/* * Copyright (c) 2023 The WebM project authors. All Rights Reserved. * Copyright (c) 2022, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include "config/aom_config.h" #include "config/aom_dsp_rtcd.h" #include "aom_dsp/aom_filter.h" #include "aom_dsp/arm/mem_neon.h" #include "aom_dsp/arm/sum_neon.h" #include "aom_dsp/variance.h" // Process a block of width 4 two rows at a time. static INLINE void highbd_variance_4xh_neon(const uint16_t *src_ptr, int src_stride, const uint16_t *ref_ptr, int ref_stride, int h, uint64_t *sse, int64_t *sum) { int16x8_t sum_s16 = vdupq_n_s16(0); int32x4_t sse_s32 = vdupq_n_s32(0); int i = h; do { const uint16x8_t s = load_unaligned_u16_4x2(src_ptr, src_stride); const uint16x8_t r = load_unaligned_u16_4x2(ref_ptr, ref_stride); int16x8_t diff = vreinterpretq_s16_u16(vsubq_u16(s, r)); sum_s16 = vaddq_s16(sum_s16, diff); sse_s32 = vmlal_s16(sse_s32, vget_low_s16(diff), vget_low_s16(diff)); sse_s32 = vmlal_s16(sse_s32, vget_high_s16(diff), vget_high_s16(diff)); src_ptr += 2 * src_stride; ref_ptr += 2 * ref_stride; i -= 2; } while (i != 0); *sum = horizontal_add_s16x8(sum_s16); *sse = horizontal_add_s32x4(sse_s32); } // For 8-bit and 10-bit data, since we're using two int32x4 accumulators, all // block sizes can be processed in 32-bit elements (1023*1023*128*32 = // 4286582784 for a 128x128 block). static INLINE void highbd_variance_large_neon(const uint16_t *src_ptr, int src_stride, const uint16_t *ref_ptr, int ref_stride, int w, int h, uint64_t *sse, int64_t *sum) { int32x4_t sum_s32 = vdupq_n_s32(0); int32x4_t sse_s32[2] = { vdupq_n_s32(0), vdupq_n_s32(0) }; int i = h; do { int j = 0; do { const uint16x8_t s = vld1q_u16(src_ptr + j); const uint16x8_t r = vld1q_u16(ref_ptr + j); const int16x8_t diff = vreinterpretq_s16_u16(vsubq_u16(s, r)); sum_s32 = vpadalq_s16(sum_s32, diff); sse_s32[0] = vmlal_s16(sse_s32[0], vget_low_s16(diff), vget_low_s16(diff)); sse_s32[1] = vmlal_s16(sse_s32[1], vget_high_s16(diff), vget_high_s16(diff)); j += 8; } while (j < w); src_ptr += src_stride; ref_ptr += ref_stride; } while (--i != 0); *sum = horizontal_add_s32x4(sum_s32); *sse = horizontal_long_add_u32x4(vaddq_u32( vreinterpretq_u32_s32(sse_s32[0]), vreinterpretq_u32_s32(sse_s32[1]))); } static INLINE void highbd_variance_8xh_neon(const uint16_t *src, int src_stride, const uint16_t *ref, int ref_stride, int h, uint64_t *sse, int64_t *sum) { highbd_variance_large_neon(src, src_stride, ref, ref_stride, 8, h, sse, sum); } static INLINE void highbd_variance_16xh_neon(const uint16_t *src, int src_stride, const uint16_t *ref, int ref_stride, int h, uint64_t *sse, int64_t *sum) { highbd_variance_large_neon(src, src_stride, ref, ref_stride, 16, h, sse, sum); } static INLINE void highbd_variance_32xh_neon(const uint16_t *src, int src_stride, const uint16_t *ref, int