtn(const sslSocket *ss, TLSExtensionData *xtnData, SECItem *data) { if (data->len != 0) { ssl3_ExtSendAlert(ss, alert_fatal, decode_error); PORT_SetError(SSL_ERROR_RX_MALFORMED_CLIENT_HELLO); return SECFailure; } xtnData->negotiated[xtnData->numNegotiated++] = ssl_signed_cert_timestamp_xtn; PORT_Assert(ss->sec.isServer); return ssl3_RegisterExtensionSender(ss, xtnData, ssl_signed_cert_timestamp_xtn, ssl3_ServerSendSignedCertTimestampXtn); } /* Just make sure that the remote client supports uncompressed points, * Since that is all we support. Disable ECC cipher suites if it doesn't. */ SECStatus ssl3_HandleSupportedPointFormatsXtn(const sslSocket *ss, TLSExtensionData *xtnData, SECItem *data) { int i; PORT_Assert(ss->version < SSL_LIBRARY_VERSION_TLS_1_3); if (data->len < 2 || data->len > 255 || !data->data || data->len != (unsigned int)data->data[0] + 1) { ssl3_ExtDecodeError(ss); return SECFailure; } for (i = data->len; --i > 0;) { if (data->data[i] == 0) { /* indicate that we should send a reply */ return ssl3_RegisterExtensionSender( ss, xtnData, ssl_ec_point_formats_xtn, &ssl3_SendSupportedPointFormatsXtn); } } /* Poor client doesn't support uncompressed points. * * If the client sends the extension and the extension does not contain the * uncompressed point format, and the client has used the Supported Groups * extension to indicate support for any of the curves defined in this * specification, then the server MUST abort the handshake and return an * illegal_parameter alert. [RFC8422, Section 5.1.2] */ ssl3_ExtSendAlert(ss, alert_fatal, illegal_parameter); PORT_SetError(SSL_ERROR_RX_MALFORMED_HANDSHAKE); return SECFailure; } static SECStatus ssl_UpdateSupportedGroups(sslSocket *ss, SECItem *data) { SECStatus rv; PRUint32 list_len; unsigned int i; const sslNamedGroupDef *enabled[SSL_NAMED_GROUP_COUNT] = { 0 }; PORT_Assert(SSL_NAMED_GROUP_COUNT == PR_ARRAY_SIZE(enabled)); if (!data->data || data->len < 4) { (void)ssl3_DecodeError(ss); return SECFailure; } /* get the length of elliptic_curve_list */ rv = ssl3_ConsumeHandshakeNumber(ss, &list_len, 2, &data->data, &data->len); if (rv != SECSuccess || data->len != list_len || (data->len % 2) != 0) { (void)ssl3_DecodeError(ss); return SECFailure; } /* disable all groups and remember the enabled groups */ for (i = 0; i < SSL_NAMED_GROUP_COUNT; ++i) { enabled[i] = ss->namedGroupPreferences[i]; ss->namedGroupPreferences[i] = NULL; } /* Read groups from data and enable if in |enabled| */ while (data->len) { const sslNamedGroupDef *group; PRUint32 curve_name; rv = ssl3_ConsumeHandshakeNumber(ss, &curve_name, 2, &data->data, &data->len); if (rv != SECSuccess) { return SECFailure; /* fatal alert already sent */ } group = ssl_LookupNamedGroup(curve_name); if (group) { for (i = 0; i < SSL_NAMED_GROUP_COUNT; ++i) { if (enabled[i] && group == enabled[i]) { ss->namedGroupPreferences[i] = enabled[i]; break; } } } /* "Codepoints in the NamedCurve registry with a high byte of 0x01 (that * is, between 256 and 511 inclusive) are set aside for FFDHE groups," * -- https://tools.ietf.org/html/draft-ietf-tls-negotiated-ff-dhe-10 */ if ((curve_name & 0xff00) == 0x0100) { ss->xtnData.peerSupportsFfdheGroups = PR_TRUE; } } /* Note: if ss->opt.requireDHENamedGroups is set, we disable DHE cipher * suites, but we do that in ssl3_config_match(). */ if (ss->version < SSL_LIBRARY_VERSION_TLS_1_3 && !ss->opt.requireDHENamedGroups && !ss->xtnData.peerSupportsFfdheGroups) { /* If we don't require that DHE use named groups, and no FFDHE was * included, we pretend that they support all the FFDHE groups we do. */ for (i = 0; i < SSL_NAMED_GROUP_COUNT; ++i) { if (enabled[i] && enabled[i]->keaType == ssl_kea_dh) { ss->namedGroupPreferences[i] = enabled[i]; } } } return SECSuccess; } /* Ensure that the curve in our server cert is one of the ones supported * by the remote client, and disable all ECC cipher suites if not. */ SECStatus ssl_HandleSupportedGroupsXtn(const sslSocket *ss, TLSExtensionData *xtnData, SECItem *data) { SECStatus rv; rv = ssl_UpdateSupportedGroups(CONST_CAST(sslSocket, ss), data); if (rv != SECSuccess) return SECFailure; /* TLS 1.3 permits the server to send this extension so make it so. */ if (ss->sec.isServer && ss->version >= SSL_LIBRARY_VERSION_TLS_1_3) { rv = ssl3_RegisterExtensionSender(ss, xtnData, ssl_supported_groups_xtn, &ssl_SendSupportedGroupsXtn); if (rv != SECSuccess) { return SECFailure; /* error already set. */ } } /* Remember that we negotiated this extension. */ xtnData->negotiated[xtnData->numNegotiated++] = ssl_supported_groups_xtn; return SECSuccess; } SECStatus ssl_HandleRecordSizeLimitXtn(const sslSocket *ss, TLSExtensionData *xtnData, SECItem *data) { SECStatus rv; PRUint32 limit; PRUint32 maxLimit = (ss->version >= SSL_LIBRARY_VERSION_TLS_1_3) ? (MAX_FRAGMENT_LENGTH + 1) : MAX_FRAGMENT_LENGTH; rv = ssl3_ExtConsumeHandshakeNumber(ss, &limit, 2, &data->data, &data->len); if (rv != SECSuccess) { return SECFailure; } if (data->len != 0 || limit < 64) { ssl3_ExtSendAlert(ss, alert_fatal, decode_error); PORT_SetError(SSL_ERROR_RX_MALFORMED_HANDSHAKE); return SECFailure; } if (ss->sec.isServer) { rv = ssl3_RegisterExtensionSender(ss, xtnData, ssl_record_size_limit_xtn, &ssl_SendRecordSizeLimitXtn); if (rv != SECSuccess) { return SECFailure; /* error already set. */ } } else if (limit > maxLimit) { /* The client can sensibly check the maximum. */ ssl3_ExtSendAlert(ss, alert_fatal, illegal_parameter); PORT_SetError(SSL_ERROR_RX_MALFORMED_HANDSHAKE); return SECFailure; } /* We can't enforce the maximum on a server. But we do need to ensure * that we don't apply a limit that is too large. */ xtnData->recordSizeLimit = PR_MIN(maxLimit, limit); xtnData->negotiated[xtnData->numNegotiated++] = ssl_record_size_limit_xtn; return SECSuccess; } SECStatus ssl_SendRecordSizeLimitXtn(const sslSocket *ss, TLSExtensionData *xtnData, sslBuffer *buf, PRBool *added) { PRUint32 maxLimit; if (ss->sec.isServer) { maxLimit = (ss->version >= SSL_LIBRARY_VERSION_TLS_1_3) ? (MAX_FRAGMENT_LENGTH + 1) : MAX_FRAGMENT_LENGTH; } else { maxLimit = (ss->vrange.max >= SSL_LIBRARY_VERSION_TLS_1_3) ? (MAX_FRAGMENT_LENGTH + 1) : MAX_FRAGMENT_LENGTH; } PRUint32 limit = PR_MIN(ss->opt.recordSizeLimit, maxLimit); SECStatus rv = sslBuffer_AppendNumber(buf, limit, 2); if (rv != SECSuccess) { return SECFailure; } *added = PR_TRUE; return SECSuccess; }