/* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at https://mozilla.org/MPL/2.0/. */ //! Helper types and traits for the handling of CSS values. use app_units::Au; use cssparser::ToCss as CssparserToCss; use cssparser::{serialize_string, ParseError, Parser, Token, UnicodeRange}; use nsstring::nsCString; use servo_arc::Arc; use std::fmt::{self, Write}; /// Serialises a value according to its CSS representation. /// /// This trait is implemented for `str` and its friends, serialising the string /// contents as a CSS quoted string. /// /// This trait is derivable with `#[derive(ToCss)]`, with the following behaviour: /// * unit variants get serialised as the `snake-case` representation /// of their name; /// * unit variants whose name starts with "Moz" or "Webkit" are prepended /// with a "-"; /// * if `#[css(comma)]` is found on a variant, its fields are separated by /// commas, otherwise, by spaces; /// * if `#[css(function)]` is found on a variant, the variant name gets /// serialised like unit variants and its fields are surrounded by parentheses; /// * if `#[css(iterable)]` is found on a function variant, that variant needs /// to have a single member, and that member needs to be iterable. The /// iterable will be serialized as the arguments for the function; /// * an iterable field can also be annotated with `#[css(if_empty = "foo")]` /// to print `"foo"` if the iterator is empty; /// * if `#[css(dimension)]` is found on a variant, that variant needs /// to have a single member. The variant would be serialized as a CSS /// dimension token, like: ; /// * if `#[css(skip)]` is found on a field, the `ToCss` call for that field /// is skipped; /// * if `#[css(skip_if = "function")]` is found on a field, the `ToCss` call /// for that field is skipped if `function` returns true. This function is /// provided the field as an argument; /// * if `#[css(contextual_skip_if = "function")]` is found on a field, the /// `ToCss` call for that field is skipped if `function` returns true. This /// function is given all the fields in the current struct or variant as an /// argument; /// * `#[css(represents_keyword)]` can be used on bool fields in order to /// serialize the field name if the field is true, or nothing otherwise. It /// also collects those keywords for `SpecifiedValueInfo`. /// * `#[css(bitflags(single="", mixed="", validate="", overlapping_bits)]` can /// be used to derive parse / serialize / etc on bitflags. The rules for parsing /// bitflags are the following: /// /// * `single` flags can only appear on their own. It's common that bitflags /// properties at least have one such value like `none` or `auto`. /// * `mixed` properties can appear mixed together, but not along any other /// flag that shares a bit with itself. For example, if you have three /// bitflags like: /// /// FOO = 1 << 0; /// BAR = 1 << 1; /// BAZ = 1 << 2; /// BAZZ = BAR | BAZ; /// /// Then the following combinations won't be valid: /// /// * foo foo: (every flag shares a bit with itself) /// * bar bazz: (bazz shares a bit with bar) /// /// But `bar baz` will be valid, as they don't share bits, and so would /// `foo` with any other flag, or `bazz` on its own. /// * `overlapping_bits` enables some tracking during serialization of mixed /// flags to avoid serializing variants that can subsume other variants. /// In the example above, you could do: /// mixed="foo,bazz,bar,baz", overlapping_bits /// to ensure that if bazz is serialized, bar and baz aren't, even though /// their bits are set. Note that the serialization order is canonical, /// and thus depends on the order you specify the flags in. /// /// * finally, one can put `#[css(derive_debug)]` on the whole type, to /// implement `Debug` by a single call to `ToCss::to_css`. pub trait ToCss { /// Serialize `self` in CSS syntax, writing to `dest`. fn to_css(&self, dest: &mut CssWriter) -> fmt::Result where W: Write; /// Serialize `self` in CSS syntax and return a string. /// /// (This is a convenience wrapper for `to_css` and probably should not be overridden.) #[inline] fn to_css_string(&self) -> String { let mut s = String::new(); self.to_css(&mut CssWriter::new(&mut s)).unwrap(); s } /// Serialize `self` in CSS syntax and return a nsCString. /// /// (This is a convenience wrapper for `to_css` and probably should not be overridden.) #[inline] fn to_css_nscstring(&self) -> nsCString { let mut s = nsCString::new(); self.to_css(&mut CssWriter::new(&mut s)).unwrap(); s } } impl<'a, T> ToCss for &'a T where T: ToCss + ?Sized, { fn to_css(&self, dest: &mut CssWriter) -> fmt::Result where W: Write, { (*self).to_css(dest) } } impl ToCss for crate::owned_str::OwnedStr { #[inline] fn to_css(&self, dest: &mut CssWriter) -> fmt::Result where W: Write, { serialize_string(self, dest) } } impl ToCss for str { #[inline] fn to_css(&self, dest: &mut CssWriter) -> fmt::Result where W: Write, { serialize_string(self, dest) } } impl ToCss for String { #[inline] fn to_css(&self, dest: &mut CssWriter) -> fmt::Result where W: Write, { serialize_string(self, dest) } } impl ToCss for Option where T: ToCss, { #[inline] fn to_css(&self, dest: &mut CssWriter) -> fmt::Result where W: Write, { self.as_ref().map_or(Ok(()), |value| value.to_css(dest)) } } impl ToCss for () { #[inline] fn to_css(&self, _: &mut CssWriter) -> fmt::Result where W: Write, { Ok(()) } } /// A writer tailored for serialising CSS. /// /// Coupled with SequenceWriter, this allows callers to transparently handle /// things like comma-separated values etc. pub struct CssWriter<'w, W: 'w> { inner: &'w mut W, prefix: Option<&'static str>, } impl<'w, W> CssWriter<'w, W> where W: Write, { /// Creates a new `CssWriter`. #[inline] pub fn new(inner: &'w mut W) -> Self { Self { inner, prefix: Some(""), } } } impl<'w, W> Write for CssWriter<'w, W> where W: Write, { #[inline] fn write_str(&mut self, s: &str) -> fmt::Result { if s.is_empty() { return Ok(()); } if let Some(prefix) = self.prefix.take() { // We are going to write things, but first we need to write // the prefix that was set by `SequenceWriter::item`. if !prefix.is_empty() { self.inner.write_str(prefix)?; } } self.inner.write_str(s) } #[inline] fn write_char(&mut self, c: char) -> fmt::Result { if let Some(prefix) = self.prefix.take() { // See comment in `write_str`. if !prefix.is_empty() { self.inner.write_str(prefix)?; } } self.inner.write_char(c) } } /// Convenience wrapper to serialise CSS values separated by a given string. pub struct SequenceWriter<'a, 'b: 'a, W: 'b> { inner: &'a mut CssWriter<'b, W>, separator: &'static str, } impl<'a, 'b, W> SequenceWriter<'a, 'b, W> where W: Write + 'b, { /// Create a new sequence writer. #[inline] pub fn new(inner: &'a mut CssWriter<'b, W>, separator: &'static str) -> Self { if inner.prefix.is_none() { // See comment in `item`. inner.prefix = Some(""); } Self { inner, separator } } #[inline] fn write_item(&mut self, f: F) -> fmt::Result where F: FnOnce(&mut CssWriter<'b, W>) -> fmt::Result, { // Separate non-generic functions so that this code is not repeated // in every monomorphization with a different type `F` or `W`. // https://github.com/servo/servo/issues/26713 fn before( prefix: &mut Option<&'static str>, separator: &'static str, ) -> Option<&'static str> { let old_prefix = *prefix; if old_prefix.is_none() { // If there is no prefix in the inner writer, a previous // call to this method produced output, which means we need // to write the separator next time we produce output again. *prefix = Some(separator); } old_prefix } fn after( old_prefix: Option<&'static str>, prefix: &mut Option<&'static str>, separator: &'static str, ) { match (old_prefix, *prefix) { (_, None) => { // This call produced output and cleaned up after itself. }, (None, Some(p)) => { // Some previous call to `item` produced output, // but this one did not, prefix should be the same as // the one we set. debug_assert_eq!