/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include #include #include "config/aom_config.h" #include "config/aom_dsp_rtcd.h" #include "aom/aom_integer.h" #include "aom_dsp/arm/mem_neon.h" #include "aom_dsp/arm/reinterpret_neon.h" #include "aom_dsp/arm/sum_neon.h" #include "aom_dsp/arm/transpose_neon.h" #include "aom_dsp/intrapred_common.h" //------------------------------------------------------------------------------ // DC 4x4 static INLINE uint16x8_t dc_load_sum_4(const uint8_t *in) { const uint8x8_t a = load_u8_4x1(in); const uint16x4_t p0 = vpaddl_u8(a); const uint16x4_t p1 = vpadd_u16(p0, p0); return vcombine_u16(p1, vdup_n_u16(0)); } static INLINE void dc_store_4xh(uint8_t *dst, ptrdiff_t stride, int h, uint8x8_t dc) { for (int i = 0; i < h; ++i) { store_u8_4x1(dst + i * stride, dc); } } void aom_dc_predictor_4x4_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { const uint16x8_t sum_top = dc_load_sum_4(above); const uint16x8_t sum_left = dc_load_sum_4(left); const uint16x8_t sum = vaddq_u16(sum_left, sum_top); const uint8x8_t dc0 = vrshrn_n_u16(sum, 3); dc_store_4xh(dst, stride, 4, vdup_lane_u8(dc0, 0)); } void aom_dc_left_predictor_4x4_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { const uint16x8_t sum_left = dc_load_sum_4(left); const uint8x8_t dc0 = vrshrn_n_u16(sum_left, 2); (void)above; dc_store_4xh(dst, stride, 4, vdup_lane_u8(dc0, 0)); } void aom_dc_top_predictor_4x4_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { const uint16x8_t sum_top = dc_load_sum_4(above); const uint8x8_t dc0 = vrshrn_n_u16(sum_top, 2); (void)left; dc_store_4xh(dst, stride, 4, vdup_lane_u8(dc0, 0)); } void aom_dc_128_predictor_4x4_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { const uint8x8_t dc0 = vdup_n_u8(0x80); (void)above; (void)left; dc_store_4xh(dst, stride, 4, dc0); } //------------------------------------------------------------------------------ // DC 8x8 static INLINE uint16x8_t dc_load_sum_8(const uint8_t *in) { // This isn't used in the case where we want to load both above and left // vectors, since we want to avoid performing the reduction twice. const uint8x8_t a = vld1_u8(in); const uint16x4_t p0 = vpaddl_u8(a); const uint16x4_t p1 = vpadd_u16(p0, p0); const uint16x4_t p2 = vpadd_u16(p1, p1); return vcombine_u16(p2, vdup_n_u16(0)); } static INLINE uint16x8_t horizontal_add_and_broadcast_u16x8(uint16x8_t a) { #if AOM_ARCH_AARCH64 // On AArch64 we could also use vdupq_n_u16(vaddvq_u16(a)) here to save an // instruction, however the addv instruction is usually slightly more // expensive than a pairwise addition, so the need for immediately // broadcasting the result again seems to negate any benefit. const uint16x8_t b = vpaddq_u16(a, a); const uint16x8_t c = vpaddq_u16(b, b); return vpaddq_u16(c, c); #else const uint16x4_t b = vadd_u16(vget_low_u16(a), vget_high_u16(a)); const uint16x4_t c = vpadd_u16(b, b); const uint16x4_t d = vpadd_u16(c, c); return vcombine_u16(d, d); #endif } static INLINE void dc_store_8xh(uint8_t *dst, ptrdiff_t stride, int h, uint8x8_t dc) { for (int i = 0; i < h; ++i) { vst1_u8(dst + i * stride, dc); } } void aom_dc_predictor_8x8_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { const uint8x8_t sum_top = vld1_u8(above); const uint8x8_t sum_left = vld1_u8(left); uint16x8_t sum = vaddl_u8(sum_left, sum_top); sum = horizontal_add_and_broadcast_u16x8(sum); const uint8x8_t dc0 = vrshrn_n_u16(sum, 4); dc_store_8xh(dst, stride, 8, vdup_lane_u8(dc0, 0)); } void aom_dc_left_predictor_8x8_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { const uint16x8_t sum_left = dc_load_sum_8(left); const uint8x8_t dc0 = vrshrn_n_u16(sum_left, 3); (void)above; dc_store_8xh(dst, stride, 8, vdup_lane_u8(dc0, 0)); } void aom_dc_top_predictor_8x8_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { const uint16x8_t sum_top = dc_load_sum_8(above); const uint8x8_t dc0 = vrshrn_n_u16(sum_top, 3); (void)left; dc_store_8xh(dst, stride, 8, vdup_lane_u8(dc0, 0)); } void aom_dc_128_predictor_8x8_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { const uint8x8_t dc0 = vdup_n_u8(0x80); (void)above; (void)left; dc_store_8xh(dst, stride, 8, dc0); } //------------------------------------------------------------------------------ // DC 16x16 static INLINE uint16x8_t dc_load_partial_sum_16(const uint8_t *in) { const uint8x16_t a = vld1q_u8(in); // delay the remainder of the reduction until // horizontal_add_and_broadcast_u16x8, since we want to do it once rather // than twice in the case we are loading both above and left. return vpaddlq_u8(a); } static INLINE uint16x8_t dc_load_sum_16(const uint8_t *in) { return horizontal_add_and_broadcast_u16x8(dc_load_partial_sum_16(in)); } static INLINE void dc_store_16xh(uint8_t *dst, ptrdiff_t stride, int h, uint8x16_t dc) { for (int i = 0; i < h; ++i) { vst1q_u8(dst + i * stride, dc); } } void aom_dc_predictor_16x16_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { const uint16x8_t sum_top = dc_load_partial_sum_16(above); const uint16x8_t sum_left = dc_load_partial_sum_16(left); uint16x8_t sum = vaddq_u16(sum_left, sum_top); sum = horizontal_add_and_broadcast_u16x8(sum); const uint8x8_t dc0 = vrshrn_n_u16(sum, 5); dc_store_16xh(dst, stride, 16, vdupq_lane_u8(dc0, 0)); } void aom_dc_left_predictor_16x16_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { const uint16x8_t sum_left = dc_load_sum_16(left); const uint8x8_t dc0 = vrshrn_n_u16(sum_left, 4); (void)above; dc_store_16xh(dst, stride, 16, vdupq_lane_u8(dc0, 0)); } void aom_dc_top_predictor_16x16_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { const uint16x8_t sum_top = dc_load_sum_16(above); const uint8x8_t dc0 = vrshrn_n_u16(sum_top, 4); (void)left; dc_store_16xh(dst, stride, 16, vdupq_lane_u8(dc0, 0)); } void aom_dc_128_predictor_16x16_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { const uint8x16_t dc0 = vdupq_n_u8(0x80); (void)above; (void)left; dc_store_16xh(dst, stride, 16, dc0); } //------------------------------------------------------------------------------ // DC 32x32 static INLINE uint16x8_t dc_load_partial_sum_32(const uint8_t *in) { const uint8x16_t a0 = vld1q_u8(in); const uint8x16_t a1 = vld1q_u8(in + 16); // delay the remainder of the reduction until // horizontal_add_and_broadcast_u16x8, since we want to do it once rather // than twice in the case we are loading both above and left. return vpadalq_u8(vpaddlq_u8(a0), a1); } static INLINE uint16x8_t dc_load_sum_32(const uint8_t *in) { return horizontal_add_and_broadcast_u16x8(dc_load_partial_sum_32(in)); } static INLINE void dc_store_32xh(uint8_t *dst, ptrdiff_t stride, int h, uint8x16_t dc) { for (int i = 0; i < h; ++i) { vst1q_u8(dst + i * stride, dc); vst1q_u8(dst + i * stride + 16, dc); } } void aom_dc_predictor_32x32_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { const uint16x8_t sum_top = dc_load_partial_sum_32(above); const uint16x8_t sum_left = dc_load_partial_sum_32(left); uint16x8_t sum = vaddq_u16(sum_left, sum_top); sum = horizontal_add_and_broadcast_u16x8(sum); const uint8x8_t dc0 = vrshrn_n_u16(sum, 6); dc_store_32xh(dst, stride, 32, vdupq_lane_u8(dc0, 0)); } void aom_dc_left_predictor_32x32_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { const uint16x8_t sum_left = dc_load_sum_32(left); const uint8x8_t dc0 = vrshrn_n_u16(sum_left, 5); (void)above; dc_store_32xh(dst, stride, 32, vdupq_lane_u8(dc0, 0)); } void aom_dc_top_predictor_32x32_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { const uint16x8_t sum_top = dc_load_sum_32(above); const uint8x8_t dc0 = vrshrn_n_u16(sum_top, 5); (void)left; dc_store_32xh(dst, stride, 32, vdupq_lane_u8(dc0, 0)); } void