/* * Copyright (c) 2024, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include #include #include "config/aom_config.h" #include "config/aom_dsp_rtcd.h" #include "aom_dsp/arm/aom_neon_sve_bridge.h" #include "aom_dsp/arm/aom_filter.h" #include "aom_dsp/arm/mem_neon.h" static INLINE uint16x4_t highbd_convolve8_4_h(int16x8_t s[4], int16x8_t filter, uint16x4_t max) { int64x2_t sum[4]; sum[0] = aom_sdotq_s16(vdupq_n_s64(0), s[0], filter); sum[1] = aom_sdotq_s16(vdupq_n_s64(0), s[1], filter); sum[2] = aom_sdotq_s16(vdupq_n_s64(0), s[2], filter); sum[3] = aom_sdotq_s16(vdupq_n_s64(0), s[3], filter); int64x2_t sum01 = vpaddq_s64(sum[0], sum[1]); int64x2_t sum23 = vpaddq_s64(sum[2], sum[3]); int32x4_t sum0123 = vcombine_s32(vmovn_s64(sum01), vmovn_s64(sum23)); uint16x4_t res = vqrshrun_n_s32(sum0123, FILTER_BITS); return vmin_u16(res, max); } static INLINE uint16x8_t highbd_convolve8_8_h(int16x8_t s[8], int16x8_t filter, uint16x8_t max) { int64x2_t sum[8]; sum[0] = aom_sdotq_s16(vdupq_n_s64(0), s[0], filter); sum[1] = aom_sdotq_s16(vdupq_n_s64(0), s[1], filter); sum[2] = aom_sdotq_s16(vdupq_n_s64(0), s[2], filter); sum[3] = aom_sdotq_s16(vdupq_n_s64(0), s[3], filter); sum[4] = aom_sdotq_s16(vdupq_n_s64(0), s[4], filter); sum[5] = aom_sdotq_s16(vdupq_n_s64(0), s[5], filter); sum[6] = aom_sdotq_s16(vdupq_n_s64(0), s[6], filter); sum[7] = aom_sdotq_s16(vdupq_n_s64(0), s[7], filter); int64x2_t sum01 = vpaddq_s64(sum[0], sum[1]); int64x2_t sum23 = vpaddq_s64(sum[2], sum[3]); int64x2_t sum45 = vpaddq_s64(sum[4], sum[5]); int64x2_t sum67 = vpaddq_s64(sum[6], sum[7]); int32x4_t sum0123 = vcombine_s32(vmovn_s64(sum01), vmovn_s64(sum23)); int32x4_t sum4567 = vcombine_s32(vmovn_s64(sum45), vmovn_s64(sum67)); uint16x8_t res = vcombine_u16(vqrshrun_n_s32(sum0123, FILTER_BITS), vqrshrun_n_s32(sum4567, FILTER_BITS)); return vminq_u16(res, max); } static INLINE void highbd_convolve8_horiz_8tap_sve( const uint16_t *src, ptrdiff_t src_stride, uint16_t *dst, ptrdiff_t dst_stride, const int16_t *filter_x, int width, int height, int bd) { const int16x8_t filter = vld1q_s16(filter_x); if (width == 4) { const uint16x4_t max = vdup_n_u16((1 << bd) - 1); const int16_t *s = (const int16_t *)src; uint16_t *d = dst; do { int16x8_t s0[4], s1[4], s2[4], s3[4]; load_s16_8x4(s + 0 * src_stride, 1, &s0[0], &s0[1], &s0[2], &s0[3]); load_s16_8x4(s + 1 * src_stride, 1, &s1[0], &s1[1], &s1[2], &s1[3]); load_s16_8x4(s + 2 * src_stride, 1, &s2[0], &s2[1], &s2[2], &s2[3]); load_s16_8x4(s + 3 * src_stride, 1, &s3[0], &s3[1], &s3[2], &s3[3]); uint16x4_t d0 = highbd_convolve8_4_h(s0, filter, max); uint16x4_t d1 = highbd_convolve8_4_h(s1, filter, max); uint16x4_t