(separator, p); // We clean up here even though it's not necessary just // to be able to do all these assertion checks. *prefix = None; }, (Some(old), Some(new)) => { // No previous call to `item` produced output, and this one // either. debug_assert_eq!(old, new); }, } } let old_prefix = before(&mut self.inner.prefix, self.separator); f(self.inner)?; after(old_prefix, &mut self.inner.prefix, self.separator); Ok(()) } /// Serialises a CSS value, writing any separator as necessary. /// /// The separator is never written before any `item` produces any output, /// and is written in subsequent calls only if the `item` produces some /// output on its own again. This lets us handle `Option` fields by /// just not printing anything on `None`. #[inline] pub fn item(&mut self, item: &T) -> fmt::Result where T: ToCss, { self.write_item(|inner| item.to_css(inner)) } /// Writes a string as-is (i.e. not escaped or wrapped in quotes) /// with any separator as necessary. /// /// See SequenceWriter::item. #[inline] pub fn raw_item(&mut self, item: &str) -> fmt::Result { self.write_item(|inner| inner.write_str(item)) } } /// Type used as the associated type in the `OneOrMoreSeparated` trait on a /// type to indicate that a serialized list of elements of this type is /// separated by commas. pub struct Comma; /// Type used as the associated type in the `OneOrMoreSeparated` trait on a /// type to indicate that a serialized list of elements of this type is /// separated by spaces. pub struct Space; /// Type used as the associated type in the `OneOrMoreSeparated` trait on a /// type to indicate that a serialized list of elements of this type is /// separated by commas, but spaces without commas are also allowed when /// parsing. pub struct CommaWithSpace; /// A trait satisfied by the types corresponding to separators. pub trait Separator { /// The separator string that the satisfying separator type corresponds to. fn separator() -> &'static str; /// Parses a sequence of values separated by this separator. /// /// The given closure is called repeatedly for each item in the sequence. /// /// Successful results are accumulated in a vector. /// /// This method returns `Err(_)` the first time a closure does or if /// the separators aren't correct. fn parse<'i, 't, F, T, E>( parser: &mut Parser<'i, 't>, parse_one: F, ) -> Result, ParseError<'i, E>> where F: for<'tt> FnMut(&mut Parser<'i, 'tt>) -> Result>; } impl Separator for Comma { fn separator() -> &'static str { ", " } fn parse<'i, 't, F, T, E>( input: &mut Parser<'i, 't>, parse_one: F, ) -> Result, ParseError<'i, E>> where F: for<'tt> FnMut(&mut Parser<'i, 'tt>) -> Result>, { input.parse_comma_separated(parse_one) } } impl Separator for Space { fn separator() -> &'static str { " " } fn parse<'i, 't, F, T, E>( input: &mut Parser<'i, 't>, mut parse_one: F, ) -> Result, ParseError<'i, E>> where F: for<'tt> FnMut(&mut Parser<'i, 'tt>) -> Result>, { input.skip_whitespace(); // Unnecessary for correctness, but may help try() rewind less. let mut results = vec![parse_one(input)?]; loop { input.skip_whitespace(); // Unnecessary for correctness, but may help try() rewind less. if let Ok(item) = input.try(&mut parse_one) { results.push(item); } else { return Ok(results); } } } } impl Separator