// Copyright 2016 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // Used for encoding f32 and double constants to bits. let byte_view = new Uint8Array(8); let data_view = new DataView(byte_view.buffer); // The bytes function receives one of // - several arguments, each of which is either a number or a string of length // 1; if it's a string, the charcode of the contained character is used. // - a single array argument containing the actual arguments // - a single string; the returned buffer will contain the char codes of all // contained characters. function bytes(...input) { if (input.length == 1 && typeof input[0] == 'array') input = input[0]; if (input.length == 1 && typeof input[0] == 'string') { let len = input[0].length; let view = new Uint8Array(len); for (let i = 0; i < len; i++) view[i] = input[0].charCodeAt(i); return view.buffer; } let view = new Uint8Array(input.length); for (let i = 0; i < input.length; i++) { let val = input[i]; if (typeof val == 'string') { assertEquals(1, val.length, 'string inputs must have length 1'); val = val.charCodeAt(0); } view[i] = val | 0; } return view.buffer; } // Header declaration constants var kWasmH0 = 0; var kWasmH1 = 0x61; var kWasmH2 = 0x73; var kWasmH3 = 0x6d; var kWasmV0 = 0x1; var kWasmV1 = 0; var kWasmV2 = 0; var kWasmV3 = 0; var kHeaderSize = 8; var kPageSize = 65536; var kSpecMaxPages = 65535; var kMaxVarInt32Size = 5; var kMaxVarInt64Size = 10; let kDeclNoLocals = 0; // Section declaration constants let kUnknownSectionCode = 0; let kTypeSectionCode = 1; // Function signature declarations let kImportSectionCode = 2; // Import declarations let kFunctionSectionCode = 3; // Function declarations let kTableSectionCode = 4; // Indirect function table and other tables let kMemorySectionCode = 5; // Memory attributes let kGlobalSectionCode = 6; // Global declarations let kExportSectionCode = 7; // Exports let kStartSectionCode = 8; // Start function declaration let kElementSectionCode = 9; // Elements section let kCodeSectionCode = 10; // Function code let kDataSectionCode = 11; // Data segments let kDataCountSectionCode = 12; // Data segment count (between Element & Code) let kTagSectionCode = 13; // Tag section (between Memory & Global) // Name section types let kModuleNameCode = 0; let kFunctionNamesCode = 1; let kLocalNamesCode = 2; let kWasmFunctionTypeForm = 0x60; let kWasmAnyFunctionTypeForm = 0x70; let kWasmStructTypeForm = 0x5f; let kWasmArrayTypeForm = 0x5e; let kWasmSubtypeForm = 0x50; let kWasmSubtypeFinalForm = 0x4f; let kWasmRecursiveTypeGroupForm = 0x4e; let kNoSuperType = 0xFFFFFFFF; let kHasMaximumFlag = 1; let kSharedHasMaximumFlag = 3; // Segment flags let kActiveNoIndex = 0; let kPassive = 1; let kActiveWithIndex = 2; let kPassiveWithElements = 5; // Function declaration flags let kDeclFunctionName = 0x01; let kDeclFunctionImport = 0x02; let kDeclFunctionLocals = 0x04; let kDeclFunctionExport = 0x08; // Local types let kWasmStmt = 0x40; let kWasmI32 = 0x7f; let kWasmI64 = 0x7e; let kWasmF32 = 0x7d; let kWasmF64 = 0x7c; let kWasmS128 = 0x7b; // These are defined as negative integers to distinguish them from positive type // indices. let kWasmNullFuncRef = -0x0d; let kWasmNullExternRef = -0x0e; let kWasmNullRef = -0x0f; let kWasmFuncRef = -0x10; let kWasmAnyFunc = kWasmFuncRef; // Alias named as in the JS API spec let kWasmExternRef = -0x11; let kWasmAnyRef = -0x12; let kWasmEqRef = -0x13; let kWasmI31Ref = -0x14; let kWasmStructRef = -0x15; let kWasmArrayRef = -0x16; // Use the positive-byte versions inside function bodies. let kLeb128Mask = 0x7f; let kFuncRefCode = kWasmFuncRef & kLeb128Mask; let kAnyFuncCode = kFuncRefCode; // Alias named as in the JS API spec let kExternRefCode = kWasmExternRef & kLeb128Mask; let kAnyRefCode = kWasmAnyRef & kLeb128Mask; let kEqRefCode = kWasmEqRef & kLeb128Mask; let kI31RefCode = kWasmI31Ref & kLeb128Mask; let kNullExternRefCode = kWasmNullExternRef & kLeb128Mask; let kNullFuncRefCode = kWasmNullFuncRef & kLeb128Mask; let kStructRefCode = kWasmStructRef & kLeb128Mask; let kArrayRefCode = kWasmArrayRef & kLeb128Mask; let kNullRefCode = kWasmNullRef & kLeb128Mask; let kWasmRefNull = 0x63; let kWasmRef = 0x64; function wasmRefNullType(heap_type) { return {opcode: kWasmRefNull, heap_type: heap_type}; } function wasmRefType(heap_type) { return {opcode: kWasmRef, heap_type: heap_type}; } let kExternalFunction = 0; let kExternalTable = 1; let kExternalMemory = 2; let kExternalGlobal = 3; let kExternalTag = 4; let kTableZero = 0; let kMemoryZero = 0; let kSegmentZero = 0; let kTagAttribute = 0; // Useful signatures let kSig_i_i = makeSig([kWasmI32], [kWasmI32]); let kSig_l_l = makeSig([kWasmI64], [kWasmI64]); let kSig_i_l = makeSig([kWasmI64], [kWasmI32]); let kSig_i_ii = makeSig([kWasmI32, kWasmI32], [kWasmI32]); let kSig_i_iii = makeSig([kWasmI32, kWasmI32, kWasmI32], [kWasmI32]); let kSig_v_iiii = makeSig([kWasmI32, kWasmI32, kWasmI32, kWasmI32], []); let kSig_f_ff = makeSig([kWasmF32, kWasmF32], [kWasmF32]); let kSig_d_dd = makeSig([kWasmF64, kWasmF64], [kWasmF64]); let kSig_l_ll = makeSig([kWasmI64, kWasmI64], [kWasmI64]); let kSig_i_dd = makeSig([kWasmF64, kWasmF64], [kWasmI32]); let