// Use a power of two to eliminate round-off when converting frames to time and // vice versa. let sampleRate = 32768; // How many panner nodes to create for the test. let nodesToCreate = 100; // Time step when each panner node starts. Make sure it starts on a frame // boundary. let timeStep = Math.floor(0.001 * sampleRate) / sampleRate; // Make sure we render long enough to get all of our nodes. let renderLengthSeconds = timeStep * (nodesToCreate + 1); // Length of an impulse signal. let pulseLengthFrames = Math.round(timeStep * sampleRate); // Globals to make debugging a little easier. let context; let impulse; let bufferSource; let panner; let position; let time; // For the record, these distance formulas were taken from the OpenAL // spec // (http://connect.creativelabs.com/openal/Documentation/OpenAL%201.1%20Specification.pdf), // not the code. The Web Audio spec follows the OpenAL formulas. function linearDistance(panner, x, y, z) { let distance = Math.sqrt(x * x + y * y + z * z); distance = Math.min(distance, panner.maxDistance); let rolloff = panner.rolloffFactor; let gain = (1 - rolloff * (distance - panner.refDistance) / (panner.maxDistance - panner.refDistance)); return gain; } function inverseDistance(panner, x, y, z) { let distance = Math.sqrt(x * x + y * y + z * z); distance = Math.min(distance, panner.maxDistance); let rolloff = panner.rolloffFactor; let gain = panner.refDistance / (panner.refDistance + rolloff * (distance - panner.refDistance)); return gain; } function exponentialDistance(panner, x, y, z) { let distance = Math.sqrt(x * x + y * y + z * z); distance = Math.min(distance, panner.maxDistance); let rolloff = panner.rolloffFactor; let gain = Math.pow(distance / panner.refDistance, -rolloff); return gain; } // Map the distance model to the function that implements the model let distanceModelFunction = { 'linear': linearDistance, 'inverse': inverseDistance, 'exponential': exponentialDistance }; function createGraph(context, distanceModel, nodeCount) { bufferSource = new Array(nodeCount); panner = new Array(nodeCount); position = new Array(nodeCount); time = new Array(nodesToCreate); impulse = createImpulseBuffer(context, pulseLengthFrames); // Create all the sources and panners. // // We MUST use the EQUALPOWER panning model so that we can easily // figure out the gain introduced by the panner. // // We want to stay in the middle of the panning range, which means // we want to stay on the z-axis. If we don't, then the effect of // panning model will be much more complicated. We're not testing // the panner, but the distance model, so we want the panner effect // to be simple. // // The panners are placed at a uniform intervals between the panner // reference distance and the panner max distance. The source is // also started at regular intervals. for (let k = 0; k < nodeCount; ++k) { bufferSource[k] = context.createBufferSource(); bufferSource[k].buffer = impulse; panner[k] = context.createPanner(); panner[k].panningModel = 'equalpower'; panner[k].distanceModel = distanceModel; let distanceStep = (panner[k].maxDistance - panner[k].refDistance) / nodeCount; position[k] = distanceStep * k + panner[k].refDistance; panner[k].setPosition(0, 0, position[k]); bufferSource[k].connect(panner[k]); panner[k].connect(context.destination); time[k] = k * timeStep; bufferSource[k].start(time[k]); } } // distanceModel should be the distance model string like // "linear", "inverse", or "exponential". function createTestAndRun(context, distanceModel, should) { // To test the distance models, we create a number of panners at // uniformly spaced intervals on the z-axis. Each of these are // started at equally spaced time intervals. After rendering the // signals, we examine where each impulse is located and the // attenuation of the impulse. The attenuation is compared // against our expected attenuation. createGraph(context, distanceModel, nodesToCreate); return context.startRendering().then( buffer => checkDistanceResult(buffer, distanceModel, should)); } // The gain caused by the EQUALPOWER panning model, if we stay on the // z axis, with the default orientations. function equalPowerGain() { return Math.SQRT1_2; } function checkDistanceResult(renderedBuffer, model, should) { renderedData = renderedBuffer.getChannelData(0); // The max allowed error between the actual gain and the expected // value. This is determined experimentally. Set to 0 to see // what the actual errors are. let maxAllowedError = 2.2720e-6; let success = true; // Number of impulses we found in the rendered result. let impulseCount = 0; // Maximum relative error in the gain of the impulses. let maxError = 0; // Array of locations of the impulses that were not at the // expected location. (Contains the actual and expected frame // of the impulse.) let impulsePositionErrors = new Array(); // Step through the rendered data to find all the non-zero points // so we can find where our distance-attenuated impulses are. // These are tested against the expected attenuations at that // distance. for (let k = 0; k < renderedData.length; ++k) { if (renderedData[k] != 0) { // Convert from string to index. let distanceFunction = distanceModelFunction[model]; let expected = distanceFunction(panner[impulseCount], 0, 0, position[impulseCount]); // Adjust for the center-panning of the EQUALPOWER panning // model that we're using. expected *= equalPowerGain(); let error = Math.abs(renderedData[k] - expected) / Math.abs(expected); maxError = Math.max(maxError, Math.abs(error)); should(renderedData[k]).beCloseTo(expected, {threshold: maxAllowedError}); // Keep track of any impulses that aren't where we expect them // to be. let expectedOffset = timeToSampleFrame(time[impulseCount], sampleRate); if (k != expectedOffset) { impulsePositionErrors.push({actual: k, expected: expectedOffset}); } ++impulseCount; } } should(impulseCount, 'Number of impulses').beEqualTo(nodesToCreate); should(maxError, 'Max error in distance gains') .beLessThanOrEqualTo(maxAllowedError); // Display any timing errors that we found. if (impulsePositionErrors.length > 0) { let actual = impulsePositionErrors.map(x => x.actual); let expected = impulsePositionErrors.map(x => x.expected); should(actual, 'Actual impulse positions found').beEqualToArray(expected); } }