aom_dc_128_predictor_32x32_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { const uint8x16_t dc0 = vdupq_n_u8(0x80); (void)above; (void)left; dc_store_32xh(dst, stride, 32, dc0); } //------------------------------------------------------------------------------ // DC 64x64 static INLINE uint16x8_t dc_load_partial_sum_64(const uint8_t *in) { const uint8x16_t a0 = vld1q_u8(in); const uint8x16_t a1 = vld1q_u8(in + 16); const uint8x16_t a2 = vld1q_u8(in + 32); const uint8x16_t a3 = vld1q_u8(in + 48); const uint16x8_t p01 = vpadalq_u8(vpaddlq_u8(a0), a1); const uint16x8_t p23 = vpadalq_u8(vpaddlq_u8(a2), a3); // delay the remainder of the reduction until // horizontal_add_and_broadcast_u16x8, since we want to do it once rather // than twice in the case we are loading both above and left. return vaddq_u16(p01, p23); } static INLINE uint16x8_t dc_load_sum_64(const uint8_t *in) { return horizontal_add_and_broadcast_u16x8(dc_load_partial_sum_64(in)); } static INLINE void dc_store_64xh(uint8_t *dst, ptrdiff_t stride, int h, uint8x16_t dc) { for (int i = 0; i < h; ++i) { vst1q_u8(dst + i * stride, dc); vst1q_u8(dst + i * stride + 16, dc); vst1q_u8(dst + i * stride + 32, dc); vst1q_u8(dst + i * stride + 48, dc); } } void aom_dc_predictor_64x64_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { const uint16x8_t sum_top = dc_load_partial_sum_64(above); const uint16x8_t sum_left = dc_load_partial_sum_64(left); uint16x8_t sum = vaddq_u16(sum_left, sum_top); sum = horizontal_add_and_broadcast_u16x8(sum); const uint8x8_t dc0 = vrshrn_n_u16(sum, 7); dc_store_64xh(dst, stride, 64, vdupq_lane_u8(dc0, 0)); } void aom_dc_left_predictor_64x64_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { const uint16x8_t sum_left = dc_load_sum_64(left); const uint8x8_t dc0 = vrshrn_n_u16(sum_left, 6); (void)above; dc_store_64xh(dst, stride, 64, vdupq_lane_u8(dc0, 0)); } void aom_dc_top_predictor_64x64_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { const uint16x8_t sum_top = dc_load_sum_64(above); const uint8x8_t dc0 = vrshrn_n_u16(sum_top, 6); (void)left; dc_store_64xh(dst, stride, 64, vdupq_lane_u8(dc0, 0)); } void aom_dc_128_predictor_64x64_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { const uint8x16_t dc0 = vdupq_n_u8(0x80); (void)above; (void)left; dc_store_64xh(dst, stride, 64, dc0); } //------------------------------------------------------------------------------ // DC rectangular cases #define DC_MULTIPLIER_1X2 0x5556 #define DC_MULTIPLIER_1X4 0x3334 #define DC_SHIFT2 16 static INLINE int divide_using_multiply_shift(int num, int shift1, int multiplier, int shift2) { const int interm = num >> shift1; return interm * multiplier >> shift2; } static INLINE int calculate_dc_from_sum(int bw, int bh, uint32_t sum, int shift1, int multiplier) { const int expected_dc = divide_using_multiply_shift( sum + ((bw + bh) >> 1), shift1, multiplier, DC_SHIFT2); assert(expected_dc < (1 << 8)); return expected_dc; } #undef DC_SHIFT2 void aom_dc_predictor_4x8_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { uint8x8_t a = load_u8_4x1(above); uint8x8_t l = vld1_u8(left); uint32_t sum = horizontal_add_u16x8(vaddl_u8(a, l)); uint32_t dc = calculate_dc_from_sum(4, 8, sum, 2, DC_MULTIPLIER_1X2); dc_store_4xh(dst, stride, 8, vdup_n_u8(dc)); } void aom_dc_predictor_8x4_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { uint8x8_t a = vld1_u8(above); uint8x8_t l = load_u8_4x1(left); uint32_t sum = horizontal_add_u16x8(vaddl_u8(a, l)); uint32_t dc = calculate_dc_from_sum(8, 4, sum, 2, DC_MULTIPLIER_1X2); dc_store_8xh(dst, stride, 4, vdup_n_u8(dc)); } void aom_dc_predictor_4x16_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { uint8x8_t a = load_u8_4x1(above); uint8x16_t l = vld1q_u8(left); uint16x8_t sum_al = vaddw_u8(vpaddlq_u8(l), a); uint32_t sum = horizontal_add_u16x8(sum_al); uint32_t dc = calculate_dc_from_sum(4, 