kSig_v_v = makeSig([], []); let kSig_i_v = makeSig([], [kWasmI32]); let kSig_l_v = makeSig([], [kWasmI64]); let kSig_f_v = makeSig([], [kWasmF32]); let kSig_d_v = makeSig([], [kWasmF64]); let kSig_v_i = makeSig([kWasmI32], []); let kSig_v_ii = makeSig([kWasmI32, kWasmI32], []); let kSig_v_iii = makeSig([kWasmI32, kWasmI32, kWasmI32], []); let kSig_v_l = makeSig([kWasmI64], []); let kSig_v_d = makeSig([kWasmF64], []); let kSig_v_dd = makeSig([kWasmF64, kWasmF64], []); let kSig_v_ddi = makeSig([kWasmF64, kWasmF64, kWasmI32], []); let kSig_ii_v = makeSig([], [kWasmI32, kWasmI32]); let kSig_iii_v = makeSig([], [kWasmI32, kWasmI32, kWasmI32]); let kSig_ii_i = makeSig([kWasmI32], [kWasmI32, kWasmI32]); let kSig_iii_i = makeSig([kWasmI32], [kWasmI32, kWasmI32, kWasmI32]); let kSig_ii_ii = makeSig([kWasmI32, kWasmI32], [kWasmI32, kWasmI32]); let kSig_iii_ii = makeSig([kWasmI32, kWasmI32], [kWasmI32, kWasmI32, kWasmI32]); let kSig_v_f = makeSig([kWasmF32], []); let kSig_f_f = makeSig([kWasmF32], [kWasmF32]); let kSig_f_d = makeSig([kWasmF64], [kWasmF32]); let kSig_d_d = makeSig([kWasmF64], [kWasmF64]); let kSig_r_r = makeSig([kWasmExternRef], [kWasmExternRef]); let kSig_a_a = makeSig([kWasmAnyFunc], [kWasmAnyFunc]); let kSig_i_r = makeSig([kWasmExternRef], [kWasmI32]); let kSig_v_r = makeSig([kWasmExternRef], []); let kSig_v_a = makeSig([kWasmAnyFunc], []); let kSig_v_rr = makeSig([kWasmExternRef, kWasmExternRef], []); let kSig_v_aa = makeSig([kWasmAnyFunc, kWasmAnyFunc], []); let kSig_r_v = makeSig([], [kWasmExternRef]); let kSig_a_v = makeSig([], [kWasmAnyFunc]); let kSig_a_i = makeSig([kWasmI32], [kWasmAnyFunc]); function makeSig(params, results) { return {params: params, results: results}; } function makeSig_v_x(x) { return makeSig([x], []); } function makeSig_v_xx(x) { return makeSig([x, x], []); } function makeSig_r_v(r) { return makeSig([], [r]); } function makeSig_r_x(r, x) { return makeSig([x], [r]); } function makeSig_r_xx(r, x) { return makeSig([x, x], [r]); } // Opcodes let kExprUnreachable = 0x00; let kExprNop = 0x01; let kExprBlock = 0x02; let kExprLoop = 0x03; let kExprIf = 0x04; let kExprElse = 0x05; let kExprTry = 0x06; let kExprCatch = 0x07; let kExprCatchAll = 0x19; let kExprThrow = 0x08; let kExprRethrow = 0x09; let kExprBrOnExn = 0x0a; let kExprEnd = 0x0b; let kExprBr = 0x0c; let kExprBrIf = 0x0d; let kExprBrTable = 0x0e; let kExprReturn = 0x0f; let kExprCallFunction = 0x10; let kExprCallIndirect = 0x11; let kExprReturnCall = 0x12; let kExprReturnCallIndirect = 0x13; let kExprDrop = 0x1a; let kExprSelect = 0x1b; let kExprLocalGet = 0x20; let kExprLocalSet = 0x21; let kExprLocalTee = 0x22; let kExprGlobalGet = 0x23; let kExprGlobalSet = 0x24; let kExprTableGet = 0x25; let kExprTableSet = 0x26; let kExprI32LoadMem = 0x28; let kExprI64LoadMem = 0x29; let kExprF32LoadMem = 0x2a; let kExprF64LoadMem = 0x2b; let kExprI32LoadMem8S = 0x2c; let kExprI32LoadMem8U = 0x2d; let kExprI32LoadMem16S = 0x2e; let kExprI32LoadMem16U = 0x2f; let kExprI64LoadMem8S = 0x30; let kExprI64LoadMem8U = 0x31; let kExprI64LoadMem16S = 0x32; let kExprI64LoadMem16U = 0x33; let kExprI64LoadMem32S = 0x34; let kExprI64LoadMem32U = 0x35; let kExprI32StoreMem = 0x36; let kExprI64StoreMem = 0x37; let kExprF32StoreMem = 0x38; let kExprF64StoreMem = 0x39; let kExprI32StoreMem8 = 0x3a; let kExprI32StoreMem16 = 0x3b; let kExprI64StoreMem8 = 0x3c; let kExprI64StoreMem16 = 0x3d; let kExprI64StoreMem32 = 0x3e; let kExprMemorySize = 0x3f; let kExprMemoryGrow = 0x40; let kExprI32Const = 0x41; let kExprI64Const = 0x42; let kExprF32Const = 0x43; let kExprF64Const = 0x44; let kExprI32Eqz = 0x45; let kExprI32Eq = 0x46; let kExprI32Ne = 0x47; let kExprI32LtS = 0x48; let kExprI32LtU = 0x49; let kExprI32GtS = 0x4a; let kExprI32GtU = 0x4b; let kExprI32LeS = 0x4c; let kExprI32LeU = 0x4d; let kExprI32GeS = 0x4e; let kExprI32GeU = 0x4f; let kExprI64Eqz = 0x50; let kExprI64Eq = 0x51; let kExprI64Ne = 0x52; let kExprI64LtS = 0x53; let kExprI64LtU = 0x54; let kExprI64GtS = 0x55; let kExprI64GtU = 0x56; let kExprI64LeS = 0x57; let kExprI64LeU = 0x58; let kExprI64GeS = 0x59; let kExprI64GeU = 0x5a; let kExprF32Eq = 0x5b; let kExprF32Ne = 0x5c; let kExprF32Lt = 0x5d; let kExprF32Gt = 0x5e; let kExprF32Le = 0x5f; let kExprF32Ge = 0x60; let kExprF64Eq = 0x61; let kExprF64Ne = 0x62; let kExprF64Lt = 0x63; let kExprF64Gt = 0x64; let kExprF64Le = 0x65; let kExprF64Ge = 0x66; let kExprI32Clz = 0x67; let kExprI32Ctz = 0x68; let kExprI32Popcnt = 0x69; let kExprI32Add = 0x6a; let kExprI32Sub = 0x6b; let kExprI32Mul = 0x6c; let kExprI32DivS = 0x6d; let kExprI32DivU = 0x6e; let kExprI32RemS = 0x6f; let kExprI32RemU = 0x70; let kExprI32And = 0x71; let kExprI32Ior = 0x72; let kExprI32Xor = 0x73; let kExprI32Shl = 0x74; let kExprI32ShrS = 0x75; let kExprI32ShrU = 0x76; let kExprI32Rol = 0x77; let kExprI32Ror = 0x78; let kExprI64Clz = 0x79; let kExprI64Ctz = 0x7a; let kExprI64Popcnt = 0x7b; let kExprI64Add = 0x7c; let kExprI64Sub = 0x7d; let kExprI64Mul = 0x7e; let kExprI64DivS = 0x7f; let kExprI64DivU = 0x80; let kExprI64RemS = 0x81; let kExprI64RemU = 0x82; let kExprI64And = 0x83; let kExprI64Ior = 0x84; let