/* * Copyright (c) 2022, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include "config/aom_config.h" #include "config/aom_dsp_rtcd.h" #include "config/av1_rtcd.h" #include "aom/aom_integer.h" #include "aom_dsp/arm/sum_neon.h" #include "aom_dsp/arm/transpose_neon.h" #include "aom_dsp/intrapred_common.h" // ----------------------------------------------------------------------------- // DC static INLINE void highbd_dc_store_4xh(uint16_t *dst, ptrdiff_t stride, int h, uint16x4_t dc) { for (int i = 0; i < h; ++i) { vst1_u16(dst + i * stride, dc); } } static INLINE void highbd_dc_store_8xh(uint16_t *dst, ptrdiff_t stride, int h, uint16x8_t dc) { for (int i = 0; i < h; ++i) { vst1q_u16(dst + i * stride, dc); } } static INLINE void highbd_dc_store_16xh(uint16_t *dst, ptrdiff_t stride, int h, uint16x8_t dc) { for (int i = 0; i < h; ++i) { vst1q_u16(dst + i * stride, dc); vst1q_u16(dst + i * stride + 8, dc); } } static INLINE void highbd_dc_store_32xh(uint16_t *dst, ptrdiff_t stride, int h, uint16x8_t dc) { for (int i = 0; i < h; ++i) { vst1q_u16(dst + i * stride, dc); vst1q_u16(dst + i * stride + 8, dc); vst1q_u16(dst + i * stride + 16, dc); vst1q_u16(dst + i * stride + 24, dc); } } static INLINE void highbd_dc_store_64xh(uint16_t *dst, ptrdiff_t stride, int h, uint16x8_t dc) { for (int i = 0; i < h; ++i) { vst1q_u16(dst + i * stride, dc); vst1q_u16(dst + i * stride + 8, dc); vst1q_u16(dst + i * stride + 16, dc); vst1q_u16(dst + i * stride + 24, dc); vst1q_u16(dst + i * stride + 32, dc); vst1q_u16(dst + i * stride + 40, dc); vst1q_u16(dst + i * stride + 48, dc); vst1q_u16(dst + i * stride + 56, dc); } } static INLINE uint32x4_t horizontal_add_and_broadcast_long_u16x8(uint16x8_t a) { // Need to assume input is up to 16 bits wide from dc 64x64 partial sum, so // promote first. const uint32x4_t b = vpaddlq_u16(a); #if AOM_ARCH_AARCH64 const uint32x4_t c = vpaddq_u32(b, b); return vpaddq_u32(c, c); #else const uint32x2_t c = vadd_u32(vget_low_u32(b), vget_high_u32(b)); const uint32x2_t d = vpadd_u32(c, c); return vcombine_u32(d, d); #endif } static INLINE uint16x8_t highbd_dc_load_partial_sum_4(const uint16_t *left) { // Nothing to do since sum is already one vector, but saves needing to // special case w=4 or h=4 cases. The combine will be zero cost for a sane // compiler since vld1 already sets the top half of a vector to zero as part // of the operation. return vcombine_u16(vld1_u16(left), vdup_n_u16(0)); } static INLINE uint16x8_t highbd_dc_load_partial_sum_8(const uint16_t *left) { // Nothing to do since sum is already one vector, but saves needing to // special case w=8 or h=8 cases. return vld1q_u16(left); } static INLINE uint16x8_t highbd_dc_load_partial_sum_16(const uint16_t *left) { const uint16x8_t a0 = vld1q_u16(left + 0); // up to 12 bits const uint16x8_t a1 = vld1q_u16(left + 8); return vaddq_u16(a0, a1); // up to 13 bits } static INLINE uint16x8_t highbd_dc_load_partial_sum_32(const uint16_t *left) { const uint16x8_t a0 = vld1q_u16(left + 0); // up to 12 bits const uint16x8_t a1 = vld1q_u16(left + 8); const uint16x8_t a2 = vld1q_u16(left + 16); const uint16x8_t a3 = vld1q_u16(left + 24); const uint16x8_t b0 = vaddq_u16(a0, a1); // up to 13 bits const uint16x8_t b1 = vaddq_u16(a2, a3); return vaddq_u16(b0, b1); // up to 14 bits } static INLINE uint16x8_t highbd_dc_load_partial_sum_64(const uint16_t *left) { const uint16x8_t a0 = vld1q_u16(left + 0); // up to 12 bits const uint16x8_t a1 = vld1q_u16(left + 8); const uint16x8_t a2 = vld1q_u16(left + 16); const uint16x8_t a3 = vld1q_u16(left + 24); const uint16x8_t a4 = vld1q_u16(left + 32); const uint16x8_t a5 = vld1q_u16(left + 40); const uint16x8_t a6 = vld1q_u16(left + 48); const uint16x8_t a7 = vld1q_u16(left + 56); const uint16x8_t b0 = vaddq_u16(a0, a1); // up to 13 bits const uint16x8_t b1 = vaddq_u16(a2, a3); const uint16x8_t b2 = vaddq_u16(a4, a5); const uint16x8_t b3 = vaddq_u16(a6, a7); const uint16x8_t c0 = vaddq_u16(b0, b1); // up to 14 bits const uint16x8_t c1 = vaddq_u16(b2, b3); return vaddq_u16(c0, c1); // up to 15 bits } #define HIGHBD_DC_PREDICTOR(w, h, shift) \ void aom_highbd_dc_predictor_##w##x##h##_neon( \ uint16_t *dst, ptrdiff_t stride, const uint16_t *above, \ const uint16_t *left, int bd) { \ (void)bd; \ const uint16x8_t a = highbd_dc_load_partial_sum_##w(above); \ const uint16x8_t l = highbd_dc_load_partial_sum_##h(left); \ const uint32x4_t sum = \ horizontal_add_and_broadcast_long_u16x8(vaddq_u16(a, l)); \ const uint16x4_t dc0 = vrshrn_n_u32(sum, shift); \ highbd_dc_store_##w##xh(dst, stride, (h), vdupq_lane_u16(dc0, 0)); \ } void aom_highbd_dc_predictor_4x4_neon(uint16_t *dst, ptrdiff_t stride, const uint16_t *above, const uint16_t *left, int bd) { // In the rectangular cases we simply extend the shorter vector to uint16x8 // in order to accumulate, however in the 4x4 case there is no shorter vector // to extend so it is beneficial to do the whole calculation in uint16x4 // instead. (void)bd; const uint16x4_t a = vld1_u16(above); // up to 12 bits const uint16x4_t l = vld1_u16(left); uint16x4_t sum = vpadd_u16(a, l); // up to 13 bits sum = vpadd_u16(sum, sum); // up to 14 bits sum = vpadd_u16(sum, sum); const uint16x4_t dc = vrshr_n_u16(sum, 3); highbd_dc_store_4xh(dst, stride, 4, dc); } HIGHBD_DC_PREDICTOR(8, 8, 4) HIGHBD_DC_PREDICTOR(16, 16, 5) HIGHBD_DC_PREDICTOR(32, 32, 6) HIGHBD_DC_PREDICTOR(64, 64, 7) #undef HIGHBD_DC_PREDICTOR static INLINE int divide_using_multiply_shift(int num, int shift1, int multiplier, int shift2) { const int interm = num >> shift1; return interm * multiplier >> shift2; } #define HIGHBD_DC_MULTIPLIER_1X2 0xAAAB #define HIGHBD_DC_MULTIPLIER_1X4 0x6667 #define HIGHBD_DC_SHIFT2 17 static INLINE int highbd_dc_predictor_rect(int bw, int bh, int sum, int shift1, uint32_t multiplier) { return divide_using_multiply_shift(sum + ((bw + bh) >> 1), shift1, multiplier, HIGHBD_DC_SHIFT2); } #undef HIGHBD_DC_SHIFT2 #define HIGHBD_DC_PREDICTOR_RECT(w, h, q, shift, mult) \ void aom_highbd_dc_predictor_##w##x##h##_neon( \ uint16_t *dst, ptrdiff_t stride, const uint16_t *above, \ const uint16_t *left, int bd) { \ (void)bd; \ uint16x8_t sum_above = highbd_dc_load_partial_sum_##w(above); \ uint16x8_t sum_left = highbd_dc_load_partial_sum_##h(left); \ uint16x8_t sum_vec = vaddq_u16(sum_left, sum_above); \ int sum = horizontal_add_u16x8(sum_vec); \ int dc0 = highbd_dc_predictor_rect((w), (h), sum, (shift), (mult)); \ highbd_dc_store_##w##xh(dst, stride, (h), vdup##q##_n_u16(dc0)); \ } HIGHBD_DC_PREDICTOR_RECT(4, 8, , 2, HIGHBD_DC_MULTIPLIER_1X2) HIGHBD_DC_PREDICTOR_RECT(4, 16, , 2, HIGHBD_DC_MULTIPLIER_1X4) HIGHBD_DC_PREDICTOR_RECT(8, 4, q, 2, HIGHBD_DC_MULTIPLIER_1X2) HIGHBD_DC_PREDICTOR_RECT(8, 16, q, 3, HIGHBD_DC_MULTIPLIER_1X2) HIGHBD_DC_PREDICTOR_RECT(8, 32, q, 3, HIGHBD_DC_MULTIPLIER_1X4) HIGHBD_DC_PREDICTOR_RECT(16, 4, q, 2, HIGHBD_DC_MULTIPLIER_1X4) HIGHBD_DC_PREDICTOR_RECT(16, 8, q, 3, HIGHBD_DC_MULTIPLIER_1X2) HIGHBD_DC_PREDICTOR_RECT(16, 32, q, 4, HIGHBD_DC_MULTIPLIER_1X2) HIGHBD_DC_PREDICTOR_RECT(16, 64, q, 4, HIGHBD_DC_MULTIPLIER_1X4) HIGHBD_DC_PREDICTOR_RECT(32, 8, q, 3, HIGHBD_DC_MULTIPLIER_1X4) HIGHBD_DC_PREDICTOR_RECT(32, 16, q, 4, HIGHBD_DC_MULTIPLIER_1X2) HIGHBD_DC_PREDICTOR_RECT(32, 64, q, 5, HIGHBD_DC_MULTIPLIER_1X2) HIGHBD_DC_PREDICTOR_RECT(64, 16, q, 4, HIGHBD_DC_MULTIPLIER_1X4) HIGHBD_DC_PREDICTOR_RECT(64, 32, q, 5, HIGHBD_DC_MULTIPLIER_1X2) #undef HIGHBD_DC_PREDICTOR_RECT #undef HIGHBD_DC_MULTIPLIER_1X2 #undef HIGHBD_DC_MULTIPLIER_1X4 // ----------------------------------------------------------------------------- // DC_128 #define HIGHBD_DC_PREDICTOR_128(w, h, q) \ void aom_highbd_dc_128_predictor_##w##x##h##_neon( \ uint16_t *dst, ptrdiff_t stride, const uint16_t *above, \ const uint16_t *left, int bd) { \ (void)above; \ (void)bd; \ (void)left; \ highbd_dc_store_##w##xh(dst, stride, (h), \ vdup##q##_n_u16(0x80 << (bd - 8))); \ } HIGHBD_DC_PREDICTOR_128(4, 4, ) HIGHBD_DC_PREDICTOR_128(4, 8, ) HIGHBD_DC_PREDICTOR_128(4, 16, ) HIGHBD_DC_PREDICTOR_128(8, 4, q) HIGHBD_DC_PREDICTOR_128(8, 8, q) HIGHBD_DC_PREDICTOR_128(8, 16, q) HIGHBD_DC_PREDICTOR_128(8, 32, q) HIGHBD_DC_PREDICTOR_128(16, 4, q) HIGHBD_DC_PREDICTOR_128(16, 8, q) HIGHBD_DC_PREDICTOR_128(16, 16, q) HIGHBD_DC_PREDICTOR_128(16, 32, q) HIGHBD_DC_PREDICTOR_128(16, 64, q) HIGHBD_DC_PREDICTOR_128(32, 8, q) HIGHBD_DC_PREDICTOR_128(32, 16, q) HIGHBD_DC_PREDICTOR_128(32, 32, q) HIGHBD_DC_PREDICTOR_128(32, 64, q) HIGHBD_DC_PREDICTOR_128(64, 16, q) HIGHBD_DC_PREDICTOR_128(64, 32, q) HIGHBD_DC_PREDICTOR_128(64, 64, q) #undef HIGHBD_DC_PREDICTOR_128 // ----------------------------------------------------------------------------- // DC_LEFT static INLINE uint32x4_t highbd_dc_load_sum_4(const uint16_t *left) { const uint16x4_t a = vld1_u16(left); // up to 12 bits const uint16x4_t b = vpadd_u16(a, a); // up to 13 bits return vcombine_u32(vpaddl_u16(b), vdup_n_u32(0)); } static INLINE uint32x4_t highbd_dc_load_sum_8(const uint16_t *left) { return horizontal_add_and_broadcast_long_u16x8(vld1q_u16(left)); } static INLINE uint32x4_t highbd_dc_load_sum_16(const uint16_t *left) { return horizontal_add_and_broadcast_long_u16x8( highbd_dc_load_partial_sum_16(left)); } static INLINE uint32x4_t highbd_dc_load_sum_32(const uint16_t *left) { return horizontal_add_and_broadcast_long_u16x8( highbd_dc_load_partial_sum_32(left)); } static INLINE uint32x4_t highbd_dc_load_sum_64(const uint16_t *left) { return horizontal_add_and_broadcast_long_u16x8( highbd_dc_load_partial_sum_64(left)); } #define DC_PREDICTOR_LEFT(w, h, shift, q) \ void aom_highbd_dc_left_predictor_##w##x##h##_neon( \ uint16_t *dst, ptrdiff_t stride, const uint16_t *above, \ const uint16_t *left, int bd) { \ (void)above; \ (void)bd; \ const uint32x4_t sum = highbd_dc_load_sum_##h(left); \ const uint16x4_t dc0 = vrshrn_n_u32(sum, (shift)); \ highbd_dc_store_##w##xh(dst, stride, (h), vdup##q##_lane_u16(dc0, 0)); \ } DC_PREDICTOR_LEFT(4, 4, 2, ) DC_PREDICTOR_LEFT(4, 8, 3, ) DC_PREDICTOR_LEFT(4, 16, 4, ) DC_PREDICTOR_LEFT(8, 4, 2, q) DC_PREDICTOR_LEFT(8, 8, 3, q) DC_PREDICTOR_LEFT(8, 16, 4, q) DC_PREDICTOR_LEFT(8, 32, 5, q) DC_PREDICTOR_LEFT(16, 4, 2, q) DC_PREDICTOR_LEFT(16, 8, 3, q) DC_PREDICTOR_LEFT(16, 16, 4, q) DC_PREDICTOR_LEFT(16, 32, 5, q) DC_PREDICTOR_LEFT(16, 64, 6, q) DC_PREDICTOR_LEFT(32, 8, 3, q) DC_PREDICTOR_LEFT(32, 16, 4, q) DC_PREDICTOR_LEFT(32, 32, 5, q) DC_PREDICTOR_LEFT(32, 64, 6, q) DC_PREDICTOR_LEFT(64, 16, 4, q) DC_PREDICTOR_LEFT(64, 32, 5, q) DC_PREDICTOR_LEFT(64, 64, 6, q) #undef DC_PREDICTOR_LEFT // ----------------------------------------------------------------------------- // DC_TOP #define DC_PREDICTOR_TOP(w, h, shift, q) \ void aom_highbd_dc_top_predictor_##w##x##h##_neon( \ uint16_t *dst, ptrdiff_t stride, const uint16_t *above, \ const uint16_t *left, int bd) { \ (void)bd; \ (void)left; \ const uint32x4_t sum = highbd_dc_load_sum_##w(above); \ const uint16x4_t dc0 = vrshrn_n_u32(sum, (shift)); \ highbd_dc_store_##w##xh(dst, stride, (h), vdup##q##_lane_u16(dc0, 0)); \ } DC_PREDICTOR_TOP(4, 4, 2, ) DC_PREDICTOR_TOP(4, 8, 2, ) DC_PREDICTOR_TOP(4, 16, 