d2 = highbd_convolve8_4_h(s2, filter, max); uint16x4_t d3 = highbd_convolve8_4_h(s3, filter, max); store_u16_4x4(d, dst_stride, d0, d1, d2, d3); s += 4 * src_stride; d += 4 * dst_stride; height -= 4; } while (height > 0); } else { do { const uint16x8_t max = vdupq_n_u16((1 << bd) - 1); const int16_t *s = (const int16_t *)src; uint16_t *d = dst; int w = width; do { int16x8_t s0[8], s1[8], s2[8], s3[8]; load_s16_8x8(s + 0 * src_stride, 1, &s0[0], &s0[1], &s0[2], &s0[3], &s0[4], &s0[5], &s0[6], &s0[7]); load_s16_8x8(s + 1 * src_stride, 1, &s1[0], &s1[1], &s1[2], &s1[3], &s1[4], &s1[5], &s1[6], &s1[7]); load_s16_8x8(s + 2 * src_stride, 1, &s2[0], &s2[1], &s2[2], &s2[3], &s2[4], &s2[5], &s2[6], &s2[7]); load_s16_8x8(s + 3 * src_stride, 1, &s3[0], &s3[1], &s3[2], &s3[3], &s3[4], &s3[5], &s3[6], &s3[7]); uint16x8_t d0 = highbd_convolve8_8_h(s0, filter, max); uint16x8_t d1 = highbd_convolve8_8_h(s1, filter, max); uint16x8_t d2 = highbd_convolve8_8_h(s2, filter, max); uint16x8_t d3 = highbd_convolve8_8_h(s3, filter, max); store_u16_8x4(d, dst_stride, d0, d1, d2, d3); s += 8; d += 8; w -= 8; } while (w != 0); src += 4 * src_stride; dst += 4 * dst_stride; height -= 4; } while (height > 0); } } // clang-format off DECLARE_ALIGNED(16, static const uint16_t, kDotProdTbl[16]) = { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6, }; DECLARE_ALIGNED(16, static const uint16_t, kDeinterleaveTbl[8]) = { 0, 2, 4, 6, 1, 3, 5, 7, }; // clang-format on static INLINE uint16x4_t highbd_convolve4_4_h(int16x8_t s, int16x8_t filter, uint16x8x2_t permute_tbl, uint16x4_t max) { int16x8_t permuted_samples0 = aom_tbl_s16(s, permute_tbl.val[0]); int16x8_t permuted_samples1 = aom_tbl_s16(s, permute_tbl.val[1]); int64x2_t sum0 = aom_svdot_lane_s16(vdupq_n_s64(0), permuted_samples0, filter, 0); int64x2_t sum1 = aom_svdot_lane_s16(vdupq_n_s64(0), permuted_samples1, filter, 0); int32x4_t res_s32 = vcombine_s32(vmovn_s64(sum0), vmovn_s64(sum1)); uint16x4_t res = vqrshrun_n_s32(res_s32, FILTER_BITS); return vmin_u16(res, max); } static INLINE uint16x8_t highbd_convolve4_8_h(int16x8_t s[4], int16x8_t filter, uint16x8_t idx, uint16x8_t max) { int64x2_t sum04 = aom_svdot_lane_s16(vdupq_n_s64(0), s[0], filter, 0); int64x2_t sum15 = aom_svdot_lane_s16(vdupq_n_s64(0), s[1], filter, 0); int64x2_t sum26 = aom_svdot_lane_s16(vdupq_n_s64(0), s[2], filter, 0); int64x2_t sum37 = aom_svdot_lane_s16(vdupq_n_s64(0), s[3], filter, 0); int32x4_t res0 = vcombine_s32(vmovn_s64(sum04), vmovn_s64(sum15)); int32x4_t res1 = vcombine_s32(vmovn_s64(sum26), vmovn_s64(sum37)); uint16x8_t res = vcombine_u16(vqrshrun_n_s32(res0, FILTER_BITS), vqrshrun_n_s32(res1, FILTER_BITS)); res = aom_tbl_u16(res, idx); return vminq_u16(res, max); } static INLINE void highbd_convolve8_horiz_4tap_sve( const uint16_t *src, ptrdiff_t src_stride, uint16_t *dst, ptrdiff_t dst_stride, const int16_t *filter_x, int width, int height, int bd) { const int16x8_t filter = vcombine_s16(vld1_s16(filter_x + 2), vdup_n_s16(0)); if (width == 4) { const uint16x4_t max = vdup_n_u16((1 << bd) - 1); uint16x8x2_t permute_tbl = vld1q_u16_x2(kDotProdTbl); const int16_t *s = (const int16_t *)src; uint16_t *d = dst; do { int16x8_t s0, s1, s2, s3; load_s16_8x4(s, src_stride, &s0, &s1, &s2, &s3); uint16x4_t d0 = highbd_convolve4_4_h(s0, filter, permute_tbl, max); uint16x4_t d1 = highbd_convolve4_4_h(s1, filter, permute_tbl, max); uint16x4_t d2 = highbd_convolve4_4_h(s2, filter, permute_tbl, max); uint16x4_t d3 = highbd_convolve4_4_h(s3, filter, permute_tbl, max); store_u16_4x4(d, dst_stride, d0, d1, d2, d3); s += 4 * src_stride; d += 4 * dst_stride; height -= 4; } while (height > 0); } else { const uint16x8_t max = vdupq_n_u16((1 << bd) - 1); uint16x8_t idx = vld1q_u16(kDeinterleaveTbl); do { const int16_t *s = (const int16_t *)src; uint16_t *d = dst; int w = width; do { int16x8_t s0[4], s1[4], s2[4], s3[4]; load_s16_8x4(s + 0 * src_stride, 1, &s0[0], &s0[1], &s0[2], &s0[3]); load_s16_8x4(s + 1 * src_stride, 1, &s1[0], &s1[1], &s1[2], &s1[3]); load_s16_8x4(s + 2 * src_stride, 1, &s2[0], &s2[1], &s2[2], &s2[3]); load_s16_8x4(s + 3 * src_stride, 1, &s3[0], &s3[1], &s3[2], &s3[3]); uint16x8_t d0 = highbd_convolve4_8_h(s0, filter, idx, max); uint16x8_t d1 = highbd_convolve4_8_h(s1, filter, idx, max); uint16x8_t d2 = highbd_convolve4_8_h(s2, filter, idx, max); uint16x8_t d3 = highbd_convolve4_8_h(s3, filter, idx, max); store_u16_8x4(d, dst_stride, d0, d1, d2, d3); s += 8; d += 8; w -= 8; } while (w != 0); src += 4 * src_stride; dst += 4 * dst_stride; height -= 4; } while (height > 0); } } void aom_highbd_convolve8_horiz_sve(const uint8_t *src8, ptrdiff_t src_stride, uint8_t *dst8, ptrdiff_t dst_stride, const int16_t *filter_x, int x_step_q4, const int16_t *filter_y, int y_step_q4, int width, int height, int bd) { assert(x_step_q4 == 16); assert(width >= 4 && height >= 4); (void)filter_y; (void)x_step_q4; (void)y_step_q4; const uint16_t *src = CONVERT_TO_SHORTPTR(src8); uint16_t *dst = CONVERT_TO_SHORTPTR(dst8); src -= SUBPEL_TAPS / 2 - 1; if (get_filter_taps_convolve8(filter_x) <= 4) { highbd_convolve8_horiz_4tap_sve(src + 2, src_stride, dst, dst_stride, filter_x, width, height, bd); } else { highbd_convolve8_horiz_8tap_sve(src, src_stride, dst, dst_stride, filter_x, width, height, bd); } } DECLARE_ALIGNED(16, static const uint8_t, kDotProdMergeBlockTbl[48]) = { // Shift left and insert new last column in transposed 4x4 block. 