ref_stride, int h, uint64_t *sse, int64_t *sum) { highbd_variance_large_neon(src, src_stride, ref, ref_stride, 32, h, sse, sum); } static INLINE void highbd_variance_64xh_neon(const uint16_t *src, int src_stride, const uint16_t *ref, int ref_stride, int h, uint64_t *sse, int64_t *sum) { highbd_variance_large_neon(src, src_stride, ref, ref_stride, 64, h, sse, sum); } static INLINE void highbd_variance_128xh_neon(const uint16_t *src, int src_stride, const uint16_t *ref, int ref_stride, int h, uint64_t *sse, int64_t *sum) { highbd_variance_large_neon(src, src_stride, ref, ref_stride, 128, h, sse, sum); } // For 12-bit data, we can only accumulate up to 128 elements in the sum of // squares (4095*4095*128 = 2146435200), and because we're using two int32x4 // accumulators, we can only process up to 32 32-element rows (32*32/8 = 128) // or 16 64-element rows before we have to accumulate into 64-bit elements. // Therefore blocks of size 32x64, 64x32, 64x64, 64x128, 128x64, 128x128 are // processed in a different helper function. // Process a block of any size where the width is divisible by 8, with // accumulation into 64-bit elements. static INLINE void highbd_variance_xlarge_neon( const uint16_t *src_ptr, int src_stride, const uint16_t *ref_ptr, int ref_stride, int w, int h, int h_limit, uint64_t *sse, int64_t *sum) { int32x4_t sum_s32 = vdupq_n_s32(0); int64x2_t sse_s64 = vdupq_n_s64(0); // 'h_limit' is the number of 'w'-width rows we can process before our 32-bit // accumulator overflows. After hitting this limit we accumulate into 64-bit // elements. int h_tmp = h > h_limit ? h_limit : h; int i = 0; do { int32x4_t sse_s32[2] = { vdupq_n_s32(0), vdupq_n_s32(0) }; do { int j = 0; do { const uint16x8_t s0 = vld1q_u16(src_ptr + j); const uint16x8_t r0 = vld1q_u16(ref_ptr + j); const int16x8_t diff = vreinterpretq_s16_u16(vsubq_u16(s0, r0)); sum_s32 = vpadalq_s16(sum_s32, diff); sse_s32[0] = vmlal_s16(sse_s32[0], vget_low_s16(diff), vget_low_s16(diff)); sse_s32[1] = vmlal_s16(sse_s32[1], vget_high_s16(diff), vget_high_s16(diff)); j += 8; } while (j < w); src_ptr += src_stride; ref_ptr += ref_stride; i++; } while (i < h_tmp); sse_s64 = vpadalq_s32(sse_s64, sse_s32[0]); sse_s64 = vpadalq_s32(sse_s64, sse_s32[1]); h_tmp += h_limit; } while (i < h); *sum = horizontal_add_s32x4(sum_s32); *sse = (uint64_t)horizontal_add_s64x2(sse_s64); } static INLINE void highbd_variance_32xh_xlarge_neon( const uint16_t *src, int src_stride, const uint16_t *ref, int ref_stride, int h, uint64_t *sse, int64_t *sum) { highbd_variance_xlarge_neon(src, src_stride, ref, ref_stride, 32, h, 32, sse, sum); } static INLINE void highbd_variance_64xh_xlarge_neon( const uint16_t *src, int src_stride, const uint16_t *ref, int ref_stride, int h, uint64_t *sse, int64_t *sum) { highbd_variance_xlarge_neon(src, src_stride, ref, ref_stride, 