kExprI64Xor = 0x85; let kExprI64Shl = 0x86; let kExprI64ShrS = 0x87; let kExprI64ShrU = 0x88; let kExprI64Rol = 0x89; let kExprI64Ror = 0x8a; let kExprF32Abs = 0x8b; let kExprF32Neg = 0x8c; let kExprF32Ceil = 0x8d; let kExprF32Floor = 0x8e; let kExprF32Trunc = 0x8f; let kExprF32NearestInt = 0x90; let kExprF32Sqrt = 0x91; let kExprF32Add = 0x92; let kExprF32Sub = 0x93; let kExprF32Mul = 0x94; let kExprF32Div = 0x95; let kExprF32Min = 0x96; let kExprF32Max = 0x97; let kExprF32CopySign = 0x98; let kExprF64Abs = 0x99; let kExprF64Neg = 0x9a; let kExprF64Ceil = 0x9b; let kExprF64Floor = 0x9c; let kExprF64Trunc = 0x9d; let kExprF64NearestInt = 0x9e; let kExprF64Sqrt = 0x9f; let kExprF64Add = 0xa0; let kExprF64Sub = 0xa1; let kExprF64Mul = 0xa2; let kExprF64Div = 0xa3; let kExprF64Min = 0xa4; let kExprF64Max = 0xa5; let kExprF64CopySign = 0xa6; let kExprI32ConvertI64 = 0xa7; let kExprI32SConvertF32 = 0xa8; let kExprI32UConvertF32 = 0xa9; let kExprI32SConvertF64 = 0xaa; let kExprI32UConvertF64 = 0xab; let kExprI64SConvertI32 = 0xac; let kExprI64UConvertI32 = 0xad; let kExprI64SConvertF32 = 0xae; let kExprI64UConvertF32 = 0xaf; let kExprI64SConvertF64 = 0xb0; let kExprI64UConvertF64 = 0xb1; let kExprF32SConvertI32 = 0xb2; let kExprF32UConvertI32 = 0xb3; let kExprF32SConvertI64 = 0xb4; let kExprF32UConvertI64 = 0xb5; let kExprF32ConvertF64 = 0xb6; let kExprF64SConvertI32 = 0xb7; let kExprF64UConvertI32 = 0xb8; let kExprF64SConvertI64 = 0xb9; let kExprF64UConvertI64 = 0xba; let kExprF64ConvertF32 = 0xbb; let kExprI32ReinterpretF32 = 0xbc; let kExprI64ReinterpretF64 = 0xbd; let kExprF32ReinterpretI32 = 0xbe; let kExprF64ReinterpretI64 = 0xbf; let kExprI32SExtendI8 = 0xc0; let kExprI32SExtendI16 = 0xc1; let kExprI64SExtendI8 = 0xc2; let kExprI64SExtendI16 = 0xc3; let kExprI64SExtendI32 = 0xc4; let kExprRefNull = 0xd0; let kExprRefIsNull = 0xd1; let kExprRefFunc = 0xd2; // Prefix opcodes let kGCPrefix = 0xfb; let kNumericPrefix = 0xfc; let kSimdPrefix = 0xfd; let kAtomicPrefix = 0xfe; // Use these for multi-byte instructions (opcode > 0x7F needing two LEB bytes): function GCInstr(opcode) { if (opcode <= 0x7F) return [kGCPrefix, opcode]; return [kGCPrefix, 0x80 | (opcode & 0x7F), opcode >> 7]; } // GC opcodes let kExprStructNew = 0x00; let kExprStructNewDefault = 0x01; let kExprStructGet = 0x02; let kExprStructGetS = 0x03; let kExprStructGetU = 0x04; let kExprStructSet = 0x05; let kExprArrayNew = 0x06; let kExprArrayNewDefault = 0x07; let kExprArrayNewFixed = 0x08; let kExprArrayNewData = 0x09; let kExprArrayNewElem = 0x0a; let kExprArrayGet = 0x0b; let kExprArrayGetS = 0x0c; let kExprArrayGetU = 0x0d; let kExprArraySet = 0x0e; let kExprArrayLen = 0x0f; let kExprArrayFill = 0x10; let kExprArrayCopy = 0x11; let kExprArrayInitData = 0x12; let kExprArrayInitElem = 0x13; let kExprRefTest = 0x14; let kExprRefTestNull = 0x15; let kExprRefCast = 0x16; let kExprRefCastNull = 0x17; let kExprBrOnCast = 0x18; let kExprBrOnCastFail = 0x19; let kExprExternInternalize = 0x1a; let kExprExternExternalize = 0x1b; let kExprI31New = 0x1c; let kExprI31GetS = 0x1d; let kExprI31GetU = 0x1e; // Numeric opcodes. let kExprMemoryInit = 0x08; let kExprDataDrop = 0x09; let kExprMemoryCopy = 0x0a; let kExprMemoryFill = 0x0b; let kExprTableInit = 0x0c; let kExprElemDrop = 0x0d; let kExprTableCopy = 0x0e; let kExprTableGrow = 0x0f; let kExprTableSize = 0x10; let kExprTableFill = 0x11; // Atomic opcodes. let kExprAtomicNotify = 0x00; let kExprI32AtomicWait = 0x01; let kExprI64AtomicWait = 0x02; let kExprI32AtomicLoad = 0x10; let kExprI32AtomicLoad8U = 0x12; let kExprI32AtomicLoad16U = 0x13; let kExprI32AtomicStore = 0x17; let kExprI32AtomicStore8U = 0x19; let kExprI32AtomicStore16U = 0x1a; let kExprI32AtomicAdd = 0x1e; let kExprI32AtomicAdd8U = 0x20; let kExprI32AtomicAdd16U = 0x21; let kExprI32AtomicSub = 0x25; let kExprI32AtomicSub8U = 0x27; let kExprI32AtomicSub16U = 0x28; let kExprI32AtomicAnd = 0x2c; let kExprI32AtomicAnd8U = 0x2e; let kExprI32AtomicAnd16U = 0x2f; let kExprI32AtomicOr = 0x33; let kExprI32AtomicOr8U = 0x35; let kExprI32AtomicOr16U = 0x36; let kExprI32AtomicXor = 0x3a; let kExprI32AtomicXor8U = 0x3c; let kExprI32AtomicXor16U = 0x3d; let kExprI32AtomicExchange = 0x41; let kExprI32AtomicExchange8U = 0x43; let kExprI32AtomicExchange16U = 0x44; let kExprI32AtomicCompareExchange = 0x48; let kExprI32AtomicCompareExchange8U = 0x4a; let kExprI32AtomicCompareExchange16U = 0x4b; let kExprI64AtomicLoad = 0x11; let kExprI64AtomicLoad8U = 0x14; let kExprI64AtomicLoad16U = 0x15; let kExprI64AtomicLoad32U = 0x16; let kExprI64AtomicStore = 0x18; let kExprI64AtomicStore8U = 0x1b; let kExprI64AtomicStore16U = 0x1c; let kExprI64AtomicStore32U = 0x1d; let kExprI64AtomicAdd = 0x1f; let kExprI64AtomicAdd8U = 0x22; let kExprI64AtomicAdd16U = 0x23; let kExprI64AtomicAdd32U = 0x24; let kExprI64AtomicSub = 0x26; let kExprI64AtomicSub8U = 0x29; let kExprI64AtomicSub16U = 0x2a; let kExprI64AtomicSub32U = 0x2b; let kExprI64AtomicAnd = 0x2d; let kExprI64AtomicAnd8U = 0x30; let kExprI64AtomicAnd16U = 0x31; let kExprI64AtomicAnd32U = 0x32; let kExprI64AtomicOr = 0x34; let kExprI64AtomicOr8U = 0x37; let kExprI64AtomicOr16U = 0x38; let