2, 3, 4, 5, 6, 7, 16, 17, 10, 11, 12, 13, 14, 15, 24, 25, // Shift left and insert two new columns in transposed 4x4 block. 4, 5, 6, 7, 16, 17, 18, 19, 12, 13, 14, 15, 24, 25, 26, 27, // Shift left and insert three new columns in transposed 4x4 block. 6, 7, 16, 17, 18, 19, 20, 21, 14, 15, 24, 25, 26, 27, 28, 29 }; static INLINE void transpose_concat_4x4(int16x4_t s0, int16x4_t s1, int16x4_t s2, int16x4_t s3, int16x8_t res[2]) { // Transpose 16-bit elements and concatenate result rows as follows: // s0: 00, 01, 02, 03 // s1: 10, 11, 12, 13 // s2: 20, 21, 22, 23 // s3: 30, 31, 32, 33 // // res[0]: 00 10 20 30 01 11 21 31 // res[1]: 02 12 22 32 03 13 23 33 int16x8_t s0q = vcombine_s16(s0, vdup_n_s16(0)); int16x8_t s1q = vcombine_s16(s1, vdup_n_s16(0)); int16x8_t s2q = vcombine_s16(s2, vdup_n_s16(0)); int16x8_t s3q = vcombine_s16(s3, vdup_n_s16(0)); int32x4_t s01 = vreinterpretq_s32_s16(vzip1q_s16(s0q, s1q)); int32x4_t s23 = vreinterpretq_s32_s16(vzip1q_s16(s2q, s3q)); int32x4x2_t s0123 = vzipq_s32(s01, s23); res[0] = vreinterpretq_s16_s32(s0123.val[0]); res[1] = vreinterpretq_s16_s32(s0123.val[1]); } static INLINE void transpose_concat_8x4(int16x8_t s0, int16x8_t s1, int16x8_t s2, int16x8_t s3, int16x8_t res[4]) { // Transpose 16-bit elements and concatenate result rows as follows: // s0: 00, 01, 02, 03, 04, 05, 06, 07 // s1: 10, 11, 12, 13, 14, 15, 16, 17 // s2: 20, 21, 22, 23, 24, 25, 26, 27 // s3: 30, 31, 32, 33, 34, 35, 36, 37 // // res_lo[0]: 00 10 20 30 01 11 21 31 // res_lo[1]: 02 12 22 32 03 13 23 33 // res_hi[0]: 04 14 24 34 05 15 25 35 // res_hi[1]: 06 16 26 36 07 17 27 37 int16x8x2_t tr01_16 = vzipq_s16(s0, s1); int16x8x2_t tr23_16 = vzipq_s16(s2, s3); int32x4x2_t tr01_32 = vzipq_s32(vreinterpretq_s32_s16(tr01_16.val[0]), vreinterpretq_s32_s16(tr23_16.val[0])); int32x4x2_t tr23_32 = vzipq_s32(vreinterpretq_s32_s16(tr01_16.val[1]), vreinterpretq_s32_s16(tr23_16.val[1])); res[0] = vreinterpretq_s16_s32(tr01_32.val[0]); res[1] = vreinterpretq_s16_s32(tr01_32.val[1]); res[2] = vreinterpretq_s16_s32(tr23_32.val[0]); res[3] = vreinterpretq_s16_s32(tr23_32.val[1]); } static INLINE void aom_tbl2x4_s16(int16x8_t t0[4], int16x8_t t1[4], uint8x16_t tbl, int16x8_t res[4]) { int8x16x2_t samples0 = { vreinterpretq_s8_s16(t0[0]), vreinterpretq_s8_s16(t1[0]) }; int8x16x2_t samples1 = { vreinterpretq_s8_s16(t0[1]), vreinterpretq_s8_s16(t1[1]) }; int8x16x2_t samples2 = { vreinterpretq_s8_s16(t0[2]), vreinterpretq_s8_s16(t1[2]) }; int8x16x2_t samples3 = { vreinterpretq_s8_s16(t0[3]), vreinterpretq_s8_s16(t1[3]) }; res[0] = vreinterpretq_s16_s8(vqtbl2q_s8(samples0, tbl)); res[1] = vreinterpretq_s16_s8(vqtbl2q_s8(samples1, tbl)); res[2] = vreinterpretq_s16_s8(vqtbl2q_s8(samples2, tbl)); res[3] = vreinterpretq_s16_s8(vqtbl2q_s8(samples3, tbl)); } static INLINE void aom_tbl2x2_s16(int16x8_t t0[2], int16x8_t t1[2], uint8x16_t tbl, int16x8_t res[2]) { int8x16x2_t samples0 = { vreinterpretq_s8_s16(t0[0]), vreinterpretq_s8_s16(t1[0]) }; int8x16x2_t samples1 = { vreinterpretq_s8_s16(t0[1]), vreinterpretq_s8_s16(t1[1]) }; res[0] = vreinterpretq_s16_s8(vqtbl2q_s8(samples0, tbl)); res[1] = vreinterpretq_s16_s8(vqtbl2q_s8(samples1, tbl)); } static INLINE uint16x4_t highbd_convolve8_4_v(int16x8_t samples_lo[2], int16x8_t samples_hi[2], int16x8_t filter, uint16x4_t max) { int64x2_t sum[2]; sum[0] = aom_svdot_lane_s16(vdupq_n_s64(0), samples_lo[0], filter, 0); sum[0] = aom_svdot_lane_s16(sum[0], samples_hi[0], filter, 1); sum[1] = aom_svdot_lane_s16(vdupq_n_s64(0), samples_lo[1], filter, 0); sum[1] = aom_svdot_lane_s16(sum[1], samples_hi[1], filter, 1); int32x4_t res_s32 = vcombine_s32(vmovn_s64(sum[0]), vmovn_s64(sum[1])); uint16x4_t res = vqrshrun_n_s32(res_s32, FILTER_BITS); return vmin_u16(res, max); } static INLINE uint16x8_t highbd_convolve8_8_v(int16x8_t samples_lo[4], int16x8_t samples_hi[4], int16x8_t filter, uint16x8_t max) { int64x2_t sum[4]; sum[0] = aom_svdot_lane_s16(vdupq_n_s64(0), samples_lo[0], filter, 0); sum[0] = aom_svdot_lane_s16(sum[0], samples_hi[0], filter, 1); sum[1] = aom_svdot_lane_s16(vdupq_n_s64(0), samples_lo[1], filter, 0); sum[1] = aom_svdot_lane_s16(sum[1], samples_hi[1], filter, 1); sum[2] = aom_svdot_lane_s16(vdupq_n_s64(0), samples_lo[2], filter, 0); sum[2] = aom_svdot_lane_s16(sum[2], samples_hi[2], filter, 1); sum[3] = aom_svdot_lane_s16(vdupq_n_s64(0), samples_lo[3], filter, 0); sum[3] = aom_svdot_lane_s16(sum[3], samples_hi[3], filter, 1); int32x4_t res0 = vcombine_s32(vmovn_s64(sum[0]), vmovn_s64(sum[1])); int32x4_t res1 = vcombine_s32(vmovn_s64(sum[2]), vmovn_s64(sum[3])); uint16x8_t res = vcombine_u16(vqrshrun_n_s32(res0, FILTER_BITS), vqrshrun_n_s32(res1, FILTER_BITS)); return vminq_u16(res, max); } static INLINE void highbd_convolve8_vert_8tap_sve( const uint16_t *src, ptrdiff_t src_stride, uint16_t *dst, ptrdiff_t dst_stride, const int16_t *filter_y, int width, int height, int bd) { const int16x8_t y_filter = vld1q_s16(filter_y); uint8x16_t merge_block_tbl[3]; merge_block_tbl[0] = vld1q_u8(kDotProdMergeBlockTbl); merge_block_tbl[1] = vld1q_u8(kDotProdMergeBlockTbl + 16); merge_block_tbl[2] = vld1q_u8(kDotProdMergeBlockTbl + 32); if (width == 4) { const uint16x4_t max = vdup_n_u16((1 << bd) - 1); int16_t *s = (int16_t *)src; int16x4_t s0, s1, s2, s3, s4, s5, s6; load_s16_4x7(s, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6); s += 7 * src_stride; // This operation combines a conventional transpose and the sample permute // required before computing the dot product. int16x8_t s0123[2], s1234[2], s2345[2], s3456[2]; transpose_concat_4x4(s0, s1, s2, s3, s0123); transpose_concat_4x4(s1, s2, s3, s4, s1234); transpose_concat_4x4(s2, s3, s4, s5, s2345); transpose_concat_4x4(s3, s4, s5, s6, s3456); do { int16x4_t s7, s8, s9, s10; load_s16_4x4(s, src_stride, &s7, &s8, &s9, &s10); int16x8_t s4567[2], s5678[2], s6789[2], s78910[2]; // Transpose and shuffle the 4 lines that were loaded. transpose_concat_4x4(s7, s8, s9, s10, s78910); // Merge new data into block from previous iteration. aom_tbl2x2_s16(s3456, s78910, merge_block_tbl[0], s4567); aom_tbl2x2_s16(s3456, s78910, merge_block_tbl[1], s5678); aom_tbl2x2_s16(s3456, s78910, merge_block_tbl[2], s6789); uint16x4_t d0 = highbd_convolve8_4_v(s0123, s4567, y_filter, max); uint16x4_t d1 = highbd_convolve8_4_v(s1234, s5678, y_filter, max); uint16x4_t d2 = highbd_convolve8_4_v(s2345, s6789, y_filter, max); uint16x4_t d3 = highbd_convolve8_4_v(s3456, s78910, y_filter, max); store_u16_4x4(dst, dst_stride, d0, d1, d2, d3); // Prepare block for next iteration - re-using as much as possible. // Shuffle everything up four rows. s0123[0] = s4567[0]; s0123[1] = s4567[1]; s1234[0] = s5678[0]; s1234[1] = s5678[1]; s2345[0] = s6789[0]; s2345[1] = s6789[1]; s3456[0] = s78910[0]; s3456[1] = s78910[1]; s += 4 * src_stride; dst += 4 * dst_stride; height -= 4; } while (height != 0); } else { const uint16x8_t max = vdupq_n_u16((1 << bd) - 1); do { int h = height; int16_t *s = (int16_t *)src; uint16_t *d = dst; int16x8_t s0, s1, s2, s3, s4, s5, s6; load_s16_8x7(s, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6); s += 7 * src_stride; // This operation combines a conventional transpose and the sample permute // required before computing the dot product. int16x8_t s0123[4], s1234[4], s2345[4], s3456[4]; transpose_concat_8x4(s0, s1, s2, s3, s0123); transpose_concat_8x4(s1, s2, s3, s4, s1234); transpose_concat_8x4(s2, s3, s4, s5, s2345); transpose_concat_8x4(s3, s4, s5, s6, s3456); do { int16x8_t s7, s8, s9, s10; load_s16_8x4(s, src_stride, &s7, &s8, &s9, &s10); int16x8_t s4567[4], s5678[4], s6789[4], s78910[4]; // Transpose and shuffle the 4 lines that were loaded. transpose_concat_8x4(s7, s8, s9, s10, s78910); // Merge new data into block from previous iteration. aom_tbl2x4_s16(s3456, s78910, merge_block_tbl[0], s4567); aom_tbl2x4_s16(s3456, s78910, merge_block_tbl[1], s5678); aom_tbl2x4_s16(s3456, s78910, merge_block_tbl[2], s6789); uint16x8_t