2, ) DC_PREDICTOR_TOP(8, 4, 3, q) DC_PREDICTOR_TOP(8, 8, 3, q) DC_PREDICTOR_TOP(8, 16, 3, q) DC_PREDICTOR_TOP(8, 32, 3, q) DC_PREDICTOR_TOP(16, 4, 4, q) DC_PREDICTOR_TOP(16, 8, 4, q) DC_PREDICTOR_TOP(16, 16, 4, q) DC_PREDICTOR_TOP(16, 32, 4, q) DC_PREDICTOR_TOP(16, 64, 4, q) DC_PREDICTOR_TOP(32, 8, 5, q) DC_PREDICTOR_TOP(32, 16, 5, q) DC_PREDICTOR_TOP(32, 32, 5, q) DC_PREDICTOR_TOP(32, 64, 5, q) DC_PREDICTOR_TOP(64, 16, 6, q) DC_PREDICTOR_TOP(64, 32, 6, q) DC_PREDICTOR_TOP(64, 64, 6, q) #undef DC_PREDICTOR_TOP // ----------------------------------------------------------------------------- // V_PRED #define HIGHBD_V_NXM(W, H) \ void aom_highbd_v_predictor_##W##x##H##_neon( \ uint16_t *dst, ptrdiff_t stride, const uint16_t *above, \ const uint16_t *left, int bd) { \ (void)left; \ (void)bd; \ vertical##W##xh_neon(dst, stride, above, H); \ } static INLINE uint16x8x2_t load_uint16x8x2(uint16_t const *ptr) { uint16x8x2_t x; // Clang/gcc uses ldp here. x.val[0] = vld1q_u16(ptr); x.val[1] = vld1q_u16(ptr + 8); return x; } static INLINE void store_uint16x8x2(uint16_t *ptr, uint16x8x2_t x) { vst1q_u16(ptr, x.val[0]); vst1q_u16(ptr + 8, x.val[1]); } static INLINE void vertical4xh_neon(uint16_t *dst, ptrdiff_t stride, const uint16_t *const above, int height) { const uint16x4_t row = vld1_u16(above); int y = height; do { vst1_u16(dst, row); vst1_u16(dst + stride, row); dst += stride << 1; y -= 2; } while (y != 0); } static INLINE void vertical8xh_neon(uint16_t *dst, ptrdiff_t stride, const uint16_t *const above, int height) { const uint16x8_t row = vld1q_u16(above); int y = height; do { vst1q_u16(dst, row); vst1q_u16(dst + stride, row); dst += stride << 1; y -= 2; } while (y != 0); } static INLINE void vertical16xh_neon(uint16_t *dst, ptrdiff_t stride, const uint16_t *const above, int height) { const uint16x8x2_t row = load_uint16x8x2(above); int y = height; do { store_uint16x8x2(dst, row); store_uint16x8x2(dst + stride, row); dst += stride << 1; y -= 2; } while (y != 0); } static INLINE uint16x8x4_t load_uint16x8x4(uint16_t const *ptr) { uint16x8x4_t x; // Clang/gcc uses ldp here. x.val[0] = vld1q_u16(ptr); x.val[1] = vld1q_u16(ptr + 8); x.val[2] = vld1q_u16(ptr + 16); x.val[3] = vld1q_u16(ptr + 24); return x; } static INLINE void store_uint16x8x4(uint16_t *ptr, uint16x8x4_t x) { vst1q_u16(ptr, x.val[0]); vst1q_u16(ptr + 8, x.val[1]); vst1q_u16(ptr + 16, x.val[2]); vst1q_u16(ptr + 24, x.val[3]); } static INLINE void vertical32xh_neon(uint16_t *dst, ptrdiff_t stride, const uint16_t *const above, int height) { const uint16x8x4_t row = load_uint16x8x4(above); int y = height; do { store_uint16x8x4(dst, row); store_uint16x8x4(dst + stride, row); dst += stride << 1; y -= 2; } while (y != 0); } static INLINE void vertical64xh_neon(uint16_t *dst, ptrdiff_t stride, const uint16_t *const above, int height) { uint16_t *dst32 = dst + 32; const uint16x8x4_t row = load_uint16x8x4(above); const uint16x8x4_t row32 = load_uint16x8x4(above + 32); int y = height; do { store_uint16x8x4(dst, row); store_uint16x8x4(dst32, row32); store_uint16x8x4(dst + stride, row); store_uint16x8x4(dst32 + stride, row32); dst += stride << 1; dst32 += stride << 1; y -= 2; } while (y != 0); } HIGHBD_V_NXM(4, 4) HIGHBD_V_NXM(4, 8) HIGHBD_V_NXM(4, 16) HIGHBD_V_NXM(8, 4) HIGHBD_V_NXM(8, 8) HIGHBD_V_NXM(8, 16) HIGHBD_V_NXM(8, 32) HIGHBD_V_NXM(16, 4) HIGHBD_V_NXM(16, 8) HIGHBD_V_NXM(16, 16) HIGHBD_V_NXM(16, 32) HIGHBD_V_NXM(16, 64) HIGHBD_V_NXM(32, 8) HIGHBD_V_NXM(32, 16) HIGHBD_V_NXM(32, 32) HIGHBD_V_NXM(32, 64) HIGHBD_V_NXM(64, 16) HIGHBD_V_NXM(64, 32) HIGHBD_V_NXM(64, 64) // ----------------------------------------------------------------------------- // H_PRED static INLINE void highbd_h_store_4x4(uint16_t *dst, ptrdiff_t stride, uint16x4_t left) { vst1_u16(dst + 0 * stride, vdup_lane_u16(left, 0)); vst1_u16(dst + 1 * stride, vdup_lane_u16(left, 1)); vst1_u16(dst + 2 * stride, vdup_lane_u16(left, 2)); vst1_u16(dst + 3 * stride, vdup_lane_u16(left, 3)); } static INLINE void highbd_h_store_8x4(uint16_t *dst, ptrdiff_t stride, uint16x4_t left) { vst1q_u16(dst + 0 * stride, vdupq_lane_u16(left, 0)); vst1q_u16(dst + 1 * stride, vdupq_lane_u16(left, 1)); vst1q_u16(dst + 2 * stride, vdupq_lane_u16(left, 2)); vst1q_u16(dst + 3 * stride, vdupq_lane_u16(left, 3)); } static INLINE void highbd_h_store_16x1(uint16_t *dst, uint16x8_t left) { vst1q_u16(dst + 0, left); vst1q_u16(dst + 8, left); } static INLINE void highbd_h_store_16x4(uint16_t *dst, ptrdiff_t stride, uint16x4_t left) { highbd_h_store_16x1(dst + 0 * stride, vdupq_lane_u16(left, 0)); highbd_h_store_16x1(dst + 1 * stride, vdupq_lane_u16(left, 1)); highbd_h_store_16x1(dst + 2 * stride, vdupq_lane_u16(left, 2)); highbd_h_store_16x1(dst + 3 * stride, vdupq_lane_u16(left, 3)); } static INLINE void highbd_h_store_32x1(uint16_t *dst, uint16x8_t left) { vst1q_u16(dst + 0, left); vst1q_u16(dst + 8, left); vst1q_u16(dst + 16, left); vst1q_u16(dst + 24, left); } static INLINE void highbd_h_store_32x4(uint16_t *dst, ptrdiff_t stride, uint16x4_t left) { highbd_h_store_32x1(dst + 0 * stride, vdupq_lane_u16(left, 0)); highbd_h_store_32x1(dst + 1 * stride, vdupq_lane_u16(left, 1)); highbd_h_store_32x1(dst + 2 * stride, vdupq_lane_u16(left, 2)); highbd_h_store_32x1(dst + 3 * stride, vdupq_lane_u16(left, 3)); } static INLINE void highbd_h_store_64x1(uint16_t *dst, uint16x8_t left) { vst1q_u16(dst + 0, left); vst1q_u16(dst + 8, left); vst1q_u16(dst + 16, left); vst1q_u16(dst + 24, left); vst1q_u16(dst + 32, left); vst1q_u16(dst + 40, left); vst1q_u16(dst + 48, left); vst1q_u16(dst + 56, left); } static INLINE void highbd_h_store_64x4(uint16_t *dst, ptrdiff_t stride, uint16x4_t left) { highbd_h_store_64x1(dst + 0 * stride, vdupq_lane_u16(left, 0)); highbd_h_store_64x1(dst + 1 * stride, vdupq_lane_u16(left, 1)); highbd_h_store_64x1(dst + 2 * stride, vdupq_lane_u16(left, 2)); highbd_h_store_64x1(dst + 3 * stride, vdupq_lane_u16(left, 3)); } void aom_highbd_h_predictor_4x4_neon(uint16_t *dst, ptrdiff_t stride, const uint16_t *above, const uint16_t *left, int bd) { (void)above; (void)bd; highbd_h_store_4x4(dst, stride, vld1_u16(left)); } void aom_highbd_h_predictor_4x8_neon(uint16_t *dst, ptrdiff_t stride, const uint16_t *above, const uint16_t *left, int bd) { (void)above; (void)bd; uint16x8_t l = vld1q_u16(left); highbd_h_store_4x4(dst + 0 * stride, stride, vget_low_u16(l)); highbd_h_store_4x4(dst + 4 * stride, stride, vget_high_u16(l)); } void aom_highbd_h_predictor_8x4_neon(uint16_t *dst, ptrdiff_t stride, const uint16_t *above, const uint16_t *left, int bd) { (void)above; (void)bd; highbd_h_store_8x4(dst, stride, vld1_u16(left)); } void aom_highbd_h_predictor_8x8_neon(uint16_t *dst, ptrdiff_t stride, const uint16_t *above, const uint16_t *left, int bd) { (void)above; (void)bd; uint16x8_t l = vld1q_u16(left); highbd_h_store_8x4(dst + 0 * stride, stride, vget_low_u16(l)); highbd_h_store_8x4(dst + 4 * stride, stride, vget_high_u16(l)); } void aom_highbd_h_predictor_16x4_neon(uint16_t *dst, ptrdiff_t stride, const uint16_t *above, const uint16_t *left, int bd) { (void)above; (void)bd; highbd_h_store_16x4(dst, stride, vld1_u16(left)); } void aom_highbd_h_predictor_16x8_neon(uint16_t *dst, ptrdiff_t stride, const uint16_t *above, const uint16_t *left, int bd) { (void)above; (void)bd; uint16x8_t l = vld1q_u16(left); highbd_h_store_16x4(dst + 0 * stride, stride, vget_low_u16(l)); highbd_h_store_16x4(dst + 4 * stride, stride, vget_high_u16(l)); } void aom_highbd_h_predictor_32x8_neon(uint16_t *dst, ptrdiff_t stride, const uint16_t *above, const uint16_t *left, int bd) { (void)above; (void)bd; uint16x8_t l = vld1q_u16(left); highbd_h_store_32x4(dst + 0 * stride, stride, vget_low_u16(l)); highbd_h_store_32x4(dst + 4 * stride, stride, vget_high_u16(l)); } // For cases where height >= 16 we use pairs of loads to get LDP instructions. #define HIGHBD_H_WXH_LARGE(w, h) \ void aom_highbd_h_predictor_##w##x##h##_neon( \ uint16_t *dst, ptrdiff_t stride, const uint16_t *above, \ const uint16_t *left, int bd) { \ (void)above; \ (void)bd; \ for (int i = 0; i < (h) / 16; ++i) { \ uint16x8_t l0 = vld1q_u16(left + 0); \ uint16x8_t l1 = vld1q_u16(left + 8); \ highbd_h_store_##w##x4(dst + 0 * stride, stride, vget_low_u16(l0)); \ highbd_h_store_##w##x4(dst + 4 * stride, stride, vget_high_u16(l0)); \ highbd_h_store_##w##x4(dst + 8 * stride, stride, vget_low_u16(l1)); \ highbd_h_store_##w##x4(dst + 12 * stride, stride, vget_high_u16(l1)); \ left += 16; \ dst += 16 * stride; \ } \ } HIGHBD_H_WXH_LARGE(4, 16) HIGHBD_H_WXH_LARGE(8, 16) HIGHBD_H_WXH_LARGE(8, 32) HIGHBD_H_WXH_LARGE(16, 16) HIGHBD_H_WXH_LARGE(16, 32) HIGHBD_H_WXH_LARGE(16, 64) HIGHBD_H_WXH_LARGE(32, 16) HIGHBD_H_WXH_LARGE(32, 32) HIGHBD_H_WXH_LARGE(32, 64) HIGHBD_H_WXH_LARGE(64, 16) HIGHBD_H_WXH_LARGE(64, 32) HIGHBD_H_WXH_LARGE(64, 64) #undef HIGHBD_H_WXH_LARGE // ----------------------------------------------------------------------------- // PAETH static INLINE void highbd_paeth_4or8_x_h_neon(uint16_t *dest, ptrdiff_t stride, const uint16_t *const top_row, const uint16_t *const left_column, int width, int height) { const uint16x8_t top_left = vdupq_n_u16(top_row[-1]); const uint16x8_t top_left_x2 = vdupq_n_u16(top_row[-1] + top_row[-1]); uint16x8_t top; if (width == 4) { top = vcombine_u16(vld1_u16(top_row), vdup_n_u16(0)); } else { // width == 8 top = vld1q_u16(top_row); } for (int y = 0; y < height; ++y) { const uint16x8_t left = vdupq_n_u16(left_column[y]); const uint16x8_t left_dist = vabdq_u16(top, top_left); const uint16x8_t top_dist = vabdq_u16(left, top_left); const uint16x8_t top_left_dist = vabdq_u16(vaddq_u16(top, left), top_left_x2); const uint16x8_t left_le_top = vcleq_u16(left_dist, top_dist); const uint16x8_t left_le_top_left = vcleq_u16(left_dist, top_left_dist); const uint16x8_t top_le_top_left = vcleq_u16(top_dist, top_left_dist); // if (left_dist <= top_dist && left_dist <= top_left_dist) const uint16x8_t left_mask = vandq_u16(left_le_top, left_le_top_left); // dest[x] = left_column[y]; // Fill all the unused spaces with 'top'. They will be overwritten when // the positions for top_left are known. uint16x8_t result = vbslq_u16(left_mask, left, top); // else if (top_dist <= top_left_dist) // dest[x] = top_row[x]; // Add these values to the mask. They were already set. const uint16x8_t left_or_top_mask = vorrq_u16(left_mask, top_le_top_left); // else // dest[x] = top_left; result = vbslq_u16(left_or_top_mask, result, top_left); if (width == 4) { vst1_u16(dest, vget_low_u16(result)); } else { // width == 8 vst1q_u16(dest, result); } dest += stride; } } #define HIGHBD_PAETH_NXM(W, H) \ void aom_highbd_paeth_predictor_##W##x##H##_neon( \ uint16_t *dst, ptrdiff_t stride, const uint16_t *above, \ const uint16_t *left, int bd) { \ (void)bd; \ highbd_paeth_4or8_x_h_neon(dst, stride, above, left, W, H); \ } HIGHBD_PAETH_NXM(4, 4) HIGHBD_PAETH_NXM(4, 8) HIGHBD_PAETH_NXM(4, 16) HIGHBD_PAETH_NXM(8, 4) HIGHBD_PAETH_NXM(8, 8) HIGHBD_PAETH_NXM(8, 16) HIGHBD_PAETH_NXM(8, 32) // Select the closest values and collect them. static INLINE uint16x8_t select_paeth(const uint16x8_t top, const uint16x8_t