'use strict'; // Math helper - used mainly in hit test implementation done by webxr-test.js class XRMathHelper { static toString(p) { return "[" + p.x + "," + p.y + "," + p.z + "," + p.w + "]"; } static transform_by_matrix(matrix, point) { return { x : matrix[0] * point.x + matrix[4] * point.y + matrix[8] * point.z + matrix[12] * point.w, y : matrix[1] * point.x + matrix[5] * point.y + matrix[9] * point.z + matrix[13] * point.w, z : matrix[2] * point.x + matrix[6] * point.y + matrix[10] * point.z + matrix[14] * point.w, w : matrix[3] * point.x + matrix[7] * point.y + matrix[11] * point.z + matrix[15] * point.w, }; } static neg(p) { return {x : -p.x, y : -p.y, z : -p.z, w : p.w}; } static sub(lhs, rhs) { // .w is treated here like an entity type, 1 signifies points, 0 signifies vectors. // point - point, point - vector, vector - vector are ok, vector - point is not. if (lhs.w != rhs.w && lhs.w == 0.0) { throw new Error("vector - point not allowed: " + toString(lhs) + "-" + toString(rhs)); } return {x : lhs.x - rhs.x, y : lhs.y - rhs.y, z : lhs.z - rhs.z, w : lhs.w - rhs.w}; } static add(lhs, rhs) { if (lhs.w == rhs.w && lhs.w == 1.0) { throw new Error("point + point not allowed", p1, p2); } return {x : lhs.x + rhs.x, y : lhs.y + rhs.y, z : lhs.z + rhs.z, w : lhs.w + rhs.w}; } static cross(lhs, rhs) { if (lhs.w != 0.0 || rhs.w != 0.0) { throw new Error("cross product not allowed: " + toString(lhs) + "x" + toString(rhs)); } return { x : lhs.y * rhs.z - lhs.z * rhs.y, y : lhs.z * rhs.x - lhs.x * rhs.z, z : lhs.x * rhs.y - lhs.y * rhs.x, w : 0 }; } static dot(lhs, rhs) { if (lhs.w != 0 || rhs.w != 0) { throw new Error("dot product not allowed: " + toString(lhs) + "x" + toString(rhs)); } return lhs.x * rhs.x + lhs.y * rhs.y + lhs.z * rhs.z; } static mul(scalar, vector) { if (vector.w != 0) { throw new Error("scalar * vector not allowed", scalar, vector); } return {x : vector.x * scalar, y : vector.y * scalar, z : vector.z * scalar, w : vector.w}; } static length(vector) { return Math.sqrt(XRMathHelper.dot(vector, vector)); } static normalize(vector) { const l = XRMathHelper.length(vector); return XRMathHelper.mul(1.0/l, vector); } // All |face|'s points and |point| must be co-planar. static pointInFace(point, face) { const normalize = XRMathHelper.normalize; const sub = XRMathHelper.sub; const length = XRMathHelper.length; const cross = XRMathHelper.cross; let onTheRight = null; let previous_point = face[face.length - 1]; // |point| is in |face| if it's on the same side of all the edges. for (let i = 0; i < face.length; ++i) { const current_point = face[i]; const edge_direction = normalize(sub(current_point, previous_point)); const turn_direction = normalize(sub(point, current_point)); const sin_turn_angle = length(cross(edge_direction, turn_direction)); if (onTheRight == null) { onTheRight = sin_turn_angle >= 0; } else { if (onTheRight && sin_turn_angle < 0) return false; if (!onTheRight && sin_turn_angle > 0) return false; } previous_point = current_point; } return true; } static det2x2(m00, m01, m10, m11) { return m00 * m11 - m01 * m10; } static det3x3( m00, m01, m02, m10, m11, m12, m20, m21, m22 ){ const det2x2 = XRMathHelper.det2x2; return m00 * det2x2(m11, m12, m21, m22) - m01 * det2x2(m10, m12, m20, m22) + m02 * det2x2(m10, m11, m20, m21); } static det4x4( m00, m01, m02, m03, m10, m11, m12, m13, m20, m21, m22, m23, m30, m31, m32, m33 ) { const det3x3 = XRMathHelper.det3x3; return m00 * det3x3(m11, m12, m13, m21, m22, m23, m31, m32, m33) - m01 * det3x3(m10, m12, m13, m20, m22, m23, m30, m32, m33) + m02 * det3x3(m10, m11, m13, m20, m21, m23, m30, m31, m33) - m03 * det3x3(m10, m11, m12, m20, m21, m22, m30, m31, m32); } static inv2(m) { // mij - i-th column, j-th row const m00 = m[0], m01 = m[1], m02 = m[2], m03 = m[3]; const m10 = m[4], m11 = m[5], m12 = m[6], m13 = m[7]; const m20 = m[8], m21 = m[9], m22 = m[10], m23 = m[11]; const m30 = m[12], m31 = m[13], m32 = m[14], m33 = m[15]; const det = det4x4( m00, m01, m02, m03, m10, m11, m12, m13, m20, m21, m22, m23, m30, m31, m32, m33 ); } static transpose(m) { const result = Array(16); for (let i = 0; i < 4; i++) { for (let j = 0; j < 4; j++) { result[i * 4 + j] = m[j * 4 + i]; } } return result; } // Inverts the matrix, ported from transformation_matrix.cc. static inverse(m) { const det3x3 = XRMathHelper.det3x3; // mij - i-th column, j-th row const m00 = m[0], m01 = m[1], m02 = m[2], m03 = m[3]; const m10 = m[4], m11 = m[5], m12 = m[6], m13 = m[7]; const m20 = m[8], m21 = m[9], m22 = m[10], m23 = m[11]; const m30 = m[12], m31 = m[13], m32 = m[14], m33 = m[15]; const det = XRMathHelper.det4x4( m00, m01, m02, m03, m10, m11, m12, m13, m20, m21, m22, m23, m30, m31, m32, m33 ); if (Math.abs(det) < 0.0001) { return null; } const invDet = 1.0 / det; // Calculate `comatrix * 1/det`: const result2 = [ // First column (m0r): invDet * det3x3(m11, m12, m13, m21, m22, m23, m32, m32, m33), -invDet * det3x3(m10, m12, m13, m20, m22, m23, m30, m32, m33), invDet * det3x3(m10, m11, m13, m20, m21, m23, m30, m31, m33), -invDet * det3x3(m10, m11, m12, m20, m21, m22, m30, m31, m32), // Second column (m1r): -invDet * det3x3(m01, m02, m03, m21, m22, m23, m32, m32, m33), invDet * det3x3(m00, m02, m03, m20, m22, m23, m30, m32, m33), -invDet * det3x3(m00, m01, m03, m20, m21, m23, m30, m31, m33), invDet * det3x3(m00, m01, m02, m20, m21, m22, m30, m31, m32), // Third column (m2r): invDet * det3x3(m01, m02, m03, m11, m12, m13, m31, m32, m33), -invDet * det3x3(m00, m02, m03, m10, m12, m13, m30, m32, m33), invDet * det3x3(m00, m01, m03, m10, m11, m13, m30, m31, m33), -invDet * det3x3(m00, m01, m02, m10, m11, m12, m30, m31, m32), // Fourth column (m3r): -invDet * det3x3(m01, m02, m03, m11, m12, m13, m21, m22, m23), invDet * det3x3(m00, m02, m03, m10, m12, m13, m20, m22, m23), -invDet * det3x3(m00, m01, m03, m10, m11, m13, m20, m21, m23), invDet * det3x3(m00, m01, m02, m10, m11, m12, m20, m21, m22), ]; // Actual inverse is `1/det * transposed(comatrix)`: return XRMathHelper.transpose(result2); } static mul4x4(m1, m2) { if (m1 == null || m2 == null) { return null; } const result = Array(16); for (let row = 0; row < 4; row++) { for (let col = 0; col < 4; col++) { result[4 * col + row] = 0; for(let i = 0; i < 4; i++) { result[4 * col + row] += m1[4 * i + row] * m2[4 * col + i]; } } } return result; } // Decomposes a matrix, with the assumption that the passed in matrix is // a rigid transformation (i.e. position and rotation *only*!). // The result is an object with `position` and `orientation` keys, which should // be compatible with FakeXRRigidTransformInit. // The implementation should match the behavior of gfx::Transform, but assumes // that scale, skew & perspective are not present in the matrix so it could be // simplified. static decomposeRigidTransform(m) { const m00 = m[0], m01 = m[1], m02 = m[2], m03 = m[3]; const m10 = m[4], m11 = m[5], m12 = m[6], m13 = m[7]; const m20 = m[8], m21 = m[9], m22 = m[10], m23 = m[11]; const m30 = m[12], m31 = m[13], m32 = m[14], m33 = m[15]; const position = [m30, m31, m32]; const orientation = [0, 0, 0, 0]; const trace = m00 + m11 + m22; if (trace > 0) { const S = Math.sqrt(trace + 1) * 2; orientation[3] = 0.25 * S; orientation[0] = (m12 - m21) / S; orientation[1] = (m20 - m02) / S; orientation[2] = (m01 - m10) / S; } else if (m00 > m11 && m00 > m22) { const S = Math.sqrt(1.0 + m00 - m11 - m22) * 2; orientation[3] = (m12 - m21) / S; orientation[0] = 0.25 * S; orientation[1] = (m01 + m10) / S; orientation[2] = (m20 + m02) / S; } else if (m11 > m22) { const S = Math.sqrt(1.0 + m11 - m00 - m22) * 2; orientation[3] = (m20 - m02) / S; orientation[0] = (m01 + m10) / S; orientation[1] = 0.25 * S; orientation[2] = (m12 + m21) / S; } else { const S = Math.sqrt(1.0 + m22 - m00 - m11) * 2; orientation[3] = (m01 - m10) / S; orientation[0] = (m20 + m02) / S; orientation[1] = (m12 + m21) / S; orientation[2] = 0.25 * S; } return { position, orientation }; } static identity() { return [ 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 ]; }; } XRMathHelper.EPSILON = 0.001;