d0 = highbd_convolve8_8_v(s0123, s4567, y_filter, max); uint16x8_t d1 = highbd_convolve8_8_v(s1234, s5678, y_filter, max); uint16x8_t d2 = highbd_convolve8_8_v(s2345, s6789, y_filter, max); uint16x8_t d3 = highbd_convolve8_8_v(s3456, s78910, y_filter, max); store_u16_8x4(d, dst_stride, d0, d1, d2, d3); // Prepare block for next iteration - re-using as much as possible. // Shuffle everything up four rows. s0123[0] = s4567[0]; s0123[1] = s4567[1]; s0123[2] = s4567[2]; s0123[3] = s4567[3]; s1234[0] = s5678[0]; s1234[1] = s5678[1]; s1234[2] = s5678[2]; s1234[3] = s5678[3]; s2345[0] = s6789[0]; s2345[1] = s6789[1]; s2345[2] = s6789[2]; s2345[3] = s6789[3]; s3456[0] = s78910[0]; s3456[1] = s78910[1]; s3456[2] = s78910[2]; s3456[3] = s78910[3]; s += 4 * src_stride; d += 4 * dst_stride; h -= 4; } while (h != 0); src += 8; dst += 8; width -= 8; } while (width != 0); } } static INLINE uint16x4_t highbd_convolve4_4_v(int16x8_t s[2], int16x8_t filter, uint16x4_t max) { int64x2_t sum01 = aom_svdot_lane_s16(vdupq_n_s64(0), s[0], filter, 0); int64x2_t sum23 = aom_svdot_lane_s16(vdupq_n_s64(0), s[1], filter, 0); int32x4_t sum0123 = vcombine_s32(vmovn_s64(sum01), vmovn_s64(sum23)); uint16x4_t res = vqrshrun_n_s32(sum0123, FILTER_BITS); return vmin_u16(res, max); } static INLINE uint16x8_t highbd_convolve4_8_v(int16x8_t s[4], int16x8_t filter, uint16x8_t max) { int64x2_t sum01 = aom_svdot_lane_s16(vdupq_n_s64(0), s[0], filter, 0); int64x2_t sum23 = aom_svdot_lane_s16(vdupq_n_s64(0), s[1], filter, 0); int64x2_t sum45 = aom_svdot_lane_s16(vdupq_n_s64(0), s[2], filter, 0); int64x2_t sum67 = aom_svdot_lane_s16(vdupq_n_s64(0), s[3], filter, 0); int32x4_t s0123 = vcombine_s32(vmovn_s64(sum01), vmovn_s64(sum23)); int32x4_t s4567 = vcombine_s32(vmovn_s64(sum45), vmovn_s64(sum67)); uint16x8_t res = vcombine_u16(vqrshrun_n_s32(s0123, FILTER_BITS), vqrshrun_n_s32(s4567, FILTER_BITS)); return vminq_u16(res, max); } static INLINE void highbd_convolve8_vert_4tap_sve( const uint16_t *src, ptrdiff_t src_stride, uint16_t *dst, ptrdiff_t dst_stride, const int16_t *filter_y, int width, int height, int bd) { const int16x8_t y_filter = vcombine_s16(vld1_s16(filter_y + 2), vdup_n_s16(0)); uint8x16_t merge_block_tbl[3]; merge_block_tbl[0] = vld1q_u8(kDotProdMergeBlockTbl); merge_block_tbl[1] = vld1q_u8(kDotProdMergeBlockTbl + 16); merge_block_tbl[2] = vld1q_u8(kDotProdMergeBlockTbl + 32); if (width == 4) { const uint16x4_t max = vdup_n_u16((1 << bd) - 1); int16_t *s = (int16_t *)src; int16x4_t s0, s1, s2; load_s16_4x3(s, src_stride, &s0, &s1, &s2); s += 3 * src_stride; do { int16x4_t