left, const uint16x8_t top_left, const uint16x8_t left_le_top, const uint16x8_t left_le_top_left, const uint16x8_t top_le_top_left) { // if (left_dist <= top_dist && left_dist <= top_left_dist) const uint16x8_t left_mask = vandq_u16(left_le_top, left_le_top_left); // dest[x] = left_column[y]; // Fill all the unused spaces with 'top'. They will be overwritten when // the positions for top_left are known. const uint16x8_t result = vbslq_u16(left_mask, left, top); // else if (top_dist <= top_left_dist) // dest[x] = top_row[x]; // Add these values to the mask. They were already set. const uint16x8_t left_or_top_mask = vorrq_u16(left_mask, top_le_top_left); // else // dest[x] = top_left; return vbslq_u16(left_or_top_mask, result, top_left); } #define PAETH_PREDICTOR(num) \ do { \ const uint16x8_t left_dist = vabdq_u16(top[num], top_left); \ const uint16x8_t top_left_dist = \ vabdq_u16(vaddq_u16(top[num], left), top_left_x2); \ const uint16x8_t left_le_top = vcleq_u16(left_dist, top_dist); \ const uint16x8_t left_le_top_left = vcleq_u16(left_dist, top_left_dist); \ const uint16x8_t top_le_top_left = vcleq_u16(top_dist, top_left_dist); \ const uint16x8_t result = \ select_paeth(top[num], left, top_left, left_le_top, left_le_top_left, \ top_le_top_left); \ vst1q_u16(dest + (num * 8), result); \ } while (0) #define LOAD_TOP_ROW(num) vld1q_u16(top_row + (num * 8)) static INLINE void highbd_paeth16_plus_x_h_neon( uint16_t *dest, ptrdiff_t stride, const uint16_t *const top_row, const uint16_t *const left_column, int width, int height) { const uint16x8_t top_left = vdupq_n_u16(top_row[-1]); const uint16x8_t top_left_x2 = vdupq_n_u16(top_row[-1] + top_row[-1]); uint16x8_t top[8]; top[0] = LOAD_TOP_ROW(0); top[1] = LOAD_TOP_ROW(1); if (width > 16) { top[2] = LOAD_TOP_ROW(2); top[3] = LOAD_TOP_ROW(3); if (width == 64) { top[4] = LOAD_TOP_ROW(4); top[5] = LOAD_TOP_ROW(5); top[6] = LOAD_TOP_ROW(6); top[7] = LOAD_TOP_ROW(7); } } for (int y = 0; y < height; ++y) { const uint16x8_t left = vdupq_n_u16(left_column[y]); const uint16x8_t top_dist = vabdq_u16(left, top_left); PAETH_PREDICTOR(0); PAETH_PREDICTOR(1); if (width > 16) { PAETH_PREDICTOR(2); PAETH_PREDICTOR(3); if (width == 64) { PAETH_PREDICTOR(4); PAETH_PREDICTOR(5); PAETH_PREDICTOR(6); PAETH_PREDICTOR(7); } } dest += stride; } } #define HIGHBD_PAETH_NXM_WIDE(W, H) \ void aom_highbd_paeth_predictor_##W##x##H##_neon( \ uint16_t *dst, ptrdiff_t stride, const uint16_t *above, \ const uint16_t *left, int bd) { \ (void)bd; \ highbd_paeth16_plus_x_h_neon(dst, stride, above, left, W, H); \ } HIGHBD_PAETH_NXM_WIDE(16, 4) HIGHBD_PAETH_NXM_WIDE(16, 8) HIGHBD_PAETH_NXM_WIDE(16, 16) HIGHBD_PAETH_NXM_WIDE(16, 32) HIGHBD_PAETH_NXM_WIDE(16, 64) HIGHBD_PAETH_NXM_WIDE(32, 8) HIGHBD_PAETH_NXM_WIDE(32, 16) HIGHBD_PAETH_NXM_WIDE(32, 32) HIGHBD_PAETH_NXM_WIDE(32, 64) HIGHBD_PAETH_NXM_WIDE(64, 16) HIGHBD_PAETH_NXM_WIDE(64, 32) HIGHBD_PAETH_NXM_WIDE(64, 64) // ----------------------------------------------------------------------------- // SMOOTH // 256 - v = vneg_s8(v) static INLINE uint16x4_t negate_s8(const uint16x4_t v) { return vreinterpret_u16_s8(vneg_s8(vreinterpret_s8_u16(v))); } static INLINE void highbd_smooth_4xh_neon(uint16_t *dst, ptrdiff_t stride, const uint16_t *const top_row, const uint16_t *const left_column, const int height) { const uint16_t top_right = top_row[3]; const uint16_t bottom_left = left_column[height - 1]; const uint16_t *const weights_y = smooth_weights_u16 + height - 4; const uint16x4_t top_v = vld1_u16(top_row); const uint16x4_t bottom_left_v = vdup_n_u16(bottom_left); const uint16x4_t weights_x_v = vld1_u16(smooth_weights_u16); const uint16x4_t scaled_weights_x = negate_s8(weights_x_v); const uint32x4_t weighted_tr = vmull_n_u16(scaled_weights_x, top_right); for (int y = 0; y < height; ++y) { // Each variable in the running summation is named for the last item to be // accumulated. const uint32x4_t weighted_top = vmlal_n_u16(weighted_tr, top_v, weights_y[y]); const uint32x4_t weighted_left = vmlal_n_u16(weighted_top, weights_x_v, left_column[y]); const uint32x4_t weighted_bl = vmlal_n_u16(weighted_left, bottom_left_v, 256 - weights_y[y]); const uint16x4_t pred = vrshrn_n_u32(weighted_bl, SMOOTH_WEIGHT_LOG2_SCALE + 1); vst1_u16(dst, pred); dst += stride; } } // Common code between 8xH and [16|32|64]xH. static INLINE void highbd_calculate_pred8( uint16_t *dst, const uint32x4_t weighted_corners_low, const uint32x4_t weighted_corners_high, const uint16x4x2_t top_vals, const uint16x4x2_t weights_x, const uint16_t left_y, const uint16_t weight_y) { // Each variable in the running summation is named for the last item to be // accumulated. const uint32x4_t weighted_top_low = vmlal_n_u16(weighted_corners_low, top_vals.val[0], weight_y); const uint32x4_t weighted_edges_low = vmlal_n_u16(weighted_top_low, weights_x.val[0], left_y); const uint16x4_t pred_low = vrshrn_n_u32(weighted_edges_low, SMOOTH_WEIGHT_LOG2_SCALE + 1); vst1_u16(dst, pred_low); const uint32x4_t weighted_top_high = vmlal_n_u16(weighted_corners_high, top_vals.val[1], weight_y); const uint32x4_t weighted_edges_high = vmlal_n_u16(weighted_top_high, weights_x.val[1], left_y); const uint16x4_t pred_high = vrshrn_n_u32(weighted_edges_high, SMOOTH_WEIGHT_LOG2_SCALE + 1); vst1_u16(dst + 4, pred_high); } static void highbd_smooth_8xh_neon(uint16_t *dst, ptrdiff_t stride, const uint16_t *const top_row, const uint16_t *const left_column, const int height) { const uint16_t top_right = top_row[7]; const uint16_t bottom_left = left_column[height - 1]; const uint16_t *const weights_y = smooth_weights_u16 + height - 4; const uint16x4x2_t top_vals = { { vld1_u16(top_row), vld1_u16(top_row + 4) } }; const uint16x4_t bottom_left_v = vdup_n_u16(bottom_left); const uint16x4x2_t weights_x = { { vld1_u16(smooth_weights_u16 + 4), vld1_u16(smooth_weights_u16 + 8) } }; const uint32x4_t weighted_tr_low = vmull_n_u16(negate_s8(weights_x.val[0]), top_right); const uint32x4_t weighted_tr_high = vmull_n_u16(negate_s8(weights_x.val[1]), top_right); for (int y = 0; y < height; ++y) { const uint32x4_t weighted_bl = vmull_n_u16(bottom_left_v, 256 - weights_y[y]); const uint32x4_t weighted_corners_low = vaddq_u32(weighted_bl, weighted_tr_low); const uint32x4_t weighted_corners_high = vaddq_u32(weighted_bl, weighted_tr_high); highbd_calculate_pred8(dst, weighted_corners_low, weighted_corners_high, top_vals, weights_x, left_column[y], weights_y[y]); dst += stride; } } #define HIGHBD_SMOOTH_NXM(W, H) \ void aom_highbd_smooth_predictor_##W##x##H##_neon( \ uint16_t *dst, ptrdiff_t y_stride, const uint16_t *above, \ const uint16_t *left, int bd) { \ (void)bd; \ highbd_smooth_##W##xh_neon(dst, y_stride, above, left, H); \ } HIGHBD_SMOOTH_NXM(4, 4) HIGHBD_SMOOTH_NXM(4, 8) HIGHBD_SMOOTH_NXM(8, 4) HIGHBD_SMOOTH_NXM(8, 8) HIGHBD_SMOOTH_NXM(4, 16) HIGHBD_SMOOTH_NXM(8, 16) HIGHBD_SMOOTH_NXM(8, 32) #undef HIGHBD_SMOOTH_NXM // For width 16 and above. #define HIGHBD_SMOOTH_PREDICTOR(W) \ static void highbd_smooth_##W##xh_neon( \ uint16_t *dst, ptrdiff_t stride, const uint16_t *const top_row, \ const uint16_t *const left_column, const int height) { \ const uint16_t top_right = top_row[(W)-1]; \ const uint16_t bottom_left = left_column[height - 1]; \ const uint16_t *const weights_y = smooth_weights_u16 + height - 4; \ \ /* Precompute weighted values that don't vary with |y|. */ \ uint32x4_t weighted_tr_low[(W) >> 3]; \ uint32x4_t weighted_tr_high[(W) >> 3]; \ for (int i = 0; i < (W) >> 3; ++i) { \ const int x = i << 3; \ const uint16x4_t weights_x_low = \ vld1_u16(smooth_weights_u16 + (W)-4 + x); \ weighted_tr_low[i] = vmull_n_u16(negate_s8(weights_x_low), top_right); \ const uint16x4_t weights_x_high = \ vld1_u16(smooth_weights_u16 + (W) + x); \ weighted_tr_high[i] = vmull_n_u16(negate_s8(weights_x_high), top_right); \ } \ \ const uint16x4_t bottom_left_v = vdup_n_u16(bottom_left); \ for (int y = 0; y < height; ++y) { \ const uint32x4_t weighted_bl = \ vmull_n_u16(bottom_left_v, 256 - weights_y[y]); \ uint16_t *dst_x = dst; \ for (int i = 0; i < (W) >> 3; ++i) { \ const int x = i << 3; \ const uint16x4x2_t top_vals = { { vld1_u16(top_row + x), \ vld1_u16(top_row + x + 4) } }; \ const uint32x4_t weighted_corners_low = \ vaddq_u32(weighted_bl, weighted_tr_low[i]); \ const uint32x4_t weighted_corners_high = \ vaddq_u32(weighted_bl, weighted_tr_high[i]); \ /* Accumulate weighted edge values and store. */ \ const uint16x4x2_t weights_x = { \ { vld1_u16(smooth_weights_u16 + (W)-4 + x), \ vld1_u16(smooth_weights_u16 + (W) + x) } \ }; \ highbd_calculate_pred8(dst_x, weighted_corners_low, \ weighted_corners_high, top_vals, weights_x, \ left_column[y], weights_y[y]); \ dst_x += 8; \ } \ dst += stride; \ } \ } HIGHBD_SMOOTH_PREDICTOR(16) HIGHBD_SMOOTH_PREDICTOR(32) HIGHBD_SMOOTH_PREDICTOR(64) #undef HIGHBD_SMOOTH_PREDICTOR #define HIGHBD_SMOOTH_NXM_WIDE(W, H) \ void aom_highbd_smooth_predictor_##W##x##H##_neon( \ uint16_t *dst, ptrdiff_t y_stride, const uint16_t *above, \ const uint16_t *left, int bd) { \ (void)bd; \ highbd_smooth_##W##xh_neon(dst, y_stride, above, left, H); \ } HIGHBD_SMOOTH_NXM_WIDE(16, 4) HIGHBD_SMOOTH_NXM_WIDE(16, 8) HIGHBD_SMOOTH_NXM_WIDE(16, 16) HIGHBD_SMOOTH_NXM_WIDE(16, 32) HIGHBD_SMOOTH_NXM_WIDE(16, 64) HIGHBD_SMOOTH_NXM_WIDE(32, 8) HIGHBD_SMOOTH_NXM_WIDE(32, 16) HIGHBD_SMOOTH_NXM_WIDE(32, 32) HIGHBD_SMOOTH_NXM_WIDE(32, 64) HIGHBD_SMOOTH_NXM_WIDE(64, 16) HIGHBD_SMOOTH_NXM_WIDE(64, 32) HIGHBD_SMOOTH_NXM_WIDE(64, 64) #undef HIGHBD_SMOOTH_NXM_WIDE static void highbd_smooth_v_4xh_neon(uint16_t *dst, ptrdiff_t stride, const uint16_t *const top_row, const uint16_t *const left_column, const int height) { const uint16_t bottom_left = left_column[height - 1]; const uint16_t *const weights_y = smooth_weights_u16 + height - 4; const uint16x4_t top_v = vld1_u16(top_row); const uint16x4_t bottom_left_v = vdup_n_u16(bottom_left); for (int y = 0; y < height; ++y) { const uint32x4_t weighted_bl = vmull_n_u16(bottom_left_v, 256 - weights_y[y]); const uint32x4_t weighted_top = vmlal_n_u16(weighted_bl, top_v, weights_y[y]); vst1_u16(dst, vrshrn_n_u32(weighted_top, SMOOTH_WEIGHT_LOG2_SCALE)); dst += stride; } } static void highbd_smooth_v_8xh_neon(uint16_t *dst, const ptrdiff_t stride, const uint16_t *const top_row, const uint16_t *const left_column, const int height) { const uint16_t bottom_left = left_column[height - 1]; const uint16_t *const weights_y = smooth_weights_u16 + height - 4; const uint16x4_t top_low = vld1_u16(top_row); const uint16x4_t top_high = vld1_u16(top_row + 4); const uint16x4_t bottom_left_v = vdup_n_u16(bottom_left); for (int y = 0; y < height; ++y) { const uint32x4_t weighted_bl = vmull_n_u16(bottom_left_v, 256 - weights_y[y]); const uint32x4_t weighted_top_low = vmlal_n_u16(weighted_bl, top_low, weights_y[y]); vst1_u16(dst, vrshrn_n_u32(weighted_top_low, SMOOTH_WEIGHT_LOG2_SCALE)); const uint32x4_t weighted_top_high = vmlal_n_u16(weighted_bl, top_high, weights_y[y]); vst1_u16(dst + 4, vrshrn_n_u32(weighted_top_high, SMOOTH_WEIGHT_LOG2_SCALE)); dst += stride; } } #define HIGHBD_SMOOTH_V_NXM(W, H) \ void