kExprI64AtomicOr32U = 0x39; let kExprI64AtomicXor = 0x3b; let kExprI64AtomicXor8U = 0x3e; let kExprI64AtomicXor16U = 0x3f; let kExprI64AtomicXor32U = 0x40; let kExprI64AtomicExchange = 0x42; let kExprI64AtomicExchange8U = 0x45; let kExprI64AtomicExchange16U = 0x46; let kExprI64AtomicExchange32U = 0x47; let kExprI64AtomicCompareExchange = 0x49 let kExprI64AtomicCompareExchange8U = 0x4c; let kExprI64AtomicCompareExchange16U = 0x4d; let kExprI64AtomicCompareExchange32U = 0x4e; // Simd opcodes. let kExprS128LoadMem = 0x00; let kExprS128StoreMem = 0x01; let kExprI32x4Splat = 0x0c; let kExprI32x4Eq = 0x2c; let kExprS1x4AllTrue = 0x75; let kExprF32x4Min = 0x9e; class Binary { constructor() { this.length = 0; this.buffer = new Uint8Array(8192); } ensure_space(needed) { if (this.buffer.length - this.length >= needed) return; let new_capacity = this.buffer.length * 2; while (new_capacity - this.length < needed) new_capacity *= 2; let new_buffer = new Uint8Array(new_capacity); new_buffer.set(this.buffer); this.buffer = new_buffer; } trunc_buffer() { return new Uint8Array(this.buffer.buffer, 0, this.length); } reset() { this.length = 0; } emit_u8(val) { this.ensure_space(1); this.buffer[this.length++] = val; } emit_u16(val) { this.ensure_space(2); this.buffer[this.length++] = val; this.buffer[this.length++] = val >> 8; } emit_u32(val) { this.ensure_space(4); this.buffer[this.length++] = val; this.buffer[this.length++] = val >> 8; this.buffer[this.length++] = val >> 16; this.buffer[this.length++] = val >> 24; } emit_leb_u(val, max_len) { this.ensure_space(max_len); for (let i = 0; i < max_len; ++i) { let v = val & 0xff; val = val >>> 7; if (val == 0) { this.buffer[this.length++] = v; return; } this.buffer[this.length++] = v | 0x80; } throw new Error("Leb value exceeds maximum length of " + max_len); } emit_u32v(val) { this.emit_leb_u(val, kMaxVarInt32Size); } emit_u64v(val) { this.emit_leb_u(val, kMaxVarInt64Size); } emit_bytes(data) { this.ensure_space(data.length); this.buffer.set(data, this.length); this.length += data.length; } emit_string(string) { // When testing illegal names, we pass a byte array directly. if (string instanceof Array) { this.emit_u32v(string.length); this.emit_bytes(string); return; } // This is the hacky way to convert a JavaScript string to a UTF8 encoded // string only containing single-byte characters. let string_utf8 = unescape(encodeURIComponent(string)); this.emit_u32v(string_utf8.length); for (let i = 0; i < string_utf8.length; i++) { this.emit_u8(string_utf8.charCodeAt(i)); } } emit_heap_type(heap_type) { this.emit_bytes(wasmSignedLeb(heap_type, kMaxVarInt32Size)); } emit_type(type) { if ((typeof type) == 'number') { this.emit_u8(type >= 0 ? type : type & kLeb128Mask); } else { this.emit_u8(type.opcode); if ('depth' in type) this.emit_u8(type.depth); this.emit_heap_type(type.heap_type); } } emit_init_expr(expr) { this.emit_bytes(expr); this.emit_u8(kExprEnd); } emit_header() { this.emit_bytes([ kWasmH0, kWasmH1, kWasmH2, kWasmH3, kWasmV0, kWasmV1, kWasmV2, kWasmV3 ]); } emit_section(section_code, content_generator) { // Emit section name. this.emit_u8(section_code); // Emit the section to a temporary buffer: its full length isn't know yet. const section = new Binary; content_generator(section); // Emit section length. this.emit_u32v(section.length); // Copy the temporary buffer. // Avoid spread because {section} can be huge. this.emit_bytes(section.trunc_buffer()); } } class WasmFunctionBuilder { constructor(module, name, type_index) { this.module = module; this.name = name; this.type_index = type_index; this.body = []; this.locals = []; this.local_names = []; } numLocalNames() { let num_local_names = 0; for (let loc_name of this.local_names) { if (loc_name !== undefined) ++num_local_names; } return num_local_names; } exportAs(name) { this.module.addExport(name, this.index); return this; } exportFunc() { this.exportAs(this.name); return this; } addBody(body) { for (let b of body) { if (typeof b !== 'number' || (b & (~0xFF)) !== 0 ) throw new Error('invalid body (entries must be 8 bit numbers): ' + body); } this.body = body.slice(); // Automatically add the end for the function block to the body. this.body.push(kExprEnd); return this; } addBodyWithEnd(body) { this.body = body; return this; } getNumLocals() { let total_locals = 0; for (let l of this.locals) { for (let type of ["i32", "i64", "f32", "f64", "s128"]) { total_locals += l[type + "_count"] || 0; } } return total_locals; } addLocals(locals, names) { const old_num_locals = this.getNumLocals(); this.locals.push(locals); if (names) { const missing_names = old_num_locals - this.local_names.length; this.local_names.push(...new Array(missing_names), ...names); } return this; } end() { return this.module; } } class WasmGlobalBuilder { constructor(module, type, mutable, init) { this.module = module; this.type = type; this.mutable = mutable; this.init = init; } exportAs(name) { this.module.exports.push({name: name, kind: kExternalGlobal, index: this.index}); return this; } } function checkExpr(expr) { for (let b of expr) { if (typeof b !== 'number' || (b & (~0xFF)) !