64, h, 16, sse, sum); } static INLINE void highbd_variance_128xh_xlarge_neon( const uint16_t *src, int src_stride, const uint16_t *ref, int ref_stride, int h, uint64_t *sse, int64_t *sum) { highbd_variance_xlarge_neon(src, src_stride, ref, ref_stride, 128, h, 8, sse, sum); } #define HBD_VARIANCE_WXH_8_NEON(w, h) \ uint32_t aom_highbd_8_variance##w##x##h##_neon( \ const uint8_t *src_ptr, int src_stride, const uint8_t *ref_ptr, \ int ref_stride, uint32_t *sse) { \ int sum; \ uint64_t sse_long = 0; \ int64_t sum_long = 0; \ uint16_t *src = CONVERT_TO_SHORTPTR(src_ptr); \ uint16_t *ref = CONVERT_TO_SHORTPTR(ref_ptr); \ highbd_variance_##w##xh_neon(src, src_stride, ref, ref_stride, h, \ &sse_long, &sum_long); \ *sse = (uint32_t)sse_long; \ sum = (int)sum_long; \ return *sse - (uint32_t)(((int64_t)sum * sum) / (w * h)); \ } #define HBD_VARIANCE_WXH_10_NEON(w, h) \ uint32_t aom_highbd_10_variance##w##x##h##_neon( \ const uint8_t *src_ptr, int src_stride, const uint8_t *ref_ptr, \ int ref_stride, uint32_t *sse) { \ int sum; \ int64_t var; \ uint64_t sse_long = 0; \ int64_t sum_long = 0; \ uint16_t *src = CONVERT_TO_SHORTPTR(src_ptr); \ uint16_t *ref = CONVERT_TO_SHORTPTR(ref_ptr); \ highbd_variance_##w##xh_neon(src, src_stride, ref, ref_stride, h, \ &sse_long, &sum_long); \ *sse = (uint32_t)ROUND_POWER_OF_TWO(sse_long, 4); \ sum = (int)ROUND_POWER_OF_TWO(sum_long, 2); \ var = (int64_t)(*sse) - (((int64_t)sum * sum) / (w * h)); \ return (var >= 0) ? (uint32_t)var : 0; \ } #define HBD_VARIANCE_WXH_12_NEON(w, h) \ uint32_t aom_highbd_12_variance##w##x##h##_neon( \ const uint8_t *src_ptr, int src_stride, const uint8_t *ref_ptr, \ int ref_stride, uint32_t *sse) { \ int sum; \ int64_t var; \ uint64_t sse_long = 0; \ int64_t sum_long = 0; \ uint16_t *src = CONVERT_TO_SHORTPTR(src_ptr); \ uint16_t *ref = CONVERT_TO_SHORTPTR(ref_ptr); \ highbd_variance_##w##xh_neon(src, src_stride, ref, ref_stride, h, \ &sse_long, &sum_long); \ *sse = (uint32_t)ROUND_POWER_OF_TWO(sse_long, 8); \ sum = (int)ROUND_POWER_OF_TWO(sum_long, 4); \ var = (int64_t)(*sse) - (((int64_t)sum * sum) / (w * h)); \ return (var >= 0) ? (uint32_t)var : 0; \ } #define HBD_VARIANCE_WXH_12_XLARGE_NEON(w, h) \ uint32_t aom_highbd_12_variance##w##x##h##_neon( \ const uint8_t *src_ptr, int src_stride, const uint8_t *ref_ptr, \ int ref_stride, uint32_t *sse) { \ int sum; \ int64_t var; \ uint64_t sse_long = 0; \ int64_t sum_long = 0; \ uint16_t *src = CONVERT_TO_SHORTPTR(src_ptr); \ uint16_t *ref = CONVERT_TO_SHORTPTR(ref_ptr); \ highbd_variance_##w##xh_xlarge_neon(src, src_stride, ref, ref_stride, h, \ &sse_long, &sum_long); \ *sse = (uint32_t)ROUND_POWER_OF_TWO(sse_long, 8); \ sum = (int)ROUND_POWER_OF_TWO(sum_long, 4); \ var = (int64_t)(*sse) - (((int64_t)sum * sum) / (w * h)); \ return (var >= 0) ? (uint32_t)var : 