/* * Copyright (c) 2014 The WebM project authors. All Rights Reserved. * Copyright (c) 2023, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include #include #include "config/aom_config.h" #include "aom/aom_integer.h" #include "aom_dsp/aom_dsp_common.h" #include "aom_dsp/aom_filter.h" #include "aom_dsp/arm/mem_neon.h" #include "aom_dsp/arm/transpose_neon.h" #include "aom_ports/mem.h" DECLARE_ALIGNED(16, static const uint8_t, kDotProdPermuteTbl[48]) = { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6, 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10, 8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14 }; DECLARE_ALIGNED(16, static const uint8_t, kDotProdMergeBlockTbl[48]) = { // Shift left and insert new last column in transposed 4x4 block. 1, 2, 3, 16, 5, 6, 7, 20, 9, 10, 11, 24, 13, 14, 15, 28, // Shift left and insert two new columns in transposed 4x4 block. 2, 3, 16, 17, 6, 7, 20, 21, 10, 11, 24, 25, 14, 15, 28, 29, // Shift left and insert three new columns in transposed 4x4 block. 3, 16, 17, 18, 7, 20, 21, 22, 11, 24, 25, 26, 15, 28, 29, 30 }; static INLINE int16x4_t convolve8_4_h(const uint8x16_t samples, const int8x8_t filters, const uint8x16x2_t permute_tbl) { // Permute samples ready for dot product. // { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 } // { 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10 } uint8x16_t permuted_samples[2] = { vqtbl1q_u8(samples, permute_tbl.val[0]), vqtbl1q_u8(samples, permute_tbl.val[1]) }; int32x4_t sum = vusdotq_lane_s32(vdupq_n_s32(0), permuted_samples[0], filters, 0); sum = vusdotq_lane_s32(sum, permuted_samples[1], filters, 1); // Further narrowing and packing is performed by the caller. return vqmovn_s32(sum); } static INLINE uint8x8_t convolve8_8_h(const uint8x16_t samples, const int8x8_t filters, const uint8x16x3_t permute_tbl) { // Permute samples ready for dot product. // { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 } // { 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10 } // { 8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14 } uint8x16_t permuted_samples[3] = { vqtbl1q_u8(samples, permute_tbl.val[0]), vqtbl1q_u8(samples, permute_tbl.val[1]), vqtbl1q_u8(samples, permute_tbl.val[2]) }; // First 4 output values. int32x4_t sum0 = vusdotq_lane_s32(vdupq_n_s32(0), permuted_samples[0], filters, 0); sum0 = vusdotq_lane_s32(sum0, permuted_samples[1], filters, 1); // Second 4 output values. int32x4_t sum1 = vusdotq_lane_s32(vdupq_n_s32(0), permuted_samples[1], filters, 0); sum1 = vusdotq_lane_s32(sum1, permuted_samples[2], filters, 1); // Narrow and re-pack. int16x8_t sum = vcombine_s16(vqmovn_s32(sum0), vqmovn_s32(sum1)); return vqrshrun_n_s16(sum, FILTER_BITS); } void aom_convolve8_horiz_neon_i8mm(const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst, ptrdiff_t dst_stride, const int16_t *filter_x, int x_step_q4, const int16_t *filter_y, int y_step_q4, int w, int h) { const int8x8_t filter = vmovn_s16(vld1q_s16(filter_x)); assert((intptr_t)dst % 4 == 0); assert(dst_stride % 4 == 0); (void)x_step_q4; (void)filter_y; (void)y_step_q4; src -= ((SUBPEL_TAPS / 2) - 1); if (w == 4) { const uint8x16x2_t perm_tbl = vld1q_u8_x2(kDotProdPermuteTbl); do { uint8x16_t s0, s1, s2, s3; load_u8_16x4(src, src_stride, &s0, &s1, &s2, &s3); int16x4_t d0 = convolve8_4_h(s0, filter, perm_tbl); int16x4_t d1 = convolve8_4_h(s1, filter, perm_tbl); int16x4_t d2 = convolve8_4_h(s2, filter, perm_tbl); int16x4_t d3 = convolve8_4_h(s3, filter, perm_tbl); uint8x8_t d01 = vqrshrun_n_s16(vcombine_s16(d0, d1), FILTER_BITS); uint8x8_t d23 = vqrshrun_n_s16(vcombine_s16(d2, d3), FILTER_BITS); store_u8x4_strided_x2(dst + 0 * dst_stride, dst_stride, d01); store_u8x4_strided_x2(dst + 2 * dst_stride, dst_stride, d23); src += 4 * src_stride; dst += 4 * dst_stride; h -= 4; } while (h > 0); } else { const uint8x16x3_t perm_tbl = vld1q_u8_x3(kDotProdPermuteTbl); do { int width = w; const uint8_t *s = src; uint8_t *d = dst; do { uint8x16_t s0, s1, s2, s3; load_u8_16x4(s, src_stride, &s0, &s1, &s2, &s3); uint8x8_t d0 = convolve8_8_h(s0, filter, perm_tbl); uint8x8_t d1 = convolve8_8_h(s1, filter, perm_tbl); uint8x8_t d2 = convolve8_8_h(s2, filter, perm_tbl); uint8x8_t d3 = convolve8_8_h(s3, filter, perm_tbl); store_u8_8x4(d, dst_stride, d0, d1, d2, d3); s += 8; d += 8; width -= 8; } while (width != 0); src += 4 * src_stride; dst += 4 * dst_stride; h -= 4; } while (h > 0); } } static INLINE void transpose_concat_4x4(uint8x8_t a0, uint8x8_t a1, uint8x8_t a2, uint8x8_t a3, uint8x16_t *b) { // Transpose 8-bit elements and concatenate result rows as follows: // a0: 00, 01, 02, 03, XX, XX, XX, XX // a1: 10, 11, 12, 13, XX, XX, XX, XX // a2: 20, 21, 22, 23, XX, XX, XX, XX // a3: 30, 31, 32, 33, XX, XX, XX, XX // // b: 00, 10, 20, 30, 01, 11, 21, 31, 02, 12, 22, 32, 03, 13, 23, 33 uint8x16_t a0q = vcombine_u8(a0, vdup_n_u8(0)); uint8x16_t a1q = vcombine_u8(a1, vdup_n_u8(0)); uint8x16_t a2q = vcombine_u8(a2, vdup_n_u8(0)); uint8x16_t a3q = vcombine_u8(a3, vdup_n_u8(0)); uint8x16_t a01 = vzipq_u8(a0q, a1q).val[0]; uint8x16_t a23 = vzipq_u8(a2q, a3q).val[0]; uint16x8_t a0123 = vzipq_u16(vreinterpretq_u16_u8(a01), vreinterpretq_u16_u8(a23)).val[0]; *b = vreinterpretq_u8_u16(a0123); } static INLINE void transpose_concat_8x4(uint8x8_t a0, uint8x8_t a1, uint8x8_t a2, uint8x8_t a3, uint8x16_t *b0, uint8x16_t *b1) { // Transpose 8-bit elements and concatenate result rows as follows: // a0: 00, 01, 02, 03, 04, 05, 06, 07 // a1: 10, 11, 12, 13, 14, 15, 16, 17 // a2: 20, 21, 22, 23, 24, 25, 26, 27 // a3: 30, 31, 32, 33, 34, 35, 36, 37 // // b0: 00, 10, 20, 30, 01, 11, 21, 31, 02, 12, 22, 32, 03, 13, 23, 33 // b1: 04, 14, 24, 34, 05, 15, 25, 35, 06, 16, 26, 36, 07, 17, 27, 37 uint8x16_t a0q = vcombine_u8(a0, vdup_n_u8(0)); uint8x16_t a1q = vcombine_u8(a1, vdup_n_u8(0)); uint8x16_t a2q = vcombine_u8(a2, vdup_n_u8(0)); uint8x16_t a3q = vcombine_u8(a3, vdup_n_u8(0)); uint8x16_t a01 = vzipq_u8(a0q, a1q).val[0]; uint8x16_t a23 = vzipq_u8(a2q, a3q).val[0]; uint16x8x2_t a0123 = vzipq_u16(vreinterpretq_u16_u8(a01), vreinterpretq_u16_u8(a23)); *b0 = vreinterpretq_u8_u16(a0123.val[0]); *b1 = vreinterpretq_u8_u16(a0123.val[1]); } static INLINE int16x4_t convolve8_4_v(const uint8x16_t samples_lo, const uint8x16_t samples_hi, const int8x8_t filters) { // Sample permutation is performed by the caller. int32x4_t sum = vusdotq_lane_s32(vdupq_n_s32(0), samples_lo, filters, 0); sum = vusdotq_lane_s32(sum, samples_hi, filters, 1); // Further narrowing and packing is performed by the caller. return vqmovn_s32(sum); } static INLINE uint8x8_t convolve8_8_v(const uint8x16_t samples0_lo, const uint8x16_t samples0_hi, const uint8x16_t samples1_lo, const uint8x16_t samples1_hi, const int8x8_t filters) { // Sample permutation is performed by the caller. // First 4 output values. int32x4_t sum0 = vusdotq_lane_s32(vdupq_n_s32(0), samples0_lo, filters, 0); sum0 = vusdotq_lane_s32(sum0, samples0_hi, filters, 1); // Second 4 output values. int32x4_t sum1 = vusdotq_lane_s32(vdupq_n_s32(0), samples1_lo, filters, 0); sum1 = vusdotq_lane_s32(sum1, samples1_hi, filters, 1); // Narrow and re-pack. int16x8_t sum = vcombine_s16(vqmovn_s32(sum0), vqmovn_s32(sum1)); return vqrshrun_n_s16(sum, FILTER_BITS); } void aom_convolve8_vert_neon_i8mm(const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst, ptrdiff_t dst_stride, const int16_t *filter_x, int x_step_q4, const int16_t *filter_y, int y_step_q4, int w, int h) { const int8x8_t filter = vmovn_s16(vld1q_s16(filter_y)); const uint8x16x3_t merge_block_tbl = vld1q_u8_x3(kDotProdMergeBlockTbl); uint8x16x2_t samples_LUT; assert((intptr_t)dst % 4 == 0); assert(dst_stride % 4 == 0); (void)filter_x; (void)x_step_q4; (void)y_step_q4; src -= ((SUBPEL_TAPS / 2) - 1) * src_stride; if (w == 4) { uint8x8_t