s3, s4, s5, s6; load_s16_4x4(s, src_stride, &s3, &s4, &s5, &s6); // This operation combines a conventional transpose and the sample permute // required before computing the dot product. int16x8_t s0123[2], s1234[2], s2345[2], s3456[2]; transpose_concat_4x4(s0, s1, s2, s3, s0123); transpose_concat_4x4(s1, s2, s3, s4, s1234); transpose_concat_4x4(s2, s3, s4, s5, s2345); transpose_concat_4x4(s3, s4, s5, s6, s3456); uint16x4_t d0 = highbd_convolve4_4_v(s0123, y_filter, max); uint16x4_t d1 = highbd_convolve4_4_v(s1234, y_filter, max); uint16x4_t d2 = highbd_convolve4_4_v(s2345, y_filter, max); uint16x4_t d3 = highbd_convolve4_4_v(s3456, y_filter, max); store_u16_4x4(dst, dst_stride, d0, d1, d2, d3); // Shuffle everything up four rows. s0 = s4; s1 = s5; s2 = s6; s += 4 * src_stride; dst += 4 * dst_stride; height -= 4; } while (height != 0); } else { const uint16x8_t max = vdupq_n_u16((1 << bd) - 1); do { int h = height; int16_t *s = (int16_t *)src; uint16_t *d = dst; int16x8_t s0, s1, s2; load_s16_8x3(s, src_stride, &s0, &s1, &s2); s += 3 * src_stride; do { int16x8_t s3, s4, s5, s6; load_s16_8x4(s, src_stride, &s3, &s4, &s5, &s6); // This operation combines a conventional transpose and the sample // permute required before computing the dot product. int16x8_t s0123[4], s1234[4], s2345[4], s3456[4]; transpose_concat_8x4(s0, s1, s2, s3, s0123); transpose_concat_8x4(s1, s2, s3, s4, s1234); transpose_concat_8x4(s2, s3, s4, s5, s2345); transpose_concat_8x4(s3, s4, s5, s6, s3456); uint16x8_t d0 = highbd_convolve4_8_v(s0123, y_filter, max); uint16x8_t d1 = highbd_convolve4_8_v(s1234, y_filter, max); uint16x8_t d2 = highbd_convolve4_8_v(s2345, y_filter, max); uint16x8_t d3 = highbd_convolve4_8_v(s3456, y_filter, max); store_u16_8x4(d, dst_stride, d0, d1, d2, d3); // Shuffle everything up four rows. s0 = s4; s1 = s5; s2 = s6; s += 4 * src_stride; d += 4 * dst_stride; h -= 4; } while (h != 0); src += 8; dst += 8; width -= 8; } while (width != 0); } } void aom_highbd_convolve8_vert_sve(const uint8_t *src8, ptrdiff_t src_stride, uint8_t *dst8, ptrdiff_t dst_stride, const int16_t *filter_x, int x_step_q4, const int16_t *filter_y, int y_step_q4, int width, int height, int bd) { assert(y_step_q4 == 16); assert(w >= 4 && h >= 4); (void)filter_x; (void)y_step_q4; (void)x_step_q4; const uint16_t *src = CONVERT_TO_SHORTPTR(src8); uint16_t *dst = CONVERT_TO_SHORTPTR(dst8); src -= (SUBPEL_TAPS / 2 - 1) * src_stride; if (get_filter_taps_convolve8(filter_y) <= 4) { highbd_convolve8_vert_4tap_sve(src + 2 * src_stride, src_stride, dst, dst_stride, filter_y, width, height, bd); } else { highbd_convolve8_vert_8tap_sve(src, src_stride, dst, dst_stride, filter_y, width, height, bd); } }