0; \ } // 8-bit HBD_VARIANCE_WXH_8_NEON(4, 4) HBD_VARIANCE_WXH_8_NEON(4, 8) HBD_VARIANCE_WXH_8_NEON(8, 4) HBD_VARIANCE_WXH_8_NEON(8, 8) HBD_VARIANCE_WXH_8_NEON(8, 16) HBD_VARIANCE_WXH_8_NEON(16, 8) HBD_VARIANCE_WXH_8_NEON(16, 16) HBD_VARIANCE_WXH_8_NEON(16, 32) HBD_VARIANCE_WXH_8_NEON(32, 16) HBD_VARIANCE_WXH_8_NEON(32, 32) HBD_VARIANCE_WXH_8_NEON(32, 64) HBD_VARIANCE_WXH_8_NEON(64, 32) HBD_VARIANCE_WXH_8_NEON(64, 64) HBD_VARIANCE_WXH_8_NEON(64, 128) HBD_VARIANCE_WXH_8_NEON(128, 64) HBD_VARIANCE_WXH_8_NEON(128, 128) // 10-bit HBD_VARIANCE_WXH_10_NEON(4, 4) HBD_VARIANCE_WXH_10_NEON(4, 8) HBD_VARIANCE_WXH_10_NEON(8, 4) HBD_VARIANCE_WXH_10_NEON(8, 8) HBD_VARIANCE_WXH_10_NEON(8, 16) HBD_VARIANCE_WXH_10_NEON(16, 8) HBD_VARIANCE_WXH_10_NEON(16, 16) HBD_VARIANCE_WXH_10_NEON(16, 32) HBD_VARIANCE_WXH_10_NEON(32, 16) HBD_VARIANCE_WXH_10_NEON(32, 32) HBD_VARIANCE_WXH_10_NEON(32, 64) HBD_VARIANCE_WXH_10_NEON(64, 32) HBD_VARIANCE_WXH_10_NEON(64, 64) HBD_VARIANCE_WXH_10_NEON(64, 128) HBD_VARIANCE_WXH_10_NEON(128, 64) HBD_VARIANCE_WXH_10_NEON(128, 128) // 12-bit HBD_VARIANCE_WXH_12_NEON(4, 4) HBD_VARIANCE_WXH_12_NEON(4, 8) HBD_VARIANCE_WXH_12_NEON(8, 4) HBD_VARIANCE_WXH_12_NEON(8, 8) HBD_VARIANCE_WXH_12_NEON(8, 16) HBD_VARIANCE_WXH_12_NEON(16, 8) HBD_VARIANCE_WXH_12_NEON(16, 16) HBD_VARIANCE_WXH_12_NEON(16, 32) HBD_VARIANCE_WXH_12_NEON(32, 16) HBD_VARIANCE_WXH_12_NEON(32, 32) HBD_VARIANCE_WXH_12_XLARGE_NEON(32, 64) HBD_VARIANCE_WXH_12_XLARGE_NEON(64, 32) HBD_VARIANCE_WXH_12_XLARGE_NEON(64, 64) HBD_VARIANCE_WXH_12_XLARGE_NEON(64, 128) HBD_VARIANCE_WXH_12_XLARGE_NEON(128, 64) HBD_VARIANCE_WXH_12_XLARGE_NEON(128, 128) #if !CONFIG_REALTIME_ONLY // 8-bit HBD_VARIANCE_WXH_8_NEON(4, 16) HBD_VARIANCE_WXH_8_NEON(8, 32) HBD_VARIANCE_WXH_8_NEON(16, 4) HBD_VARIANCE_WXH_8_NEON(16, 64) HBD_VARIANCE_WXH_8_NEON(32, 8) HBD_VARIANCE_WXH_8_NEON(64, 16) // 10-bit HBD_VARIANCE_WXH_10_NEON(4, 16) HBD_VARIANCE_WXH_10_NEON(8, 32) HBD_VARIANCE_WXH_10_NEON(16, 4) HBD_VARIANCE_WXH_10_NEON(16, 64) HBD_VARIANCE_WXH_10_NEON(32, 8) HBD_VARIANCE_WXH_10_NEON(64, 16) // 12-bit HBD_VARIANCE_WXH_12_NEON(4, 16) HBD_VARIANCE_WXH_12_NEON(8, 32) HBD_VARIANCE_WXH_12_NEON(16, 4) HBD_VARIANCE_WXH_12_NEON(16, 64) HBD_VARIANCE_WXH_12_NEON(32, 8) HBD_VARIANCE_WXH_12_NEON(64, 16) #endif // !CONFIG_REALTIME_ONLY static INLINE uint32_t highbd_mse_wxh_neon(const uint16_t *src_ptr, int src_stride, const uint16_t *ref_ptr, int ref_stride, int w, int h, unsigned int *sse) { uint32x4_t sse_u32[2] = { vdupq_n_u32(0), vdupq_n_u32(0) }; int i = h; do { int j = 0; do { uint16x8_t s = vld1q_u16(src_ptr + j); uint16x8_t r = vld1q_u16(ref_ptr + j); uint16x8_t diff = vabdq_u16(s, r); sse_u32[0] = vmlal_u16(sse_u32[0], vget_low_u16(diff), vget_low_u16(diff)); sse_u32[1] = vmlal_u16(sse_u32[1], vget_high_u16(diff), vget_high_u16(diff)); j += 8; } while (j < w); src_ptr += src_stride; ref_ptr += ref_stride; } while (--i != 0); *sse = horizontal_add_u32x4(vaddq_u32(sse_u32[0], sse_u32[1])); return *sse; } #define HIGHBD_MSE_WXH_NEON(w, h) \ uint32_t aom_highbd_8_mse##w##x##h##_neon( \ const uint8_t *src_ptr, int src_stride, const uint8_t *ref_ptr, \ int ref_stride, uint32_t *sse) { \ uint16_t *src = CONVERT_TO_SHORTPTR(src_ptr); \ uint16_t *ref = CONVERT_TO_SHORTPTR(ref_ptr); \ highbd_mse_wxh_neon(src, src_stride, ref, ref_stride, w, h, sse); \ return *sse; \ } \ \ uint32_t aom_highbd_10_mse##w##x##h##_neon( \ const uint8_t *src_ptr, int src_stride, const uint8_t *ref_ptr, \ int ref_stride, uint32_t *sse) { \ uint16_t *src = CONVERT_TO_SHORTPTR(src_ptr); \ uint16_t *ref = CONVERT_TO_SHORTPTR(ref_ptr); \ highbd_mse_wxh_neon(src, src_stride, ref, ref_stride, w, h, sse); \ *sse = ROUND_POWER_OF_TWO(*sse, 4); \ return *sse; \ } \ \ uint32_t aom_highbd_12_mse##w##x##h##_neon( \ const uint8_t *src_ptr, int src_stride, const uint8_t *ref_ptr, \ int ref_stride, uint32_t *sse) { \ uint16_t *src = CONVERT_TO_SHORTPTR(src_ptr); \ uint16_t *ref = CONVERT_TO_SHORTPTR(ref_ptr); \ highbd_mse_wxh_neon(src, src_stride, ref, ref_stride, w, h, sse); \ *sse = ROUND_POWER_OF_TWO(*sse, 8); \ return *sse; \ } HIGHBD_MSE_WXH_NEON(16, 16) HIGHBD_MSE_WXH_NEON(16, 8) HIGHBD_MSE_WXH_NEON(8, 16) HIGHBD_MSE_WXH_NEON(8, 8) #undef HIGHBD_MSE_WXH_NEON static INLINE uint64x2_t mse_accumulate_u16_8x2(uint64x2_t sum, uint16x8_t s0, uint16x8_t s1, uint16x8_t d0, uint16x8_t d1) { uint16x8_t e0 = vabdq_u16(s0, d0); uint16x8_t e1 = vabdq_u16(s1, d1); uint32x4_t mse = vmull_u16(vget_low_u16(e0), vget_low_u16(e0)); mse = vmlal_u16(mse, vget_high_u16(e0), vget_high_u16(e0)); mse = vmlal_u16(mse, vget_low_u16(e1), vget_low_u16(e1)); mse = vmlal_u16(mse, vget_high_u16(e1), vget_high_u16(e1)); return vpadalq_u32(sum, mse); } uint64_t aom_mse_wxh_16bit_highbd_neon(uint16_t *dst, int dstride, uint16_t *src, int sstride, int w, int h) { assert((w == 8 || w == 4) && (h == 8 || h == 4)); uint64x2_t sum = vdupq_n_u64(0); if (w == 8) { do { uint16x8_t d0 = vld1q_u16(dst + 0 * dstride); uint16x8_t d1 = vld1q_u16(dst + 1 * dstride); uint16x8_t s0 = vld1q_u16(src + 0 * sstride); uint16x8_t s1 = vld1q_u16(src + 1 * sstride); sum = mse_accumulate_u16_8x2(sum, s0, s1, d0, d1); dst += 2 * dstride; src += 2 * sstride; h -= 2; } while (h != 0); } else { // w == 4 do { uint16x8_t d0 = load_unaligned_u16_4x2(dst + 0 * dstride, dstride); uint16x8_t d1 = load_unaligned_u16_4x2(dst + 2 * dstride, dstride); uint16x8_t s0 = load_unaligned_u16_4x2(src + 0 * sstride, sstride); uint16x8_t s1 = load_unaligned_u16_4x2(src + 2 * sstride, sstride); sum = mse_accumulate_u16_8x2(sum, s0, s1, d0, d1); dst += 4 * dstride; src += 4 * sstride; h -= 4; } while (h != 0); } return horizontal_add_u64x2(sum); }