== 0) { throw new Error( 'invalid body (entries must be 8 bit numbers): ' + expr); } } } class WasmTableBuilder { constructor(module, type, initial_size, max_size, init_expr) { this.module = module; this.type = type; this.initial_size = initial_size; this.has_max = max_size != undefined; this.max_size = max_size; this.init_expr = init_expr; this.has_init = init_expr !== undefined; } exportAs(name) { this.module.exports.push({name: name, kind: kExternalTable, index: this.index}); return this; } } function makeField(type, mutability) { if ((typeof mutability) != 'boolean') { throw new Error('field mutability must be boolean'); } return {type: type, mutability: mutability}; } class WasmStruct { constructor(fields, is_final, supertype_idx) { if (!Array.isArray(fields)) { throw new Error('struct fields must be an array'); } this.fields = fields; this.type_form = kWasmStructTypeForm; this.is_final = is_final; this.supertype = supertype_idx; } } class WasmArray { constructor(type, mutability, is_final, supertype_idx) { this.type = type; this.mutability = mutability; this.type_form = kWasmArrayTypeForm; this.is_final = is_final; this.supertype = supertype_idx; } } class WasmModuleBuilder { constructor() { this.types = []; this.imports = []; this.exports = []; this.globals = []; this.tables = []; this.tags = []; this.functions = []; this.element_segments = []; this.data_segments = []; this.explicit = []; this.rec_groups = []; this.num_imported_funcs = 0; this.num_imported_globals = 0; this.num_imported_tables = 0; this.num_imported_tags = 0; return this; } addStart(start_index) { this.start_index = start_index; return this; } addMemory(min, max, exp, shared) { this.memory = {min: min, max: max, exp: exp, shared: shared}; return this; } addExplicitSection(bytes) { this.explicit.push(bytes); return this; } stringToBytes(name) { var result = new Binary(); result.emit_string(name); return result.trunc_buffer() } createCustomSection(name, bytes) { name = this.stringToBytes(name); var section = new Binary(); section.emit_u8(kUnknownSectionCode); section.emit_u32v(name.length + bytes.length); section.emit_bytes(name); section.emit_bytes(bytes); return section.trunc_buffer(); } addCustomSection(name, bytes) { this.explicit.push(this.createCustomSection(name, bytes)); } // We use {is_final = true} so that the MVP syntax is generated for // signatures. addType(type, supertype_idx = kNoSuperType, is_final = true) { var pl = type.params.length; // should have params var rl = type.results.length; // should have results var type_copy = {params: type.params, results: type.results, is_final: is_final, supertype: supertype_idx}; this.types.push(type_copy); return this.types.length - 1; } addStruct(fields, supertype_idx = kNoSuperType, is_final = false) { this.types.push(new WasmStruct(fields, is_final, supertype_idx)); return this.types.length - 1; } addArray(type, mutability, supertype_idx = kNoSuperType, is_final = false) { this.types.push(new WasmArray(type, mutability, is_final, supertype_idx)); return this.types.length - 1; } static defaultFor(type) { switch (type) { case kWasmI32: return wasmI32Const(0); case kWasmI64: return wasmI64Const(0); case kWasmF32: return wasmF32Const(0.0); case kWasmF64: return wasmF64Const(0.0); case kWasmS128: return [kSimdPrefix, kExprS128Const, ...(new Array(16).fill(0))]; default: if ((typeof type) != 'number' && type.opcode != kWasmRefNull) { throw new Error("Non-defaultable type"); } let heap_type = (typeof type) == 'number' ? type : type.heap_type; return [kExprRefNull, ...wasmSignedLeb(heap_type, kMaxVarInt32Size)]; } } addGlobal(type, mutable, init) { if (init === undefined) init = WasmModuleBuilder.defaultFor(type); checkExpr(init); let glob = new WasmGlobalBuilder(this, type, mutable, init); glob.index = this.globals.length + this.num_imported_globals; this.globals.push(glob); return glob; } addTable(type, initial_size, max_size = undefined, init_expr = undefined) { if (type == kWasmI32 || type == kWasmI64 || type == kWasmF32 || type == kWasmF64 || type == kWasmS128 || type == kWasmStmt) { throw new Error('Tables must be of a reference type'); } if (init_expr != undefined) checkExpr(init_expr); let table = new WasmTableBuilder( this, type, initial_size, max_size, init_expr); table.index = this.tables.length + this.num_imported_tables; this.tables.push(table); return table; } addTag(type) { let type_index = (typeof type) == "number" ? type : this.addType(type); let tag_index = this.tags.length + this.num_imported_tags; this.tags.push(type_index); return tag_index; } addFunction(name, type) { let type_index = (typeof type) == "number" ? type : this.addType(type); let func = new WasmFunctionBuilder(this, name, type_index); func.index = this.functions.length + this.num_imported_funcs; this.functions.push(func); return func; } addImport(module, name, type) { if (this.functions.length != 0) { throw new Error('Imported functions must be declared before local ones'); } let type_index = (typeof type) == "number" ? type : this.addType(type); this.imports.push({module: module, name: name, kind: kExternalFunction, type: type_index}); return this.num_imported_funcs++; } addImportedGlobal(module, name, type, mutable = false) { if (this.globals.length != 0) { throw new Error('Imported globals must be declared before local ones'); } let o = {module: module, name: name, kind: kExternalGlobal, type: type, mutable: mutable}; this.imports.push(o); return this.num_imported_globals++; } addImportedMemory(module, name, initial = 0, maximum, shared) { let o = {module: module, name: name, kind: kExternalMemory, initial: initial, maximum: maximum, shared: shared}; this.imports.push(o); return this; } addImportedTable(module, name, initial, maximum, type) { if (this.tables.length != 0) { throw new Error('Imported tables must be declared before local ones'); } let o = {module: module, name: name, kind: kExternalTable, initial: initial, maximum: maximum, type: type || kWasmAnyFunctionTypeForm}; this.imports.push(o); return this.num_imported_tables++; } addImportedTag(module, name, type) { if (this.tags.length != 0) { throw new Error('Imported tags must be declared before local ones'); } let type_index = (typeof type) == "number" ? type : this.addType(type); let o = {module: module, name: name, kind: kExternalTag, type: type_index}; this.imports.push(o); return this.num_imported_tags++; } addExport(name, index) { this.exports.push({name: name, kind: kExternalFunction, index: index}); return this; } addExportOfKind(name, kind, index) { this.exports.push({name: name, kind: kind, index: index}); return this; } addDataSegment(addr, data, is_global = false) { this.data_segments.push( {addr: addr, data: data, is_global: is_global, is_active: true}); return this.data_segments.length - 1; } addPassiveDataSegment(data) { this.data_segments.push({data: data, is_active: false}); return this.data_segments.length - 1; } exportMemoryAs(name) { this.exports.push({name: name, kind: kExternalMemory, index: 0}); } addElementSegment(table, base, is_global, array) { this.element_segments.push({table: table, base: base, is_global: is_global, array: array, is_active: true}); return this; } addPassiveElementSegment(array, is_import = false) { this.element_segments.push({array: array, is_active: false}); return this; } appendToTable(array) { for (let n of array) { if (typeof n != 'number') throw new Error('invalid table (entries have to be numbers): ' + array); } if (this.tables.length == 0) { this.addTable(kWasmAnyFunc, 0); } // Adjust the table to the correct size. let table = this.tables[0]; const base = table.initial_size; const table_size = base + array.length; table.initial_size = table_size; if (table.has_max && table_size > table.max_size) { table.max_size = table_size; } return this.addElementSegment(0, base, false, array); } setTableBounds(min, max = undefined) { if (this.tables.length != 0) { throw new Error("The table bounds of table '0' have already been set."); } this.addTable(kWasmAnyFunc, min, max); return this; } startRecGroup() { this.rec_groups.push({start: this.types.length, size: 0}); } endRecGroup() { if (this.rec_groups.length == 0) { throw new Error("Did not start a recursive group before ending one") } let last_element = this.rec_groups[this.rec_groups.length - 1] if (last_element.size != 0) { throw new Error("Did not start a recursive group before ending one") } last_element.size = this.types.length - last_element.start; } setName(name) { this.name = name; return this; } toBuffer(debug = false) { let binary = new Binary; let wasm = this; // Add header binary.emit_header(); // Add type section if (wasm.types.length > 0) { if (debug) print('emitting types @ ' + binary.length); binary.emit_section(kTypeSectionCode, section => { let length_with_groups = wasm.types.length; for (let group of wasm.rec_groups) { length_with_groups -= group.size - 1; } section.emit_u32v(length_with_groups); let rec_group_index = 0; for (let i = 0; i < wasm.types.length; i++) { if (rec_group_index < wasm.rec_groups.length && wasm.rec_groups[rec_group_index].start == i) { section.emit_u8(kWasmRecursiveTypeGroupForm); section.emit_u32v(wasm.rec_groups[rec_group_index].size); rec_group_index++; } let type = wasm.types[i]; if (type.supertype != kNoSuperType) { section.emit_u8(type.is_final ? kWasmSubtypeFinalForm : kWasmSubtypeForm); section.emit_u8(1); // supertype count section.emit_u32v(type.supertype); } else if (!type.is_final) { section.emit_u8(kWasmSubtypeForm); section.emit_u8(0); // no supertypes } if (type instanceof WasmStruct) { section.emit_u8(kWasmStructTypeForm); section.emit_u32v(type.fields.length); for (let field of type.fields) { section.emit_type(field.type); section.emit_u8(field.mutability ? 1 : 0); } } else if (type instanceof WasmArray) { section.emit_u8(kWasmArrayTypeForm); section.emit_type(type.type); section.emit_u8(type.mutability ? 