aom_highbd_smooth_v_predictor_##W##x##H##_neon( \ uint16_t *dst, ptrdiff_t y_stride, const uint16_t *above, \ const uint16_t *left, int bd) { \ (void)bd; \ highbd_smooth_v_##W##xh_neon(dst, y_stride, above, left, H); \ } HIGHBD_SMOOTH_V_NXM(4, 4) HIGHBD_SMOOTH_V_NXM(4, 8) HIGHBD_SMOOTH_V_NXM(4, 16) HIGHBD_SMOOTH_V_NXM(8, 4) HIGHBD_SMOOTH_V_NXM(8, 8) HIGHBD_SMOOTH_V_NXM(8, 16) HIGHBD_SMOOTH_V_NXM(8, 32) #undef HIGHBD_SMOOTH_V_NXM // For width 16 and above. #define HIGHBD_SMOOTH_V_PREDICTOR(W) \ static void highbd_smooth_v_##W##xh_neon( \ uint16_t *dst, const ptrdiff_t stride, const uint16_t *const top_row, \ const uint16_t *const left_column, const int height) { \ const uint16_t bottom_left = left_column[height - 1]; \ const uint16_t *const weights_y = smooth_weights_u16 + height - 4; \ \ uint16x4x2_t top_vals[(W) >> 3]; \ for (int i = 0; i < (W) >> 3; ++i) { \ const int x = i << 3; \ top_vals[i].val[0] = vld1_u16(top_row + x); \ top_vals[i].val[1] = vld1_u16(top_row + x + 4); \ } \ \ const uint16x4_t bottom_left_v = vdup_n_u16(bottom_left); \ for (int y = 0; y < height; ++y) { \ const uint32x4_t weighted_bl = \ vmull_n_u16(bottom_left_v, 256 - weights_y[y]); \ \ uint16_t *dst_x = dst; \ for (int i = 0; i < (W) >> 3; ++i) { \ const uint32x4_t weighted_top_low = \ vmlal_n_u16(weighted_bl, top_vals[i].val[0], weights_y[y]); \ vst1_u16(dst_x, \ vrshrn_n_u32(weighted_top_low, SMOOTH_WEIGHT_LOG2_SCALE)); \ \ const uint32x4_t weighted_top_high = \ vmlal_n_u16(weighted_bl, top_vals[i].val[1], weights_y[y]); \ vst1_u16(dst_x + 4, \ vrshrn_n_u32(weighted_top_high, SMOOTH_WEIGHT_LOG2_SCALE)); \ dst_x += 8; \ } \ dst += stride; \ } \ } HIGHBD_SMOOTH_V_PREDICTOR(16) HIGHBD_SMOOTH_V_PREDICTOR(32) HIGHBD_SMOOTH_V_PREDICTOR(64) #undef HIGHBD_SMOOTH_V_PREDICTOR #define HIGHBD_SMOOTH_V_NXM_WIDE(W, H) \ void aom_highbd_smooth_v_predictor_##W##x##H##_neon( \ uint16_t *dst, ptrdiff_t y_stride, const uint16_t *above, \ const uint16_t *left, int bd) { \ (void)bd; \ highbd_smooth_v_##W##xh_neon(dst, y_stride, above, left, H); \ } HIGHBD_SMOOTH_V_NXM_WIDE(16, 4) HIGHBD_SMOOTH_V_NXM_WIDE(16, 8) HIGHBD_SMOOTH_V_NXM_WIDE(16, 16) HIGHBD_SMOOTH_V_NXM_WIDE(16, 32) HIGHBD_SMOOTH_V_NXM_WIDE(16, 64) HIGHBD_SMOOTH_V_NXM_WIDE(32, 8) HIGHBD_SMOOTH_V_NXM_WIDE(32, 16) HIGHBD_SMOOTH_V_NXM_WIDE(32, 32) HIGHBD_SMOOTH_V_NXM_WIDE(32, 64) HIGHBD_SMOOTH_V_NXM_WIDE(64, 16) HIGHBD_SMOOTH_V_NXM_WIDE(64, 32) HIGHBD_SMOOTH_V_NXM_WIDE(64, 64) #undef HIGHBD_SMOOTH_V_NXM_WIDE static INLINE void highbd_smooth_h_4xh_neon(uint16_t *dst, ptrdiff_t stride, const uint16_t *const top_row, const uint16_t *const left_column, const int height) { const uint16_t top_right = top_row[3]; const uint16x4_t weights_x = vld1_u16(smooth_weights_u16); const uint16x4_t scaled_weights_x = negate_s8(weights_x); const uint32x4_t weighted_tr = vmull_n_u16(scaled_weights_x, top_right); for (int y = 0; y < height; ++y) { const uint32x4_t weighted_left = vmlal_n_u16(weighted_tr, weights_x, left_column[y]); vst1_u16(dst, vrshrn_n_u32(weighted_left, SMOOTH_WEIGHT_LOG2_SCALE)); dst += stride; } } static INLINE void highbd_smooth_h_8xh_neon(uint16_t *dst, ptrdiff_t stride, const uint16_t *const top_row, const uint16_t *const left_column, const int height) { const uint16_t top_right = top_row[7]; const uint16x4x2_t weights_x = { { vld1_u16(smooth_weights_u16 + 4), vld1_u16(smooth_weights_u16 + 8) } }; const uint32x4_t weighted_tr_low = vmull_n_u16(negate_s8(weights_x.val[0]), top_right); const uint32x4_t weighted_tr_high = vmull_n_u16(negate_s8(weights_x.val[1]), top_right); for (int y = 0; y < height; ++y) { const uint16_t left_y = left_column[y]; const uint32x4_t weighted_left_low = vmlal_n_u16(weighted_tr_low, weights_x.val[0], left_y); vst1_u16(dst, vrshrn_n_u32(weighted_left_low, SMOOTH_WEIGHT_LOG2_SCALE)); const uint32x4_t weighted_left_high = vmlal_n_u16(weighted_tr_high, weights_x.val[1], left_y); vst1_u16(dst + 4, vrshrn_n_u32(weighted_left_high, SMOOTH_WEIGHT_LOG2_SCALE)); dst += stride; } } #define HIGHBD_SMOOTH_H_NXM(W, H) \ void aom_highbd_smooth_h_predictor_##W##x##H##_neon( \ uint16_t *dst, ptrdiff_t y_stride, const uint16_t *above, \ const uint16_t *left, int bd) { \ (void)bd; \ highbd_smooth_h_##W##xh_neon(dst, y_stride, above, left, H); \ } HIGHBD_SMOOTH_H_NXM(4, 4) HIGHBD_SMOOTH_H_NXM(4, 8) HIGHBD_SMOOTH_H_NXM(4, 16) HIGHBD_SMOOTH_H_NXM(8, 4) HIGHBD_SMOOTH_H_NXM(8, 8) HIGHBD_SMOOTH_H_NXM(8, 16) HIGHBD_SMOOTH_H_NXM(8, 32) #undef HIGHBD_SMOOTH_H_NXM // For width 16 and above. #define HIGHBD_SMOOTH_H_PREDICTOR(W) \ void highbd_smooth_h_##W##xh_neon( \ uint16_t *dst, ptrdiff_t stride, const uint16_t *const top_row, \ const uint16_t *const left_column, const int height) { \ const uint16_t top_right = top_row[(W)-1]; \ \ uint16x4_t weights_x_low[(W) >> 3]; \ uint16x4_t weights_x_high[(W) >> 3]; \ uint32x4_t weighted_tr_low[(W) >> 3]; \ uint32x4_t weighted_tr_high[(W) >> 3]; \ for (int i = 0; i < (W) >> 3; ++i) { \ const int x = i << 3; \ weights_x_low[i] = vld1_u16(smooth_weights_u16 + (W)-4 + x); \ weighted_tr_low[i] = \ vmull_n_u16(negate_s8(weights_x_low[i]), top_right); \ weights_x_high[i] = vld1_u16(smooth_weights_u16 + (W) + x); \ weighted_tr_high[i] = \ vmull_n_u16(negate_s8(weights_x_high[i]), top_right); \ } \ \ for (int y = 0; y < height; ++y) { \ uint16_t *dst_x = dst; \ const uint16_t left_y = left_column[y]; \ for (int i = 0; i < (W) >> 3; ++i) { \ const uint32x4_t weighted_left_low = \ vmlal_n_u16(weighted_tr_low[i], weights_x_low[i], left_y); \ vst1_u16(dst_x, \ vrshrn_n_u32(weighted_left_low, SMOOTH_WEIGHT_LOG2_SCALE)); \ \ const uint32x4_t weighted_left_high = \ vmlal_n_u16(weighted_tr_high[i], weights_x_high[i], left_y); \ vst1_u16(dst_x + 4, \ vrshrn_n_u32(weighted_left_high, SMOOTH_WEIGHT_LOG2_SCALE)); \ dst_x += 8; \ } \ dst += stride; \ } \ } HIGHBD_SMOOTH_H_PREDICTOR(16) HIGHBD_SMOOTH_H_PREDICTOR(32) HIGHBD_SMOOTH_H_PREDICTOR(64) #undef HIGHBD_SMOOTH_H_PREDICTOR #define HIGHBD_SMOOTH_H_NXM_WIDE(W, H) \ void aom_highbd_smooth_h_predictor_##W##x##H##_neon( \ uint16_t *dst, ptrdiff_t y_stride, const uint16_t *above, \ const uint16_t *left, int bd) { \ (void)bd; \ highbd_smooth_h_##W##xh_neon(dst, y_stride, above, left, H); \ } HIGHBD_SMOOTH_H_NXM_WIDE(16, 4) HIGHBD_SMOOTH_H_NXM_WIDE(16, 8) HIGHBD_SMOOTH_H_NXM_WIDE(16, 16) HIGHBD_SMOOTH_H_NXM_WIDE(16, 32) HIGHBD_SMOOTH_H_NXM_WIDE(16, 64) HIGHBD_SMOOTH_H_NXM_WIDE(32, 8) HIGHBD_SMOOTH_H_NXM_WIDE(32, 16) HIGHBD_SMOOTH_H_NXM_WIDE(32, 32) HIGHBD_SMOOTH_H_NXM_WIDE(32, 64) HIGHBD_SMOOTH_H_NXM_WIDE(64, 16) HIGHBD_SMOOTH_H_NXM_WIDE(64, 32) HIGHBD_SMOOTH_H_NXM_WIDE(64, 64) #undef HIGHBD_SMOOTH_H_NXM_WIDE // ----------------------------------------------------------------------------- // Z1 static int16_t iota1_s16[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8 }; static int16_t iota2_s16[] = { 0, 2, 4, 6, 8, 10, 12, 14 }; static AOM_FORCE_INLINE uint16x4_t highbd_dr_z1_apply_shift_x4(uint16x4_t a0, uint16x4_t a1, int shift) { // The C implementation of the z1 predictor uses (32 - shift) and a right // shift by 5, however we instead double shift to avoid an unnecessary right // shift by 1. uint32x4_t res = vmull_n_u16(a1, shift); res = vmlal_n_u16(res, a0, 64 - shift); return vrshrn_n_u32(res, 6); } static AOM_FORCE_INLINE uint16x8_t highbd_dr_z1_apply_shift_x8(uint16x8_t a0, uint16x8_t a1, int shift) { return vcombine_u16( highbd_dr_z1_apply_shift_x4(vget_low_u16(a0), vget_low_u16(a1), shift), highbd_dr_z1_apply_shift_x4(vget_high_u16(a0), vget_high_u16(a1), shift)); } static void highbd_dr_prediction_z1_upsample0_neon(uint16_t *dst, ptrdiff_t stride, int bw, int bh, const uint16_t *above, int dx) { assert(bw % 4 == 0); assert(bh % 4 == 0); assert(dx > 0); const int max_base_x = (bw + bh) - 1; const int above_max = above[max_base_x]; const int16x8_t iota1x8 = vld1q_s16(iota1_s16); const int16x4_t iota1x4 = vget_low_s16(iota1x8); int x = dx; int r = 0; do { const int base = x >> 6; if (base >= max_base_x) { for (int i = r; i < bh; ++i) { aom_memset16(dst, above_max, bw); dst += stride; } return; } // The C implementation of the z1 predictor when not upsampling uses: // ((x & 0x3f) >> 1) // The right shift is unnecessary here since we instead shift by +1 later, // so adjust the mask to 0x3e to ensure we don't consider the extra bit. const int shift = x & 0x3e; if (bw == 4) { const uint16x4_t a0 = vld1_u16(&above[base]); const uint16x4_t a1 = vld1_u16(&above[base + 1]); const uint16x4_t val = highbd_dr_z1_apply_shift_x4(a0, a1, shift); const uint16x4_t cmp = vcgt_s16(vdup_n_s16(max_base_x - base), iota1x4); const uint16x4_t res = vbsl_u16(cmp, val, vdup_n_u16(above_max)); vst1_u16(dst, res); } else { int c = 0; do { const uint16x8_t a0 = vld1q_u16(&above[base + c]); const uint16x8_t a1 = vld1q_u16(&above[base + c + 1]); const uint16x8_t val = highbd_dr_z1_apply_shift_x8(a0, a1, shift); const uint16x8_t cmp = vcgtq_s16(vdupq_n_s16(max_base_x - base - c), iota1x8); const uint16x8_t res = vbslq_u16(cmp, val, vdupq_n_u16(above_max)); vst1q_u16(dst + c, res); c += 8; } while (c < bw); } dst += stride; x += dx; } while (++r < bh); } static void highbd_dr_prediction_z1_upsample1_neon(uint16_t *dst, ptrdiff_t stride, int bw, int bh, const uint16_t *above, int dx) { assert(bw % 4 == 0); assert(bh % 4 == 0); assert(dx > 0); const int max_base_x = ((bw + bh) - 1) << 1; const int above_max = above[max_base_x]; const int16x8_t iota2x8 = vld1q_s16(iota2_s16); const int16x4_t iota2x4 = vget_low_s16(iota2x8); int x = dx; int r = 0; do { const int base = x >> 5; if (base >= max_base_x) { for (int i = r; i < bh; ++i) { aom_memset16(dst, above_max, bw); dst += stride; } return; } // The C implementation of the z1 predictor when upsampling uses: // (((x << 1) & 0x3f) >> 1) // The right shift is unnecessary here since we instead shift by +1 later, // so adjust the mask to 0x3e to ensure we don't consider the extra bit. const int shift = (x << 1) & 0x3e; if (bw == 4) { const uint16x4x2_t a01 = vld2_u16(&above[base]); const uint16x4_t val = highbd_dr_z1_apply_shift_x4(a01.val[0], a01.val[1], shift); const uint16x4_t cmp = vcgt_s16(vdup_n_s16(max_base_x - base), iota2x4); const uint16x4_t res = vbsl_u16(cmp, val, vdup_n_u16(above_max)); vst1_u16(dst, res); } else { int c = 0; do { const uint16x8x2_t a01 = vld2q_u16(&above[base + 2 * c]); const uint16x8_t val = highbd_dr_z1_apply_shift_x8(a01.val[0], a01.val[1], shift); const uint16x8_t cmp = vcgtq_s16(vdupq_n_s16(max_base_x - base - 2 * c), iota2x8); const uint16x8_t res = vbslq_u16(cmp, val, vdupq_n_u16(above_max)); vst1q_u16(dst + c, res); c += 8; } while (c < bw); } dst += stride; x += dx; } while (++r < bh); } // Directional prediction, zone 1: 0 < angle < 90 void av1_highbd_dr_prediction_z1_neon(uint16_t *dst, ptrdiff_t stride, int bw, int bh, const uint16_t *above, const uint16_t *left, int upsample_above, int dx, int dy, int bd) { (void)left; (void)dy; (void)bd; assert(dy == 1); if (upsample_above) { highbd_dr_prediction_z1_upsample1_neon(dst, stride, bw, bh, above, dx); } else { highbd_dr_prediction_z1_upsample0_neon(dst, stride, bw, bh, above, dx); } } // ----------------------------------------------------------------------------- // Z2 #if AOM_ARCH_AARCH64 // Incrementally shift more elements from `above` into the result, merging with // existing `left` elements. // X0, X1, X2, X3 // Y0, X0, X1, X2 // Y0, Y1, X0, X1 // Y0, Y1, Y2, X0 // Y0, Y1, Y2, Y3 // clang-format off static const uint8_t z2_merge_shuffles_u16x4[5][8] = { { 8, 9, 10, 11, 12, 13, 14, 15 }, { 0, 1, 8, 9, 10, 11, 12, 13 }, { 0, 1, 2, 3, 8, 9, 10, 11 }, { 0, 1, 2, 3, 4, 5, 8, 9 }, { 0, 1, 2, 3, 4, 5, 6, 7 }, }; // clang-format on // Incrementally shift more elements from `above` into the result, merging with // existing `left` elements. // X0, X1, X2, X3, X4, X5, X6, X7 // Y0, X0, X1, X2, X3, X4, X5, X6 // Y0, Y1, X0, X1, X2, X3, X4, X5 // Y0, Y1, Y2, X0, X1, X2, X3, X4 // Y0, Y1, Y2, Y3, X0, X1, X2, X3 // Y0, Y1, Y2, Y3, Y4, X0, X1, X2 // Y0, Y1, Y2, Y3, Y4, Y5, X0, X1 // Y0, Y1, Y2, Y3, Y4, Y5, Y6, X0 // Y0, Y1, Y2, Y3, Y4, Y5, Y6, Y7 // clang-format off static const uint8_t z2_merge_shuffles_u16x8[9][16] = { { 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 }, { 0, 1, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 }, { 0, 1, 2, 3, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27 }, { 0, 1, 2, 3, 4, 5, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 }, { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 }, { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 16, 17, 18, 19, 20, 21 }, { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 16, 17, 18, 19 }, { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 17 }, { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }, }; // clang-format on // clang-format off static const uint16_t z2_y_iter_masks_u16x4[5][4] = { { 0U, 0U, 0U, 0U }, { 0xffffU, 0U, 0U, 0U }, { 0xffffU, 0xffffU, 0U, 0U }, { 0xffffU, 0xffffU, 0xffffU, 0U }, { 0xffffU, 0xffffU, 0xffffU, 0xffffU }, }; // clang-format on // clang-format off static const uint16_t z2_y_iter_masks_u16x8[9][8] = { { 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U }, { 0xffffU, 0U, 0U, 0U, 0U, 0U, 0U, 0U }, { 0xffffU, 0xffffU, 0U, 0U, 0U, 0U, 0U, 0U }, { 0xffffU, 0xffffU, 0xffffU, 0U, 0U, 0U, 0U, 0U }, { 0xffffU, 0xffffU, 0xffffU, 0xffffU, 0U, 0U, 0U, 0U }, { 0xffffU, 0xffffU, 0xffffU, 0xffffU, 0xffffU, 0U, 0U, 0U }, { 0xffffU, 0xffffU, 0xffffU, 0xffffU, 0xffffU, 0xffffU, 0U, 0U }, { 0xffffU, 0xffffU, 0xffffU, 0xffffU, 0xffffU, 0xffffU, 0xffffU, 0U }, { 0xffffU, 0xffffU, 0xffffU, 0xffffU, 0xffffU, 0xffffU, 0xffffU, 0xffffU }, }; // clang-format on static AOM_FORCE_INLINE uint16x4_t highbd_dr_prediction_z2_tbl_left_x4_from_x8( const uint16x8_t left_data, const int16x4_t indices, int base, int n) { // Need to adjust indices to operate on 0-based indices rather than // `base`-based indices and then adjust from uint16x4 indices to uint8x8 // indices so we can use a tbl instruction (which only operates on bytes). uint8x8_t left_indices = vreinterpret_u8_s16(vsub_s16(indices, vdup_n_s16(base))); left_indices = vtrn1_u8(left_indices, left_indices); left_indices = vadd_u8(left_indices, left_indices); left_indices = vadd_u8(left_indices, vreinterpret_u8_u16(vdup_n_u16(0x0100))); const uint16x4_t ret = vreinterpret_u16_u8( vqtbl1_u8(vreinterpretq_u8_u16(left_data), left_indices)); return vand_u16(ret, vld1_u16(z2_y_iter_masks_u16x4[n])); } static AOM_FORCE_INLINE uint16x4_t highbd_dr_prediction_z2_tbl_left_x4_from_x16( const uint16x8x2_t left_data, const int16x4_t indices, int base, int n) { // Need to adjust indices to operate on 0-based indices rather than // `base`-based indices and then adjust from uint16x4 indices to uint8x8 // indices so we can use a tbl instruction (which only operates on bytes). uint8x8_t left_indices = vreinterpret_u8_s16(vsub_s16(indices, vdup_n_s16(base))); left_indices = vtrn1_u8(left_indices, left_indices); left_indices = vadd_u8(left_indices, left_indices); left_indices = vadd_u8(left_indices, vreinterpret_u8_u16(vdup_n_u16(0x0100))); uint8x16x2_t data_u8 = { { vreinterpretq_u8_u16(left_data.val[0]), vreinterpretq_u8_u16(left_data.val[1]) } }; const uint16x4_t ret = vreinterpret_u16_u8(vqtbl2_u8(data_u8, left_indices)); return vand_u16(ret, vld1_u16(z2_y_iter_masks_u16x4[n])); } static AOM_FORCE_INLINE uint16x8_t highbd_dr_prediction_z2_tbl_left_x8_from_x8( const uint16x8_t left_data, const int16x8_t indices, int base, int n) { // Need to adjust indices to operate on 0-based indices rather than // `base`-based indices and then adjust from uint16x4 indices to uint8x8 // indices so we can use a tbl instruction (which only operates on bytes). uint8x16_t left_indices = vreinterpretq_u8_s16(vsubq_s16(indices, vdupq_n_s16(base))); left_indices = vtrn1q_u8(left_indices, left_indices); left_indices = vaddq_u8(left_indices, left_indices); left_indices = vaddq_u8(left_indices, vreinterpretq_u8_u16(vdupq_n_u16(0x0100))); const uint16x8_t ret = vreinterpretq_u16_u8( vqtbl1q_u8(vreinterpretq_u8_u16(left_data), left_indices)); return vandq_u16(ret, vld1q_u16(z2_y_iter_masks_u16x8[n])); } static AOM_FORCE_INLINE uint16x8_t highbd_dr_prediction_z2_tbl_left_x8_from_x16( const uint16x8x2_t left_data, const int16x8_t indices, int base, int n) { // Need to adjust indices to operate on 0-based indices rather than // `base`-based indices and then adjust from uint16x4 indices to uint8x8 // indices so we can use a tbl instruction (which only operates on bytes). uint8x16_t left_indices = vreinterpretq_u8_s16(vsubq_s16(indices, vdupq_n_s16(base))); left_indices = vtrn1q_u8(left_indices, left_indices); left_indices = vaddq_u8(left_indices, left_indices); left_indices = vaddq_u8(left_indices, vreinterpretq_u8_u16(vdupq_n_u16(0x0100))); uint8x16x2_t data_u8 = { { vreinterpretq_u8_u16(left_data.val[0]), vreinterpretq_u8_u16(left_data.val[1]) } }; const uint16x8_t ret = vreinterpretq_u16_u8(vqtbl2q_u8(data_u8, left_indices)); return vandq_u16(ret, vld1q_u16(z2_y_iter_masks_u16x8[n])); } #endif // AOM_ARCH_AARCH64 static AOM_FORCE_INLINE uint16x4x2_t highbd_dr_prediction_z2_gather_left_x4( const uint16_t *left, const int16x4_t indices, int n) { assert(n > 0); assert(n <= 4); // Load two elements at a time and then uzp them into separate vectors, to // reduce the number of memory accesses. uint32x2_t ret0_u32 = vdup_n_u32(0); uint32x2_t ret1_u32 = vdup_n_u32(0); // Use a single vget_lane_u64 to minimize vector to general purpose register // transfers and then mask off the bits we actually want. const uint64_t indices0123 = vget_lane_u64(vreinterpret_u64_s16(indices), 0); const int idx0 = (int16_t)((indices0123 >> 0) & 0xffffU); const int idx1 = (int16_t)((indices0123 >> 16) & 0xffffU); const int idx2 = (int16_t)((indices0123 >> 32) & 0xffffU); const int idx3 = (int16_t)((indices0123 >> 48) & 0xffffU); // At time of writing both Clang and GCC produced better code with these // nested if-statements compared to a switch statement with fallthrough. ret0_u32 = vld1_lane_u32((const uint32_t *)(left + idx0), ret0_u32, 0); if (n > 1) { ret0_u32 = vld1_lane_u32((const uint32_t *)(left + idx1), ret0_u32, 1); if (n > 2) { ret1_u32 = vld1_lane_u32((const uint32_t *)(left + idx2), ret1_u32, 0); if (n > 3) { ret1_u32 = vld1_lane_u32((const uint32_t *)(left + idx3), ret1_u32, 1); } } } return vuzp_u16(vreinterpret_u16_u32(ret0_u32), vreinterpret_u16_u32(ret1_u32)); } static AOM_FORCE_INLINE uint16x8x2_t highbd_dr_prediction_z2_gather_left_x8( const uint16_t *left, const int16x8_t indices, int n) { assert(n > 0); assert(n <= 8); // Load two elements at a time and then uzp them into separate vectors, to // reduce the number of memory accesses. uint32x4_t ret0_u32 = vdupq_n_u32(0); uint32x4_t ret1_u32 = vdupq_n_u32(0); // Use a pair of vget_lane_u64 to minimize vector to general purpose register // transfers and then mask off the bits we actually want. const uint64_t indices0123 = vgetq_lane_u64(vreinterpretq_u64_s16(indices), 0); const uint64_t indices4567 = vgetq_lane_u64(vreinterpretq_u64_s16(indices), 1); const int idx0 = (int16_t)((indices0123 >> 0) & 0xffffU); const int idx1 = (int16_t)((indices0123 >> 16) & 0xffffU); const int idx2 = (int16_t)((indices0123 >> 32) & 0xffffU); const int idx3 = (int16_t)((indices0123 >> 48) & 0xffffU); const int idx4 = (int16_t)((indices4567 >> 0) & 0xffffU); const int idx5 = (int16_t)((indices4567 >> 16) & 0xffffU); const int idx6 = (int16_t)((indices4567 >> 32) & 0xffffU); const int idx7 = (int16_t)((indices4567 >> 48) & 0xffffU); // At time of writing both Clang and GCC produced better code with these // nested if-statements compared to a switch statement with fallthrough. ret0_u32 = vld1q_lane_u32((const uint32_t *)(left + idx0), ret0_u32, 0); if (n > 1) { ret0_u32 = vld1q_lane_u32((const uint32_t *)(left + idx1), ret0_u32, 1); if (n > 2) { ret0_u32 = vld1q_lane_u32((const uint32_t *)(left + idx2), ret0_u32, 2); if (n > 3) { ret0_u32 = vld1q_lane_u32((const uint32_t *)(left + idx3), ret0_u32, 3); if (n > 4) { ret1_u32 = vld1q_lane_u32((const uint32_t *)(left + idx4), ret1_u32, 0); if (n > 5) { ret1_u32 = vld1q_lane_u32((const uint32_t *)(left + idx5), ret1_u32, 1); if (n > 6) { ret1_u32 = vld1q_lane_u32((const uint32_t *)(left + idx6), ret1_u32, 2); if (n > 7) { ret1_u32 = vld1q_lane_u32((const uint32_t *)(left + idx7), ret1_u32, 3); } } } } } } } return vuzpq_u16(vreinterpretq_u16_u32(ret0_u32), vreinterpretq_u16_u32(ret1_u32)); } static AOM_FORCE_INLINE uint16x4_t highbd_dr_prediction_z2_merge_x4( uint16x4_t out_x, uint16x4_t out_y, int base_shift) { assert(base_shift >= 0); assert(base_shift <= 4); // On AArch64 we can permute the data from the `above` and `left` vectors // into a single vector in a single load (of the permute vector) + tbl. #if AOM_ARCH_AARCH64 const uint8x8x2_t out_yx = { { vreinterpret_u8_u16(out_y), vreinterpret_u8_u16(out_x) } }; return vreinterpret_u16_u8( vtbl2_u8(out_yx, vld1_u8(z2_merge_shuffles_u16x4[base_shift]))); #else uint16x4_t out = out_y; for (int c2 = base_shift, x_idx = 0; c2 < 4; ++c2, ++x_idx) { out[c2] = out_x[x_idx]; } return out; #endif } static AOM_FORCE_INLINE uint16x8_t highbd_dr_prediction_z2_merge_x8( uint16x8_t out_x, uint16x8_t out_y, int base_shift) { assert(base_shift >= 0); assert(base_shift <= 8); // On AArch64 we can permute the data from the `above` and `left` vectors // into a single vector in a single load (of the permute vector) + tbl. #if AOM_ARCH_AARCH64 const uint8x16x2_t out_yx = { { vreinterpretq_u8_u16(out_y), vreinterpretq_u8_u16(out_x) } }; return vreinterpretq_u16_u8( vqtbl2q_u8(out_yx, vld1q_u8(z2_merge_shuffles_u16x8[base_shift]))); #else uint16x8_t out = out_y; for (int c2 = base_shift, x_idx = 0; c2 < 8; ++c2, ++x_idx) { out[c2] = out_x[x_idx]; } return out; #endif } static AOM_FORCE_INLINE uint16x4_t highbd_dr_prediction_z2_apply_shift_x4( uint16x4_t a0, uint16x4_t a1, int16x4_t shift) { uint32x4_t res = vmull_u16(a1, vreinterpret_u16_s16(shift)); res = vmlal_u16(res, a0, vsub_u16(vdup_n_u16(32), vreinterpret_u16_s16(shift))); return vrshrn_n_u32(res, 5); } static AOM_FORCE_INLINE uint16x8_t highbd_dr_prediction_z2_apply_shift_x8( uint16x8_t a0, uint16x8_t a1, int16x8_t shift) { return