s0, s1, s2, s3, s4, s5, s6; load_u8_8x7(src, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6); src += 7 * src_stride; // This operation combines a conventional transpose and the sample permute // (see horizontal case) required before computing the dot product. uint8x16_t s0123, s1234, s2345, s3456; transpose_concat_4x4(s0, s1, s2, s3, &s0123); transpose_concat_4x4(s1, s2, s3, s4, &s1234); transpose_concat_4x4(s2, s3, s4, s5, &s2345); transpose_concat_4x4(s3, s4, s5, s6, &s3456); do { uint8x8_t s7, s8, s9, s10; load_u8_8x4(src, src_stride, &s7, &s8, &s9, &s10); uint8x16_t s4567, s5678, s6789, s78910; transpose_concat_4x4(s7, s8, s9, s10, &s78910); // Merge new data into block from previous iteration. samples_LUT.val[0] = s3456; samples_LUT.val[1] = s78910; s4567 = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[0]); s5678 = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[1]); s6789 = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[2]); int16x4_t d0 = convolve8_4_v(s0123, s4567, filter); int16x4_t d1 = convolve8_4_v(s1234, s5678, filter); int16x4_t d2 = convolve8_4_v(s2345, s6789, filter); int16x4_t d3 = convolve8_4_v(s3456, s78910, filter); uint8x8_t d01 = vqrshrun_n_s16(vcombine_s16(d0, d1), FILTER_BITS); uint8x8_t d23 = vqrshrun_n_s16(vcombine_s16(d2, d3), FILTER_BITS); store_u8x4_strided_x2(dst + 0 * dst_stride, dst_stride, d01); store_u8x4_strided_x2(dst + 2 * dst_stride, dst_stride, d23); // Prepare block for next iteration - re-using as much as possible. // Shuffle everything up four rows. s0123 = s4567; s1234 = s5678; s2345 = s6789; s3456 = s78910; src += 4 * src_stride; dst += 4 * dst_stride; h -= 4; } while (h != 0); } else { do { int height = h; const uint8_t *s = src; uint8_t *d = dst; uint8x8_t s0, s1, s2, s3, s4, s5, s6; load_u8_8x7(s, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6); s += 7 * src_stride; // This operation combines a conventional transpose and the sample permute // (see horizontal case) required before computing the dot product. uint8x16_t s0123_lo, s0123_hi, s1234_lo, s1234_hi, s2345_lo, s2345_hi, s3456_lo, s3456_hi; transpose_concat_8x4(s0, s1, s2, s3, &s0123_lo, &s0123_hi); transpose_concat_8x4(s1, s2, s3, s4, &s1234_lo, &s1234_hi); transpose_concat_8x4(s2, s3, s4, s5, &s2345_lo, &s2345_hi); transpose_concat_8x4(s3, s4, s5, s6, &s3456_lo, &s3456_hi); do { uint8x8_t s7, s8, s9, s10; load_u8_8x4(s, src_stride, &s7, &s8, &s9, &s10); uint8x16_t s4567_lo, s4567_hi, s5678_lo, s5678_hi, s6789_lo, s6789_hi, s78910_lo, s78910_hi; transpose_concat_8x4(s7, s8, s9, s10, &s78910_lo, &s78910_hi); // Merge new data into block from previous iteration. samples_LUT.val[0] = s3456_lo; samples_LUT.val[1] = s78910_lo; s4567_lo = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[0]); s5678_lo = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[1]); s6789_lo = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[2]); samples_LUT.val[0] = s3456_hi; samples_LUT.val[1] = s78910_hi; s4567_hi = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[0]); s5678_hi = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[1]); s6789_hi = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[2]); uint8x8_t d0 = convolve8_8_v(s0123_lo, s4567_lo, s0123_hi, s4567_hi, filter); uint8x8_t d1 = convolve8_8_v(s1234_lo, s5678_lo, s1234_hi, s5678_hi, filter); uint8x8_t d2 = convolve8_8_v(s2345_lo, s6789_lo, s2345_hi, s6789_hi, filter); uint8x8_t d3 = convolve8_8_v(s3456_lo, s78910_lo, s3456_hi, s78910_hi, filter); store_u8_8x4(d, dst_stride, d0, d1, d2, d3); // Prepare block for next iteration - re-using as much as possible. // Shuffle everything up four rows. s0123_lo = s4567_lo; s0123_hi = s4567_hi; s1234_lo = s5678_lo; s1234_hi = s5678_hi; s2345_lo = s6789_lo; s2345_hi = s6789_hi; s3456_lo = s78910_lo; s3456_hi = s78910_hi; s += 4 * src_stride; d += 4 * dst_stride; height -= 4; } while (height != 0); src += 8; dst += 8; w -= 8; } while (w != 0); } }