1 : 0); } else { section.emit_u8(kWasmFunctionTypeForm); section.emit_u32v(type.params.length); for (let param of type.params) { section.emit_type(param); } section.emit_u32v(type.results.length); for (let result of type.results) { section.emit_type(result); } } } }); } // Add imports section if (wasm.imports.length > 0) { if (debug) print("emitting imports @ " + binary.length); binary.emit_section(kImportSectionCode, section => { section.emit_u32v(wasm.imports.length); for (let imp of wasm.imports) { section.emit_string(imp.module); section.emit_string(imp.name || ''); section.emit_u8(imp.kind); if (imp.kind == kExternalFunction) { section.emit_u32v(imp.type_index); } else if (imp.kind == kExternalGlobal) { section.emit_type(imp.type); section.emit_u8(imp.mutable); } else if (imp.kind == kExternalMemory) { var has_max = (typeof imp.maximum) != "undefined"; var is_shared = (typeof imp.shared) != "undefined"; if (is_shared) { section.emit_u8(has_max ? 3 : 2); // flags } else { section.emit_u8(has_max ? 1 : 0); // flags } section.emit_u32v(imp.initial); // initial if (has_max) section.emit_u32v(imp.maximum); // maximum } else if (imp.kind == kExternalTable) { section.emit_type(imp.type); var has_max = (typeof imp.maximum) != "undefined"; section.emit_u8(has_max ? 1 : 0); // flags section.emit_u32v(imp.initial); // initial if (has_max) section.emit_u32v(imp.maximum); // maximum } else if (imp.kind == kExternalTag) { section.emit_u32v(kTagAttribute); section.emit_u32v(imp.type); } else { throw new Error("unknown/unsupported import kind " + imp.kind); } } }); } // Add functions declarations if (wasm.functions.length > 0) { if (debug) print("emitting function decls @ " + binary.length); binary.emit_section(kFunctionSectionCode, section => { section.emit_u32v(wasm.functions.length); for (let func of wasm.functions) { section.emit_u32v(func.type_index); } }); } // Add table section if (wasm.tables.length > 0) { if (debug) print ("emitting tables @ " + binary.length); binary.emit_section(kTableSectionCode, section => { section.emit_u32v(wasm.tables.length); for (let table of wasm.tables) { section.emit_type(table.type); section.emit_u8(table.has_max); section.emit_u32v(table.initial_size); if (table.has_max) section.emit_u32v(table.max_size); if (table.has_init) section.emit_init_expr(table.init_expr); } }); } // Add memory section if (wasm.memory !== undefined) { if (debug) print("emitting memory @ " + binary.length); binary.emit_section(kMemorySectionCode, section => { section.emit_u8(1); // one memory entry const has_max = wasm.memory.max !== undefined; const is_shared = wasm.memory.shared !== undefined; // Emit flags (bit 0: reszeable max, bit 1: shared memory) if (is_shared) { section.emit_u8(has_max ? kSharedHasMaximumFlag : 2); } else { section.emit_u8(has_max ? kHasMaximumFlag : 0); } section.emit_u32v(wasm.memory.min); if (has_max) section.emit_u32v(wasm.memory.max); }); } // Add global section. if (wasm.globals.length > 0) { if (debug) print ("emitting globals @ " + binary.length); binary.emit_section(kGlobalSectionCode, section => { section.emit_u32v(wasm.globals.length); for (let global of wasm.globals) { section.emit_type(global.type); section.emit_u8(global.mutable); section.emit_init_expr(global.init); } }); } // Add tags. if (wasm.tags.length > 0) { if (debug) print("emitting tags @ " + binary.length); binary.emit_section(kTagSectionCode, section => { section.emit_u32v(wasm.tags.length); for (let type of wasm.tags) { section.emit_u32v(kTagAttribute); section.emit_u32v(type); } }); } // Add export table. var mem_export = (wasm.memory !== undefined && wasm.memory.exp); var exports_count = wasm.exports.length + (mem_export ? 1 : 0); if (exports_count > 0) { if (debug) print("emitting exports @ " + binary.length); binary.emit_section(kExportSectionCode, section => { section.emit_u32v(exports_count); for (let exp of wasm.exports) { section.emit_string(exp.name); section.emit_u8(exp.kind); section.emit_u32v(exp.index); } if (mem_export) { section.emit_string("memory"); section.emit_u8(kExternalMemory); section.emit_u8(0); } }); } // Add start function section. if (wasm.start_index !== undefined) { if (debug) print("emitting start function @ " + binary.length); binary.emit_section(kStartSectionCode, section => { section.emit_u32v(wasm.start_index); }); } // Add element segments if (wasm.element_segments.length > 0) { if (debug) print("emitting element segments @ " + binary.length); binary.emit_section(kElementSectionCode, section => { var inits = wasm.element_segments; section.emit_u32v(inits.length); for (let init of inits) { if (init.is_active) { // Active segment. if (init.table == 0) { section.emit_u32v(kActiveNoIndex); } else { section.emit_u32v(kActiveWithIndex); section.emit_u32v(init.table); } if (init.is_global) { section.emit_u8(kExprGlobalGet); } else { section.emit_u8(kExprI32Const); } section.emit_u32v(init.base); section.emit_u8(kExprEnd); if (init.table != 0) { section.emit_u8(kExternalFunction); } section.emit_u32v(init.array.length); for (let index of init.array) { section.emit_u32v(index); } } else { // Passive segment. section.emit_u8(kPassiveWithElements); // flags section.emit_u8(kWasmAnyFunc); section.emit_u32v(init.array.length); for (let index of init.array) { if (index === null) { section.emit_u8(kExprRefNull); section.emit_u8(kExprEnd); } else { section.emit_u8(kExprRefFunc); section.emit_u32v(index); section.emit_u8(kExprEnd); } } } } }); } // If there are any passive data segments, add the DataCount section. if (wasm.data_segments.some(seg => !seg.is_active)) { binary.emit_section(kDataCountSectionCode, section => { section.emit_u32v(wasm.data_segments.length); }); } // Add function bodies. if (wasm.functions.length > 0) { // emit function bodies if (debug) print("emitting code @ " + binary.length); binary.emit_section(kCodeSectionCode, section => { section.emit_u32v(wasm.functions.length); let header = new Binary; for (let func of wasm.functions) { header.reset(); // Function body length will be patched later. let local_decls = []; for (let l of func.locals || []) { if (l.i32_count > 0) { local_decls.push({count: l.i32_count, type: kWasmI32}); } if (l.i64_count > 0) { local_decls.push({count: l.i64_count, type: kWasmI64}); } if (l.f32_count > 0) { local_decls.push({count: l.f32_count, type: kWasmF32}); } if (l.f64_count > 0) { local_decls.push({count: l.f64_count, type: kWasmF64}); } if (l.s128_count > 0) { local_decls.push({count: l.s128_count, type: kWasmS128}); } if (l.anyref_count > 0) { local_decls.push({count: l.anyref_count, type: kWasmExternRef}); } if (l.anyfunc_count > 0) { local_decls.push({count: l.anyfunc_count, type: kWasmAnyFunc}); } } header.emit_u32v(local_decls.length); for (let decl of local_decls) { header.emit_u32v(decl.count); header.emit_type(decl.type); } section.emit_u32v(header.length + func.body.length); section.emit_bytes(header.trunc_buffer()); section.emit_bytes(func.body); } }); } // Add data segments. if (wasm.data_segments.length > 0) { if (debug) print("emitting data segments @ " + binary.length); binary.emit_section(kDataSectionCode, section => { section.emit_u32v(wasm.data_segments.length); for (let seg of wasm.data_segments) { if (seg.is_active) { section.emit_u8(0); // linear memory index 0 / flags if (seg.is_global) { // initializer is a global variable section.emit_u8(kExprGlobalGet); section.emit_u32v(seg.addr); } else { // initializer is a constant section.emit_u8(kExprI32Const); section.emit_u32v(seg.addr); } section.emit_u8(kExprEnd); } else { section.emit_u8(kPassive); // flags } section.emit_u32v(seg.data.length); section.emit_bytes(seg.data); } }); } // Add any explicitly added sections for (let exp of wasm.explicit) { if (debug) print("emitting explicit @ " + binary.length); binary.emit_bytes(exp); } // Add names. let num_function_names = 0; let num_functions_with_local_names = 0; for (let func of wasm.functions) { if (func.name !== undefined) ++num_function_names; if (func.numLocalNames() > 0) ++num_functions_with_local_names; } if (num_function_names > 0 || num_functions_with_local_names > 0 || wasm.name !== undefined) { if (debug) print('emitting names @ ' + binary.length); binary.emit_section(kUnknownSectionCode, section => { section.emit_string('name'); // Emit module name. if (wasm.name !== undefined) { section.emit_section(kModuleNameCode, name_section => { name_section.emit_string(wasm.name); }); } // Emit function names. if (num_function_names > 0) { section.emit_section(kFunctionNamesCode, name_section => { name_section.emit_u32v(num_function_names); for (let func of wasm.functions) { if (func.name === undefined) continue; name_section.emit_u32v(func.index); name_section.emit_string(func.name); } }); } // Emit local names. if (num_functions_with_local_names > 0) { section.emit_section(kLocalNamesCode, name_section => { name_section.emit_u32v(num_functions_with_local_names); for (let func of wasm.functions) { if (func.numLocalNames() == 0) continue; name_section.emit_u32v(func.index); name_section.emit_u32v(func.numLocalNames()); for (let i = 0; i < func.local_names.length; ++i) { if (func.local_names[i] === undefined) continue; name_section.emit_u32v(i); name_section.emit_string(func.local_names[i]); } } }); } }); } return binary.trunc_buffer(); } toArray(debug = false) { return Array.from(this.toBuffer(debug)); } instantiate(ffi) { let module = this.toModule(); let instance = new WebAssembly.Instance(module, ffi); return instance; } asyncInstantiate(ffi) { return WebAssembly.instantiate(this.toBuffer(), ffi) .then(({module, instance}) => instance); } toModule(debug = false) { return new WebAssembly.Module(this.toBuffer(debug)); } } globalThis.WasmModuleBuilder = WasmModuleBuilder; function wasmSignedLeb(val, max_len = 5) { let res = []; for (let i = 0; i < max_len; ++i) { let v = val & 0x7f; // If {v} sign-extended from 7 to 32 bits is equal to val, we are done. if (((v << 25) >> 25) == val) { res.push(v); return res; } res.push(v | 0x80); val = val >> 7; } throw new Error( 'Leb value <' + val + '> exceeds maximum length of ' + max_len); } globalThis.wasmSignedLeb = wasmSignedLeb; function wasmI32Const(val) { return [kExprI32Const, ...wasmSignedLeb(val, 5)]; } globalThis.wasmI32Const = wasmI32Const; function wasmF32Const(f) { // Write in little-endian order at offset 0. data_view.setFloat32(0, f, true); return [ kExprF32Const, byte_view[0], byte_view[1], byte_view[2], byte_view[3] ]; } globalThis.wasmI32Const = wasmI32Const; function wasmF64Const(f) { // Write in little-endian order at offset 0. data_view.setFloat64(0, f, true); return [ kExprF64Const, byte_view[0], byte_view[1], byte_view[2], byte_view[3], byte_view[4], byte_view[5], byte_view[6], byte_view[7] ]; } globalThis.wasmF64Const = wasmF64Const;