vcombine_u16( highbd_dr_prediction_z2_apply_shift_x4(vget_low_u16(a0), vget_low_u16(a1), vget_low_s16(shift)), highbd_dr_prediction_z2_apply_shift_x4( vget_high_u16(a0), vget_high_u16(a1), vget_high_s16(shift))); } static AOM_FORCE_INLINE uint16x4_t highbd_dr_prediction_z2_step_x4( const uint16_t *above, const uint16x4_t above0, const uint16x4_t above1, const uint16_t *left, int dx, int dy, int r, int c) { const int16x4_t iota = vld1_s16(iota1_s16); const int x0 = (c << 6) - (r + 1) * dx; const int y0 = (r << 6) - (c + 1) * dy; const int16x4_t x0123 = vadd_s16(vdup_n_s16(x0), vshl_n_s16(iota, 6)); const int16x4_t y0123 = vsub_s16(vdup_n_s16(y0), vmul_n_s16(iota, dy)); const int16x4_t shift_x0123 = vshr_n_s16(vand_s16(x0123, vdup_n_s16(0x3F)), 1); const int16x4_t shift_y0123 = vshr_n_s16(vand_s16(y0123, vdup_n_s16(0x3F)), 1); const int16x4_t base_y0123 = vshr_n_s16(y0123, 6); const int base_shift = ((((r + 1) * dx) - 1) >> 6) - c; // Based on the value of `base_shift` there are three possible cases to // compute the result: // 1) base_shift <= 0: We can load and operate entirely on data from the // `above` input vector. // 2) base_shift < vl: We can load from `above[-1]` and shift // `vl - base_shift` elements across to the end of the // vector, then compute the remainder from `left`. // 3) base_shift >= vl: We can load and operate entirely on data from the // `left` input vector. if (base_shift <= 0) { const int base_x = x0 >> 6; const uint16x4_t a0 = vld1_u16(above + base_x); const uint16x4_t a1 = vld1_u16(above + base_x + 1); return highbd_dr_prediction_z2_apply_shift_x4(a0, a1, shift_x0123); } else if (base_shift < 4) { const uint16x4x2_t l01 = highbd_dr_prediction_z2_gather_left_x4( left + 1, base_y0123, base_shift); const uint16x4_t out16_y = highbd_dr_prediction_z2_apply_shift_x4( l01.val[0], l01.val[1], shift_y0123); // No need to reload from above in the loop, just use pre-loaded constants. const uint16x4_t out16_x = highbd_dr_prediction_z2_apply_shift_x4(above0, above1, shift_x0123); return highbd_dr_prediction_z2_merge_x4(out16_x, out16_y, base_shift); } else { const uint16x4x2_t l01 = highbd_dr_prediction_z2_gather_left_x4(left + 1, base_y0123, 4); return highbd_dr_prediction_z2_apply_shift_x4(l01.val[0], l01.val[1], shift_y0123); } } static AOM_FORCE_INLINE uint16x8_t highbd_dr_prediction_z2_step_x8( const uint16_t *above, const uint16x8_t above0, const uint16x8_t above1, const uint16_t *left, int dx, int dy, int r, int c) { const int16x8_t iota = vld1q_s16(iota1_s16); const int x0 = (c << 6) - (r + 1) * dx; const int y0 = (r << 6) - (c + 1) * dy; const int16x8_t x01234567 = vaddq_s16(vdupq_n_s16(x0), vshlq_n_s16(iota, 6)); const int16x8_t y01234567 = vsubq_s16(vdupq_n_s16(y0), vmulq_n_s16(iota, dy)); const int16x8_t shift_x01234567 = vshrq_n_s16(vandq_s16(x01234567, vdupq_n_s16(0x3F)), 1); const int16x8_t shift_y01234567 = vshrq_n_s16(vandq_s16(y01234567, vdupq_n_s16(0x3F)), 1); const int16x8_t base_y01234567 = vshrq_n_s16(y01234567, 6); const int base_shift = ((((r + 1) * dx) - 1) >> 6) - c; // Based on the value of `base_shift` there are three possible cases to // compute the result: // 1) base_shift <= 0: We can load and operate entirely on data from the // `above` input vector. // 2) base_shift < vl: We can load from `above[-1]` and shift // `vl - base_shift` elements across to the end of the // vector, then compute the remainder from `left`. // 3) base_shift >= vl: We can load and operate entirely on data from the // `left` input vector. if (base_shift <= 0) { const int base_x = x0 >> 6; const uint16x8_t a0 = vld1q_u16(above + base_x); const uint16x8_t a1 = vld1q_u16(above + base_x + 1); return highbd_dr_prediction_z2_apply_shift_x8(a0, a1, shift_x01234567); } else if (base_shift < 8) { const uint16x8x2_t l01 = highbd_dr_prediction_z2_gather_left_x8( left + 1, base_y01234567, base_shift); const uint16x8_t out16_y = highbd_dr_prediction_z2_apply_shift_x8( l01.val[0], l01.val[1], shift_y01234567); // No need to reload from above in the loop, just use pre-loaded constants. const uint16x8_t out16_x = highbd_dr_prediction_z2_apply_shift_x8(above0, above1, shift_x01234567); return highbd_dr_prediction_z2_merge_x8(out16_x, out16_y, base_shift); } else { const uint16x8x2_t l01 = highbd_dr_prediction_z2_gather_left_x8(left + 1, base_y01234567, 8); return highbd_dr_prediction_z2_apply_shift_x8(l01.val[0], l01.val[1], shift_y01234567); } } // Left array is accessed from -1 through `bh - 1` inclusive. // Above array is accessed from -1 through `bw - 1` inclusive. #define HIGHBD_DR_PREDICTOR_Z2_WXH(bw, bh) \ static void highbd_dr_prediction_z2_##bw##x##bh##_neon( \ uint16_t *dst, ptrdiff_t stride, const uint16_t *above, \ const uint16_t *left, int upsample_above, int upsample_left, int dx, \ int dy, int bd) { \ (void)bd; \ (void)upsample_above; \ (void)upsample_left; \ assert(!upsample_above); \ assert(!upsample_left); \ assert(bw % 4 == 0); \ assert(bh % 4 == 0); \ assert(dx > 0); \ assert(dy > 0); \ \ uint16_t left_data[bh + 1]; \ memcpy(left_data, left - 1, (bh + 1) * sizeof(uint16_t)); \ \ uint16x8_t a0, a1; \ if (bw == 4) { \ a0 = vcombine_u16(vld1_u16(above - 1), vdup_n_u16(0)); \ a1 = vcombine_u16(vld1_u16(above + 0), vdup_n_u16(0)); \ } else { \ a0 = vld1q_u16(above - 1); \ a1 = vld1q_u16(above + 0); \ } \ \ int r = 0; \ do { \ if (bw == 4) { \ vst1_u16(dst, highbd_dr_prediction_z2_step_x4( \ above, vget_low_u16(a0), vget_low_u16(a1), \ left_data, dx, dy, r, 0)); \ } else { \ int c = 0; \ do { \ vst1q_u16(dst + c, highbd_dr_prediction_z2_step_x8( \ above, a0, a1, left_data, dx, dy, r, c)); \ c += 8; \ } while (c < bw); \ } \ dst += stride; \ } while (++r < bh); \ } HIGHBD_DR_PREDICTOR_Z2_WXH(4, 16) HIGHBD_DR_PREDICTOR_Z2_WXH(8, 16) HIGHBD_DR_PREDICTOR_Z2_WXH(8, 32) HIGHBD_DR_PREDICTOR_Z2_WXH(16, 4) HIGHBD_DR_PREDICTOR_Z2_WXH(16, 8) HIGHBD_DR_PREDICTOR_Z2_WXH(16, 16) HIGHBD_DR_PREDICTOR_Z2_WXH(16, 32) HIGHBD_DR_PREDICTOR_Z2_WXH(16, 64) HIGHBD_DR_PREDICTOR_Z2_WXH(32, 8) HIGHBD_DR_PREDICTOR_Z2_WXH(32, 16) HIGHBD_DR_PREDICTOR_Z2_WXH(32, 32) HIGHBD_DR_PREDICTOR_Z2_WXH(32, 64) HIGHBD_DR_PREDICTOR_Z2_WXH(64, 16) HIGHBD_DR_PREDICTOR_Z2_WXH(64, 32) HIGHBD_DR_PREDICTOR_Z2_WXH(64, 64) #undef HIGHBD_DR_PREDICTOR_Z2_WXH typedef void (*highbd_dr_prediction_z2_ptr)(uint16_t *dst, ptrdiff_t stride, const uint16_t *above, const uint16_t *left, int upsample_above, int upsample_left, int dx, int dy, int bd); static void highbd_dr_prediction_z2_4x4_neon(uint16_t *dst, ptrdiff_t stride, const uint16_t *above, const uint16_t *left, int upsample_above, int upsample_left, int dx, int dy, int bd) { (void)bd; assert(dx > 0); assert(dy > 0); const int frac_bits_x = 6 - upsample_above; const int frac_bits_y = 6 - upsample_left; const int min_base_x = -(1 << (upsample_above + frac_bits_x)); // if `upsample_left` then we need -2 through 6 inclusive from `left`. // else we only need -1 through 3 inclusive. #if AOM_ARCH_AARCH64 uint16x8_t left_data0, left_data1; if (upsample_left) { left_data0 = vld1q_u16(left - 2); left_data1 = vld1q_u16(left - 1); } else { left_data0 = vcombine_u16(vld1_u16(left - 1), vdup_n_u16(0)); left_data1 = vcombine_u16(vld1_u16(left + 0), vdup_n_u16(0)); } #endif const int16x4_t iota0123 = vld1_s16(iota1_s16); const int16x4_t iota1234 = vld1_s16(iota1_s16 + 1); for (int r = 0; r < 4; ++r) { const int base_shift = (min_base_x + (r + 1) * dx + 63) >> 6; const int x0 = (r + 1) * dx; const int16x4_t x0123 = vsub_s16(vshl_n_s16(iota0123, 6), vdup_n_s16(x0)); const int base_x0 = (-x0) >> frac_bits_x; if (base_shift <= 0) { uint16x4_t a0, a1; int16x4_t shift_x0123; if (upsample_above) { const uint16x4x2_t a01 = vld2_u16(above + base_x0); a0 = a01.val[0]; a1 = a01.val[1]; shift_x0123 = vand_s16(x0123, vdup_n_s16(0x1F)); } else { a0 = vld1_u16(above + base_x0); a1 = vld1_u16(above + base_x0 + 1); shift_x0123 = vshr_n_s16(vand_s16(x0123, vdup_n_s16(0x3F)), 1); } vst1_u16(dst, highbd_dr_prediction_z2_apply_shift_x4(a0, a1, shift_x0123)); } else if (base_shift < 4) { // Calculate Y component from `left`. const int y_iters = base_shift; const int16x4_t y0123 = vsub_s16(vdup_n_s16(r << 6), vmul_n_s16(iota1234, dy)); const int16x4_t base_y0123 = vshl_s16(y0123, vdup_n_s16(-frac_bits_y)); const int16x4_t shift_y0123 = vshr_n_s16( vand_s16(vmul_n_s16(y0123, 1 << upsample_left), vdup_n_s16(0x3F)), 1); uint16x4_t l0, l1; #if AOM_ARCH_AARCH64 const int left_data_base = upsample_left ? -2 : -1; l0 = highbd_dr_prediction_z2_tbl_left_x4_from_x8(left_data0, base_y0123, left_data_base, y_iters); l1 = highbd_dr_prediction_z2_tbl_left_x4_from_x8(left_data1, base_y0123, left_data_base, y_iters); #else const uint16x4x2_t l01 = highbd_dr_prediction_z2_gather_left_x4(left, base_y0123, y_iters); l0 = l01.val[0]; l1 = l01.val[1]; #endif const uint16x4_t out_y = highbd_dr_prediction_z2_apply_shift_x4(l0, l1, shift_y0123); // Calculate X component from `above`. const int16x4_t shift_x0123 = vshr_n_s16( vand_s16(vmul_n_s16(x0123, 1 << upsample_above), vdup_n_s16(0x3F)), 1); uint16x4_t a0, a1; if (upsample_above) { const uint16x4x2_t a01 = vld2_u16(above + (base_x0 % 2 == 0 ? -2 : -1)); a0 = a01.val[0]; a1 = a01.val[1]; } else { a0 = vld1_u16(above - 1); a1 = vld1_u16(above + 0); } const uint16x4_t out_x = highbd_dr_prediction_z2_apply_shift_x4(a0, a1, shift_x0123); // Combine X and Y vectors. const uint16x4_t out = highbd_dr_prediction_z2_merge_x4(out_x, out_y, base_shift); vst1_u16(dst, out); } else { const int16x4_t y0123 = vsub_s16(vdup_n_s16(r << 6), vmul_n_s16(iota1234, dy)); const int16x4_t base_y0123 = vshl_s16(y0123, vdup_n_s16(-frac_bits_y)); const int16x4_t shift_y0123 = vshr_n_s16( vand_s16(vmul_n_s16(y0123, 1 << upsample_left), vdup_n_s16(0x3F)), 1); uint16x4_t l0, l1; #if AOM_ARCH_AARCH64 const int left_data_base = upsample_left ? -2 : -1; l0 = highbd_dr_prediction_z2_tbl_left_x4_from_x8(left_data0, base_y0123, left_data_base, 4); l1 = highbd_dr_prediction_z2_tbl_left_x4_from_x8(left_data1, base_y0123, left_data_base, 4); #else const uint16x4x2_t l01 = highbd_dr_prediction_z2_gather_left_x4(left, base_y0123, 4); l0 = l01.val[0]; l1 = l01.val[1]; #endif vst1_u16(dst, highbd_dr_prediction_z2_apply_shift_x4(l0, l1, shift_y0123)); } dst += stride; } } static void highbd_dr_prediction_z2_4x8_neon(uint16_t *dst, ptrdiff_t stride, const uint16_t *above, const uint16_t *left, int upsample_above, int upsample_left, int dx, int dy, int bd) { (void)bd; assert(dx > 0); assert(dy > 0); const int frac_bits_x = 6 - upsample_above; const int frac_bits_y = 6 - upsample_left; const int min_base_x = -(1 << (upsample_above + frac_bits_x)); // if `upsample_left` then we need -2 through 14 inclusive from `left`. // else we only need -1 through 6 inclusive. #if AOM_ARCH_AARCH64 uint16x8x2_t left_data0, left_data1; if (upsample_left) { left_data0 = vld1q_u16_x2(left - 2); left_data1 = vld1q_u16_x2(left - 1); } else { left_data0 = (uint16x8x2_t){ { vld1q_u16(left - 1), vdupq_n_u16(0) } }; left_data1 = (uint16x8x2_t){ { vld1q_u16(left + 0), vdupq_n_u16(0) } }; } #endif const int16x4_t iota0123 = vld1_s16(iota1_s16); const int16x4_t iota1234 = vld1_s16(iota1_s16 + 1); for (int r = 0; r < 8; ++r) { const int base_shift = (min_base_x + (r + 1) * dx + 63) >> 6; const int x0 = (r + 1) * dx; const int16x4_t x0123 = vsub_s16(vshl_n_s16(iota0123, 6), vdup_n_s16(x0)); const int base_x0 = (-x0) >> frac_bits_x; if (base_shift <= 0) { uint16x4_t a0, a1; int16x4_t shift_x0123; if (upsample_above) { const uint16x4x2_t a01 = vld2_u16(above + base_x0); a0 = a01.val[0]; a1 = a01.val[1]; shift_x0123 = vand_s16(x0123, vdup_n_s16(0x1F)); } else { a0 = vld1_u16(above + base_x0); a1 = vld1_u16(above + base_x0 + 1); shift_x0123 = vand_s16(vshr_n_s16(x0123, 1), vdup_n_s16(0x1F)); } vst1_u16(dst, highbd_dr_prediction_z2_apply_shift_x4(a0, a1, shift_x0123)); } else if (base_shift < 4) { // Calculate Y component from `left`. const int y_iters = base_shift; const int16x4_t y0123 = vsub_s16(vdup_n_s16(r << 6), vmul_n_s16(iota1234, dy)); const int16x4_t base_y0123 = vshl_s16(y0123, vdup_n_s16(-frac_bits_y)); const int16x4_t shift_y0123 = vshr_n_s16( vand_s16(vmul_n_s16(y0123, 1 << upsample_left), vdup_n_s16(0x3F)), 1); uint16x4_t l0, l1; #if AOM_ARCH_AARCH64 const int left_data_base = upsample_left ? -2 : -1; l0 = highbd_dr_prediction_z2_tbl_left_x4_from_x16( left_data0, base_y0123, left_data_base, y_iters); l1 = highbd_dr_prediction_z2_tbl_left_x4_from_x16( left_data1, base_y0123, left_data_base, y_iters); #else const uint16x4x2_t l01 = highbd_dr_prediction_z2_gather_left_x4(left, base_y0123, y_iters); l0 = l01.val[0]; l1 = l01.val[1]; #endif const uint16x4_t out_y = highbd_dr_prediction_z2_apply_shift_x4(l0, l1, shift_y0123); // Calculate X component from `above`. uint16x4_t a0, a1; int16x4_t shift_x0123; if (upsample_above) { const uint16x4x2_t a01 = vld2_u16(above + (base_x0 % 2 == 0 ? -2 : -1)); a0 = a01.val[0]; a1 = a01.val[1]; shift_x0123 = vand_s16(x0123, vdup_n_s16(0x1F)); } else { a0 = vld1_u16(above - 1); a1 = vld1_u16(above + 0); shift_x0123 = vand_s16(vshr_n_s16(x0123, 1), vdup_n_s16(0x1F)); } const uint16x4_t out_x = highbd_dr_prediction_z2_apply_shift_x4(a0, a1, shift_x0123); // Combine X and Y vectors. const uint16x4_t out = highbd_dr_prediction_z2_merge_x4(out_x, out_y, base_shift); vst1_u16(dst, out); } else { const int16x4_t y0123 = vsub_s16(vdup_n_s16(r << 6), vmul_n_s16(iota1234, dy)); const int16x4_t base_y0123 = vshl_s16(y0123, vdup_n_s16(-frac_bits_y)); const int16x4_t shift_y0123 = vshr_n_s16( vand_s16(vmul_n_s16(y0123, 1 << upsample_left), vdup_n_s16(0x3F)), 1); uint16x4_t l0, l1; #if AOM_ARCH_AARCH64 const int left_data_base = upsample_left ? -2 : -1; l0 = highbd_dr_prediction_z2_tbl_left_x4_from_x16(left_data0, base_y0123, left_data_base, 4); l1 = highbd_dr_prediction_z2_tbl_left_x4_from_x16(left_data1, base_y0123, left_data_base, 4); #else const uint16x4x2_t l01 = highbd_dr_prediction_z2_gather_left_x4(left, base_y0123, 4); l0 = l01.val[0]; l1 = l01.val[1]; #endif vst1_u16(dst, highbd_dr_prediction_z2_apply_shift_x4(l0, l1, shift_y0123)); } dst += stride; } } static void highbd_dr_prediction_z2_8x4_neon(uint16_t *dst, ptrdiff_t stride, const uint16_t *above, const uint16_t *left, int upsample_above, int upsample_left, int dx, int dy, int bd) { (void)bd; assert(dx > 0); assert(dy > 0); const int frac_bits_x = 6 - upsample_above; const int frac_bits_y = 6 - upsample_left; const int min_base_x = -(1 << (upsample_above + frac_bits_x)); // if `upsample_left` then we need -2 through 6 inclusive from `left`. // else we only need -1 through 3 inclusive. #if AOM_ARCH_AARCH64 uint16x8_t left_data0, left_data1; if (upsample_left) { left_data0 = vld1q_u16(left - 2); left_data1 = vld1q_u16(left - 1); } else { left_data0 = vcombine_u16(vld1_u16(left - 1), vdup_n_u16(0)); left_data1 = vcombine_u16(vld1_u16(left + 0), vdup_n_u16(0)); } #endif const int16x8_t iota01234567 = vld1q_s16(iota1_s16); const int16x8_t iota12345678 = vld1q_s16(iota1_s16 + 1); for (int r = 0; r < 4; ++r) { const int base_shift = (min_base_x + (r + 1) * dx + 63) >> 6; const int x0 = (r + 1) * dx; const int16x8_t x01234567 = vsubq_s16(vshlq_n_s16(iota01234567, 6), vdupq_n_s16(x0)); const int base_x0 = (-x0) >> frac_bits_x; if (base_shift <= 0) { uint16x8_t a0, a1; int16x8_t shift_x01234567; if (upsample_above) { const uint16x8x2_t a01 = vld2q_u16(above + base_x0); a0 = a01.val[0]; a1 = a01.val[1]; shift_x01234567 = vandq_s16(x01234567, vdupq_n_s16(0x1F)); } else { a0 = vld1q_u16(above + base_x0); a1 = vld1q_u16(above + base_x0 + 1); shift_x01234567 = vandq_s16(vshrq_n_s16(x01234567, 1), vdupq_n_s16(0x1F)); } vst1q_u16( dst, highbd_dr_prediction_z2_apply_shift_x8(a0, a1, shift_x01234567)); } else if (base_shift < 8) { // Calculate Y component from `left`. const int y_iters = base_shift; const int16x8_t y01234567 = vsubq_s16(vdupq_n_s16(r << 6), vmulq_n_s16(iota12345678, dy)); const int16x8_t base_y01234567 = vshlq_s16(y01234567, vdupq_n_s16(-frac_bits_y)); const int16x8_t shift_y01234567 = vshrq_n_s16(vandq_s16(vmulq_n_s16(y01234567, 1 << upsample_left), vdupq_n_s16(0x3F)), 1); uint16x8_t l0, l1; #if AOM_ARCH_AARCH64 const int left_data_base = upsample_left ? -2 : -1; l0 = highbd_dr_prediction_z2_tbl_left_x8_from_x8( left_data0, base_y01234567, left_data_base, y_iters); l1 = highbd_dr_prediction_z2_tbl_left_x8_from_x8( left_data1, base_y01234567, left_data_base, y_iters); #else const uint16x8x2_t l01 = highbd_dr_prediction_z2_gather_left_x8(left, base_y01234567, y_iters); l0 = l01.val[0]; l1 = l01.val[1]; #endif const uint16x8_t out_y = highbd_dr_prediction_z2_apply_shift_x8(l0, l1, shift_y01234567); // Calculate X component from `above`. uint16x8_t a0, a1; int16x8_t shift_x01234567; if (upsample_above) { const uint16x8x2_t a01 = vld2q_u16(above + (base_x0 % 2 == 0 ? -2 : -1)); a0 = a01.val[0]; a1 = a01.val[1]; shift_x01234567 = vandq_s16(x01234567, vdupq_n_s16(0x1F)); } else { a0 = vld1q_u16(above - 1); a1 = vld1q_u16(above + 0); shift_x01234567 = vandq_s16(vshrq_n_s16(x01234567, 1), vdupq_n_s16(0x1F)); } const uint16x8_t out_x = highbd_dr_prediction_z2_apply_shift_x8(a0, a1, shift_x01234567); // Combine X and Y vectors. const uint16x8_t out = highbd_dr_prediction_z2_merge_x8(out_x, out_y, base_shift); vst1q_u16(dst, out); } else { const int16x8_t y01234567 = vsubq_s16(vdupq_n_s16(r << 6), vmulq_n_s16(iota12345678, dy)); const int16x8_t base_y01234567 = vshlq_s16(y01234567, vdupq_n_s16(-frac_bits_y)); const int16x8_t shift_y01234567 = vshrq_n_s16(vandq_s16(vmulq_n_s16(y01234567, 1 << upsample_left), vdupq_n_s16(0x3F)), 1); uint16x8_t l0, l1; #if AOM_ARCH_AARCH64 const int left_data_base = upsample_left ? -2 : -1; l0 = highbd_dr_prediction_z2_tbl_left_x8_from_x8( left_data0, base_y01234567, left_data_base, 8); l1 = highbd_dr_prediction_z2_tbl_left_x8_from_x8( left_data1, base_y01234567, left_data_base, 8); #else const uint16x8x2_t l01 = highbd_dr_prediction_z2_gather_left_x8(left, base_y01234567, 8); l0 = l01.val[0]; l1 = l01.val[1]; #endif vst1q_u16( dst, highbd_dr_prediction_z2_apply_shift_x8(l0, l1, shift_y01234567)); } dst += stride; } } static void highbd_dr_prediction_z2_8x8_neon(uint16_t *dst, ptrdiff_t stride, const uint16_t *above, const uint16_t *left, int upsample_above, int upsample_left, int dx, int dy, int bd) { (void)bd; assert(dx > 0); assert(dy > 0); const int frac_bits_x = 6 - upsample_above; const int frac_bits_y = 6 - upsample_left; const int min_base_x = -(1 << (upsample_above + frac_bits_x)); // if `upsample_left` then we need -2 through 14 inclusive from `left`. // else we only need -1 through 6 inclusive. #if AOM_ARCH_AARCH64 uint16x8x2_t left_data0, left_data1; if (upsample_left) { left_data0 = vld1q_u16_x2(left - 2); left_data1 = vld1q_u16_x2(left - 1); } else { left_data0 = (uint16x8x2_t){ { vld1q_u16(left - 1), vdupq_n_u16(0) } }; left_data1 = (uint16x8x2_t){ { vld1q_u16(left + 0), vdupq_n_u16(0) } }; } #endif const int16x8_t iota01234567 = vld1q_s16(iota1_s16); const int16x8_t iota12345678 = vld1q_s16(iota1_s16 + 1); for (int r = 0; r < 8; ++r) { const int base_shift = (min_base_x + (r + 1) * dx + 63) >> 6; const int x0 = (r + 1) * dx; const int16x8_t x01234567 = vsubq_s16(vshlq_n_s16(iota01234567, 6), vdupq_n_s16(x0)); const int base_x0 = (-x0) >> frac_bits_x; if (base_shift <= 0) { uint16x8_t a0, a1; int16x8_t shift_x01234567; if (upsample_above) { const uint16x8x2_t a01 = vld2q_u16(above + base_x0); a0 = a01.val[0]; a1 = a01.val[1]; shift_x01234567 = vandq_s16(x01234567, vdupq_n_s16(0x1F)); } else { a0 = vld1q_u16(above + base_x0); a1 = vld1q_u16(above + base_x0 + 1); shift_x01234567 = vandq_s16(vshrq_n_s16(x01234567, 1), vdupq_n_s16(0x1F)); } vst1q_u16( dst, highbd_dr_prediction_z2_apply_shift_x8(a0, a1, shift_x01234567)); } else if (base_shift < 8) { // Calculate Y component from `left`. const int y_iters = base_shift; const int16x8_t y01234567 = vsubq_s16(vdupq_n_s16(r << 6), vmulq_n_s16(iota12345678, dy)); const int16x8_t base_y01234567 = vshlq_s16(y01234567, vdupq_n_s16(-frac_bits_y)); const int16x8_t shift_y01234567 = vshrq_n_s16(vandq_s16(vmulq_n_s16(y01234567, 1 << upsample_left), vdupq_n_s16(0x3F)), 1); uint16x8_t l0, l1; #if AOM_ARCH_AARCH64 const int left_data_base = upsample_left ? -2 : -1; l0 = highbd_dr_prediction_z2_tbl_left_x8_from_x16( left_data0, base_y01234567, left_data_base, y_iters); l1 = highbd_dr_prediction_z2_tbl_left_x8_from_x16( left_data1, base_y01234567, left_data_base, y_iters); #else const uint16x8x2_t l01 = highbd_dr_prediction_z2_gather_left_x8(left, base_y01234567, y_iters); l0 = l01.val[0]; l1 = l01.val[1]; #endif const uint16x8_t out_y = highbd_dr_prediction_z2_apply_shift_x8(l0, l1, shift_y01234567); // Calculate X component from `above`. uint16x8_t a0, a1; int16x8_t shift_x01234567; if (upsample_above) { const uint16x8x2_t a01 = vld2q_u16(above + (base_x0 % 2 == 0 ? -2 : -1)); a0 = a01.val[0]; a1 = a01.val[1]; shift_x01234567 = vandq_s16(x01234567, vdupq_n_s16(0x1F)); } else { a0 = vld1q_u16(above - 1); a1 = vld1q_u16(above + 0); shift_x01234567 = vandq_s16(vshrq_n_s16(x01234567, 1), vdupq_n_s16(0x1F)); } const uint16x8_t out_x = highbd_dr_prediction_z2_apply_shift_x8(a0, a1, shift_x01234567); // Combine X and Y vectors. const uint16x8_t out = highbd_dr_prediction_z2_merge_x8(out_x, out_y, base_shift); vst1q_u16(dst, out); } else { const int16x8_t y01234567 = vsubq_s16(vdupq_n_s16(r << 6), vmulq_n_s16(iota12345678, dy)); const int16x8_t base_y01234567 = vshlq_s16(y01234567, vdupq_n_s16(-frac_bits_y)); const int16x8_t shift_y01234567 = vshrq_n_s16(vandq_s16(vmulq_n_s16(y01234567, 1 << upsample_left), vdupq_n_s16(0x3F)), 1); uint16x8_t l0, l1; #if AOM_ARCH_AARCH64 const int left_data_base = upsample_left ? -2 : -1; l0 = highbd_dr_prediction_z2_tbl_left_x8_from_x16( left_data0, base_y01234567, left_data_base, 8); l1 = highbd_dr_prediction_z2_tbl_left_x8_from_x16( left_data1, base_y01234567, left_data_base, 8); #else const uint16x8x2_t l01 = highbd_dr_prediction_z2_gather_left_x8(left, base_y01234567, 8); l0 = l01.val[0]; l1 = l01.val[1]; #endif vst1q_u16( dst, highbd_dr_prediction_z2_apply_shift_x8(l0, l1, shift_y01234567)); } dst += stride; } } static highbd_dr_prediction_z2_ptr