for CommaWithSpace { fn separator() -> &'static str { ", " } fn parse<'i, 't, F, T, E>( input: &mut Parser<'i, 't>, mut parse_one: F, ) -> Result, ParseError<'i, E>> where F: for<'tt> FnMut(&mut Parser<'i, 'tt>) -> Result>, { input.skip_whitespace(); // Unnecessary for correctness, but may help try() rewind less. let mut results = vec![parse_one(input)?]; loop { input.skip_whitespace(); // Unnecessary for correctness, but may help try() rewind less. let comma_location = input.current_source_location(); let comma = input.try(|i| i.expect_comma()).is_ok(); input.skip_whitespace(); // Unnecessary for correctness, but may help try() rewind less. if let Ok(item) = input.try(&mut parse_one) { results.push(item); } else if comma { return Err(comma_location.new_unexpected_token_error(Token::Comma)); } else { break; } } Ok(results) } } /// Marker trait on T to automatically implement ToCss for Vec when T's are /// separated by some delimiter `delim`. pub trait OneOrMoreSeparated { /// Associated type indicating which separator is used. type S: Separator; } impl OneOrMoreSeparated for UnicodeRange { type S = Comma; } impl ToCss for Vec where T: ToCss + OneOrMoreSeparated, { fn to_css(&self, dest: &mut CssWriter) -> fmt::Result where W: Write, { let mut iter = self.iter(); iter.next().unwrap().to_css(dest)?; for item in iter { dest.write_str(::S::separator())?; item.to_css(dest)?; } Ok(()) } } impl ToCss for Box where T: ?Sized + ToCss, { fn to_css(&self, dest: &mut CssWriter) -> fmt::Result where W: Write, { (**self).to_css(dest) } } impl ToCss for Arc where T: ?Sized + ToCss, { fn to_css(&self, dest: &mut CssWriter) -> fmt::Result where W: Write, { (**self).to_css(dest) } } impl ToCss for Au { fn to_css(&self, dest: &mut CssWriter) -> fmt::Result where W: Write, { self.to_f64_px().to_css(dest)?; dest.write_str("px") } } macro_rules! impl_to_css_for_predefined_type { ($name: ty) => { impl<'a> ToCss for $name { fn to_css(&self, dest: &mut CssWriter) -> fmt::Result where W: Write, { ::cssparser::ToCss::to_css(self, dest) } } }; } impl_to_css_for_predefined_type!(f32); impl_to_css_for_predefined_type!(i8); impl_to_css_for_predefined_type!(i32); impl_to_css_for_predefined_type!(u16); impl_to_css_for_predefined_type!(u32); impl_to_css_for_predefined_type!(::cssparser::Token<'a>); impl_to_css_for_predefined_type!(::cssparser::UnicodeRange); /// Helper types for the handling of specified values. pub mod specified { use crate::ParsingMode; /// Whether to allow negative lengths or not. #[repr(u8)] #[derive( Clone, Copy, Debug, Deserialize, Eq, MallocSizeOf, PartialEq, PartialOrd, Serialize, ToShmem, )] pub enum AllowedNumericType { /// Allow all kind of numeric values. All, /// Allow only non-negative numeric values. NonNegative, /// Allow only numeric values greater or equal to 1.0. AtLeastOne, /// Allow only numeric values from 0 to 1.0. ZeroToOne, } impl Default for AllowedNumericType { #[inline] fn default() -> Self { AllowedNumericType::All } } impl AllowedNumericType { /// Whether the value fits the rules of this numeric type. #[inline] pub fn is_ok(&self, parsing_mode: ParsingMode, val: f32) -> bool { if parsing_mode.allows_all_numeric_values() { return true; } match *self { AllowedNumericType::All => true, AllowedNumericType::NonNegative => val >= 0.0, AllowedNumericType::AtLeastOne => val >= 1.0, AllowedNumericType::ZeroToOne => val >= 0.0 && val <= 1.0, } } /// Clamp the value following the rules of this numeric type. #[inline] pub fn clamp(&self, val: f32) -> f32 { match *self { AllowedNumericType::All => val, AllowedNumericType::NonNegative => val.max(0.), AllowedNumericType::AtLeastOne => val.max(1.), AllowedNumericType::ZeroToOne => val.max(0.).min(1.), } } } }