dr_predictor_z2_arr_neon[7][7] = { { NULL, NULL, NULL, NULL, NULL, NULL, NULL }, { NULL, NULL, NULL, NULL, NULL, NULL, NULL }, { NULL, NULL, &highbd_dr_prediction_z2_4x4_neon, &highbd_dr_prediction_z2_4x8_neon, &highbd_dr_prediction_z2_4x16_neon, NULL, NULL }, { NULL, NULL, &highbd_dr_prediction_z2_8x4_neon, &highbd_dr_prediction_z2_8x8_neon, &highbd_dr_prediction_z2_8x16_neon, &highbd_dr_prediction_z2_8x32_neon, NULL }, { NULL, NULL, &highbd_dr_prediction_z2_16x4_neon, &highbd_dr_prediction_z2_16x8_neon, &highbd_dr_prediction_z2_16x16_neon, &highbd_dr_prediction_z2_16x32_neon, &highbd_dr_prediction_z2_16x64_neon }, { NULL, NULL, NULL, &highbd_dr_prediction_z2_32x8_neon, &highbd_dr_prediction_z2_32x16_neon, &highbd_dr_prediction_z2_32x32_neon, &highbd_dr_prediction_z2_32x64_neon }, { NULL, NULL, NULL, NULL, &highbd_dr_prediction_z2_64x16_neon, &highbd_dr_prediction_z2_64x32_neon, &highbd_dr_prediction_z2_64x64_neon }, }; // Directional prediction, zone 2: 90 < angle < 180 void av1_highbd_dr_prediction_z2_neon(uint16_t *dst, ptrdiff_t stride, int bw, int bh, const uint16_t *above, const uint16_t *left, int upsample_above, int upsample_left, int dx, int dy, int bd) { highbd_dr_prediction_z2_ptr f = dr_predictor_z2_arr_neon[get_msb(bw)][get_msb(bh)]; assert(f != NULL); f(dst, stride, above, left, upsample_above, upsample_left, dx, dy, bd); } // ----------------------------------------------------------------------------- // Z3 // Both the lane to the use and the shift amount must be immediates. #define HIGHBD_DR_PREDICTOR_Z3_STEP_X4(out, iota, base, in0, in1, s0, s1, \ lane, shift) \ do { \ uint32x4_t val = vmull_lane_u16((in0), (s0), (lane)); \ val = vmlal_lane_u16(val, (in1), (s1), (lane)); \ const uint16x4_t cmp = vadd_u16((iota), vdup_n_u16(base)); \ const uint16x4_t res = vrshrn_n_u32(val, (shift)); \ *(out) = vbsl_u16(vclt_u16(cmp, vdup_n_u16(max_base_y)), res, \ vdup_n_u16(left_max)); \ } while (0) #define HIGHBD_DR_PREDICTOR_Z3_STEP_X8(out, iota, base, in0, in1, s0, s1, \ lane, shift) \ do { \ uint32x4_t val_lo = vmull_lane_u16(vget_low_u16(in0), (s0), (lane)); \ val_lo = vmlal_lane_u16(val_lo, vget_low_u16(in1), (s1), (lane)); \ uint32x4_t val_hi = vmull_lane_u16(vget_high_u16(in0), (s0), (lane)); \ val_hi = vmlal_lane_u16(val_hi, vget_high_u16(in1), (s1), (lane)); \ const uint16x8_t cmp = vaddq_u16((iota), vdupq_n_u16(base)); \ const uint16x8_t res = vcombine_u16(vrshrn_n_u32(val_lo, (shift)), \ vrshrn_n_u32(val_hi, (shift))); \ *(out) = vbslq_u16(vcltq_u16(cmp, vdupq_n_u16(max_base_y)), res, \ vdupq_n_u16(left_max)); \ } while (0) static void highbd_dr_prediction_z3_upsample0_neon(uint16_t *dst, ptrdiff_t stride, int bw, int bh, const uint16_t *left, int dy) { assert(bw % 4 == 0); assert(bh % 4 == 0); assert(dy > 0); // Factor out left + 1 to give the compiler a better chance of recognising // that the offsets used for the loads from left and left + 1 are otherwise // identical. const uint16_t *left1 = left + 1; const int max_base_y = (bw + bh - 1); const int left_max = left[max_base_y]; const int frac_bits = 6; const uint16x8_t iota1x8 = vreinterpretq_u16_s16(vld1q_s16(iota1_s16)); const uint16x4_t iota1x4 = vget_low_u16(iota1x8); // The C implementation of the z3 predictor when not upsampling uses: // ((y & 0x3f) >> 1) // The right shift is unnecessary here since we instead shift by +1 later, // so adjust the mask to 0x3e to ensure we don't consider the extra bit. const uint16x4_t shift_mask = vdup_n_u16(0x3e); if (bh == 4) { int y = dy; int c = 0; do { // Fully unroll the 4x4 block to allow us to use immediate lane-indexed // multiply instructions. const uint16x4_t shifts1 = vand_u16(vmla_n_u16(vdup_n_u16(y), iota1x4, dy), shift_mask); const uint16x4_t shifts0 = vsub_u16(vdup_n_u16(64), shifts1); const int base0 = (y + 0 * dy) >> frac_bits; const int base1 = (y + 1 * dy) >> frac_bits; const int base2 = (y + 2 * dy) >> frac_bits; const int base3 = (y + 3 * dy) >> frac_bits; uint16x4_t out[4]; if (base0 >= max_base_y) { out[0] = vdup_n_u16(left_max); } else { const uint16x4_t l00 = vld1_u16(left + base0); const uint16x4_t l01 = vld1_u16(left1 + base0); HIGHBD_DR_PREDICTOR_Z3_STEP_X4(&out[0], iota1x4, base0, l00, l01, shifts0, shifts1, 0, 6); } if (base1 >= max_base_y) { out[1] = vdup_n_u16(left_max); } else { const uint16x4_t l10 = vld1_u16(left + base1); const uint16x4_t l11 = vld1_u16(left1 + base1); HIGHBD_DR_PREDICTOR_Z3_STEP_X4(&out[1], iota1x4, base1, l10, l11, shifts0, shifts1, 1, 6); } if (base2 >= max_base_y) { out[2] = vdup_n_u16(left_max); } else { const uint16x4_t l20 = vld1_u16(left + base2); const uint16x4_t l21 = vld1_u16(left1 + base2); HIGHBD_DR_PREDICTOR_Z3_STEP_X4(&out[2], iota1x4, base2, l20, l21, shifts0, shifts1, 2, 6); } if (base3 >= max_base_y) { out[3] = vdup_n_u16(left_max); } else { const uint16x4_t l30 = vld1_u16(left + base3); const uint16x4_t l31 = vld1_u16(left1 + base3); HIGHBD_DR_PREDICTOR_Z3_STEP_X4(&out[3], iota1x4, base3, l30, l31, shifts0, shifts1, 3, 6); } transpose_array_inplace_u16_4x4(out); for (int r2 = 0; r2 < 4; ++r2) { vst1_u16(dst + r2 * stride + c, out[r2]); } y += 4 * dy; c += 4; } while (c < bw); } else { int y = dy; int c = 0; do { int r = 0; do { // Fully unroll the 4x4 block to allow us to use immediate lane-indexed // multiply instructions. const uint16x4_t shifts1 = vand_u16(vmla_n_u16(vdup_n_u16(y), iota1x4, dy), shift_mask); const uint16x4_t shifts0 = vsub_u16(vdup_n_u16(64), shifts1); const int base0 = ((y + 0 * dy) >> frac_bits) + r; const int base1 = ((y + 1 * dy) >> frac_bits) + r; const int base2 = ((y + 2 * dy) >> frac_bits) + r; const int base3 = ((y + 3 * dy) >> frac_bits) + r; uint16x8_t out[4]; if (base0 >= max_base_y) { out[0] = vdupq_n_u16(left_max); } else { const uint16x8_t l00 = vld1q_u16(left + base0); const uint16x8_t l01 = vld1q_u16(left1 + base0); HIGHBD_DR_PREDICTOR_Z3_STEP_X8(&out[0], iota1x8, base0, l00, l01, shifts0, shifts1, 0, 6); } if (base1 >= max_base_y) { out[1] = vdupq_n_u16(left_max); } else { const uint16x8_t l10 = vld1q_u16(left + base1); const uint16x8_t l11 = vld1q_u16(left1 + base1); HIGHBD_DR_PREDICTOR_Z3_STEP_X8(&out[1], iota1x8, base1, l10, l11, shifts0, shifts1, 1, 6); } if (base2 >= max_base_y) { out[2] = vdupq_n_u16(left_max); } else { const uint16x8_t l20 = vld1q_u16(left + base2); const uint16x8_t l21 = vld1q_u16(left1 + base2); HIGHBD_DR_PREDICTOR_Z3_STEP_X8(&out[2], iota1x8, base2, l20, l21, shifts0, shifts1, 2, 6); } if (base3 >= max_base_y) { out[3] = vdupq_n_u16(left_max); } else { const uint16x8_t l30 = vld1q_u16(left + base3); const uint16x8_t l31 = vld1q_u16(left1 + base3); HIGHBD_DR_PREDICTOR_Z3_STEP_X8(&out[3], iota1x8, base3, l30, l31, shifts0, shifts1, 3, 6); } transpose_array_inplace_u16_4x8(out); for (int r2 = 0; r2 < 4; ++r2) { vst1_u16(dst + (r + r2) * stride + c, vget_low_u16(out[r2])); } for (int r2 = 0; r2 < 4; ++r2) { vst1_u16(dst + (r + r2 + 4) * stride + c, vget_high_u16(out[r2])); } r += 8; } while (r < bh); y += 4 * dy; c += 4; } while (c < bw); } } static void highbd_dr_prediction_z3_upsample1_neon(uint16_t *dst, ptrdiff_t stride, int bw, int bh, const uint16_t *left, int dy) { assert(bw % 4 == 0); assert(bh % 4 == 0); assert(dy > 0); const int max_base_y = (bw + bh - 1) << 1; const int left_max = left[max_base_y]; const int frac_bits = 5; const uint16x4_t iota1x4 = vreinterpret_u16_s16(vld1_s16(iota1_s16)); const uint16x8_t iota2x8 = vreinterpretq_u16_s16(vld1q_s16(iota2_s16)); const uint16x4_t iota2x4 = vget_low_u16(iota2x8); // The C implementation of the z3 predictor when upsampling uses: // (((x << 1) & 0x3f) >> 1) // The two shifts are unnecessary here since the lowest bit is guaranteed to // be zero when the mask is applied, so adjust the mask to 0x1f to avoid // needing the shifts at all. const uint16x4_t shift_mask = vdup_n_u16(0x1F); if (bh == 4) { int y = dy; int c = 0; do { // Fully unroll the 4x4 block to allow us to use immediate lane-indexed // multiply instructions. const uint16x4_t shifts1 = vand_u16(vmla_n_u16(vdup_n_u16(y), iota1x4, dy), shift_mask); const uint16x4_t shifts0 = vsub_u16(vdup_n_u16(32), shifts1); const int base0 = (y + 0 * dy) >> frac_bits; const int base1 = (y + 1 * dy) >> frac_bits; const int base2 = (y + 2 * dy) >> frac_bits; const int base3 = (y + 3 * dy) >> frac_bits; const uint16x4x2_t l0 = vld2_u16(left + base0); const uint16x4x2_t l1 = vld2_u16(left + base1); const uint16x4x2_t l2 = vld2_u16(left + base2); const uint16x4x2_t l3 = vld2_u16(left + base3); uint16x4_t out[4]; HIGHBD_DR_PREDICTOR_Z3_STEP_X4(&out[0], iota2x4, base0, l0.val[0], l0.val[1], shifts0, shifts1, 0, 5); HIGHBD_DR_PREDICTOR_Z3_STEP_X4(&out[1], iota2x4, base1, l1.val[0], l1.val[1], shifts0, shifts1, 1, 5); HIGHBD_DR_PREDICTOR_Z3_STEP_X4(&out[2], iota2x4, base2, l2.val[0], l2.val[1], shifts0, shifts1, 2, 5); HIGHBD_DR_PREDICTOR_Z3_STEP_X4(&out[3], iota2x4, base3, l3.val[0], l3.val[1], shifts0, shifts1, 3, 5); transpose_array_inplace_u16_4x4(out); for (int r2 = 0; r2 < 4; ++r2) { vst1_u16(dst + r2 * stride + c, out[r2]); } y += 4 * dy; c += 4; } while (c < bw); } else { assert(bh % 8 == 0); int y = dy; int c = 0; do { int r = 0; do { // Fully unroll the 4x8 block to allow us to use immediate lane-indexed // multiply instructions. const uint16x4_t shifts1 = vand_u16(vmla_n_u16(vdup_n_u16(y), iota1x4, dy), shift_mask); const uint16x4_t shifts0 = vsub_u16(vdup_n_u16(32), shifts1); const int base0 = ((y + 0 * dy) >> frac_bits) + (r * 2); const int base1 = ((y + 1 * dy) >> frac_bits) + (r * 2); const int base2 = ((y + 2 * dy) >> frac_bits) + (r * 2); const int base3 = ((y + 3 * dy) >> frac_bits) + (r * 2); const uint16x8x2_t l0 = vld2q_u16(left + base0); const uint16x8x2_t l1 = vld2q_u16(left + base1); const uint16x8x2_t l2 = vld2q_u16(left + base2); const uint16x8x2_t l3 = vld2q_u16(left + base3); uint16x8_t out[4]; HIGHBD_DR_PREDICTOR_Z3_STEP_X8(&out[0], iota2x8, base0, l0.val[0], l0.val[1], shifts0, shifts1, 0, 5); HIGHBD_DR_PREDICTOR_Z3_STEP_X8(&out[1], iota2x8, base1, l1.val[0], l1.val[1], shifts0, shifts1, 1, 5); HIGHBD_DR_PREDICTOR_Z3_STEP_X8(&out[2], iota2x8, base2, l2.val[0], l2.val[1], shifts0, shifts1, 2, 5); HIGHBD_DR_PREDICTOR_Z3_STEP_X8(&out[3], iota2x8, base3, l3.val[0], l3.val[1], shifts0, shifts1, 3, 5); transpose_array_inplace_u16_4x8(out); for (int r2 = 0; r2 < 4; ++r2) { vst1_u16(dst + (r + r2) * stride + c, vget_low_u16(out[r2])); } for (int r2 = 0; r2 < 4; ++r2) { vst1_u16(dst + (r + r2 + 4) * stride + c, vget_high_u16(out[r2])); } r += 8; } while (r < bh); y += 4 * dy; c += 4; } while (c < bw); } } // Directional prediction, zone 3: 180 < angle < 270 void av1_highbd_dr_prediction_z3_neon(uint16_t *dst, ptrdiff_t stride, int bw, int bh, const uint16_t *above, const uint16_t *left, int upsample_left, int dx, int dy, int bd) { (void)above; (void)dx; (void)bd; assert(bw % 4 == 0); assert(bh % 4 == 0); assert(dx == 1); assert(dy > 0); if (upsample_left) { highbd_dr_prediction_z3_upsample1_neon(dst, stride, bw, bh, left, dy); } else { highbd_dr_prediction_z3_upsample0_neon(dst, stride, bw, bh, left, dy); } } #undef HIGHBD_DR_PREDICTOR_Z3_STEP_X4 #undef HIGHBD_DR_PREDICTOR_Z3_STEP_X8