16, sum, 2, DC_MULTIPLIER_1X4); dc_store_4xh(dst, stride, 16, vdup_n_u8(dc)); } void aom_dc_predictor_16x4_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { uint8x16_t a = vld1q_u8(above); uint8x8_t l = load_u8_4x1(left); uint16x8_t sum_al = vaddw_u8(vpaddlq_u8(a), l); uint32_t sum = horizontal_add_u16x8(sum_al); uint32_t dc = calculate_dc_from_sum(16, 4, sum, 2, DC_MULTIPLIER_1X4); dc_store_16xh(dst, stride, 4, vdupq_n_u8(dc)); } void aom_dc_predictor_8x16_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { uint8x8_t a = vld1_u8(above); uint8x16_t l = vld1q_u8(left); uint16x8_t sum_al = vaddw_u8(vpaddlq_u8(l), a); uint32_t sum = horizontal_add_u16x8(sum_al); uint32_t dc = calculate_dc_from_sum(8, 16, sum, 3, DC_MULTIPLIER_1X2); dc_store_8xh(dst, stride, 16, vdup_n_u8(dc)); } void aom_dc_predictor_16x8_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { uint8x16_t a = vld1q_u8(above); uint8x8_t l = vld1_u8(left); uint16x8_t sum_al = vaddw_u8(vpaddlq_u8(a), l); uint32_t sum = horizontal_add_u16x8(sum_al); uint32_t dc = calculate_dc_from_sum(16, 8, sum, 3, DC_MULTIPLIER_1X2); dc_store_16xh(dst, stride, 8, vdupq_n_u8(dc)); } void aom_dc_predictor_8x32_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { uint8x8_t a = vld1_u8(above); uint16x8_t sum_left = dc_load_partial_sum_32(left); uint16x8_t sum_al = vaddw_u8(sum_left, a); uint32_t sum = horizontal_add_u16x8(sum_al); uint32_t dc = calculate_dc_from_sum(8, 32, sum, 3, DC_MULTIPLIER_1X4); dc_store_8xh(dst, stride, 32, vdup_n_u8(dc)); } void aom_dc_predictor_32x8_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { uint16x8_t sum_top = dc_load_partial_sum_32(above); uint8x8_t l = vld1_u8(left); uint16x8_t sum_al = vaddw_u8(sum_top, l); uint32_t sum = horizontal_add_u16x8(sum_al); uint32_t dc = calculate_dc_from_sum(32, 8, sum, 3, DC_MULTIPLIER_1X4); dc_store_32xh(dst, stride, 8, vdupq_n_u8(dc)); } void aom_dc_predictor_16x32_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { uint16x8_t sum_above = dc_load_partial_sum_16(above); uint16x8_t sum_left = dc_load_partial_sum_32(left); uint16x8_t sum_al = vaddq_u16(sum_left, sum_above); uint32_t sum = horizontal_add_u16x8(sum_al); uint32_t dc = calculate_dc_from_sum(16, 32, sum, 4, DC_MULTIPLIER_1X2); dc_store_16xh(dst, stride, 32, vdupq_n_u8(dc)); } void aom_dc_predictor_32x16_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { uint16x8_t sum_above = dc_load_partial_sum_32(above); uint16x8_t sum_left = dc_load_partial_sum_16(left); uint16x8_t sum_al = vaddq_u16(sum_left, sum_above); uint32_t sum = horizontal_add_u16x8(sum_al); uint32_t dc = calculate_dc_from_sum(32, 16, sum, 4, DC_MULTIPLIER_1X2); dc_store_32xh(dst, stride, 16, vdupq_n_u8(dc)); } void aom_dc_predictor_16x64_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { uint16x8_t sum_above = dc_load_partial_sum_16(above); uint16x8_t sum_left = dc_load_partial_sum_64(left); uint16x8_t sum_al = vaddq_u16(sum_left, sum_above); uint32_t sum = horizontal_add_u16x8(sum_al); uint32_t dc = calculate_dc_from_sum(16, 64, sum, 4, DC_MULTIPLIER_1X4); dc_store_16xh(dst, stride, 64, vdupq_n_u8(dc)); } void aom_dc_predictor_64x16_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { uint16x8_t sum_above = dc_load_partial_sum_64(above); uint16x8_t sum_left = dc_load_partial_sum_16(left); uint16x8_t sum_al = vaddq_u16(sum_above, sum_left); uint32_t sum = horizontal_add_u16x8(sum_al); uint32_t dc = calculate_dc_from_sum(64, 16, sum, 4, DC_MULTIPLIER_1X4); dc_store_64xh(dst, stride, 16, vdupq_n_u8(dc)); } void aom_dc_predictor_32x64_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { uint16x8_t sum_above = dc_load_partial_sum_32(above); uint16x8_t sum_left = dc_load_partial_sum_64(left); uint16x8_t sum_al = vaddq_u16(sum_above, sum_left); uint32_t sum = horizontal_add_u16x8(sum_al); uint32_t dc = calculate_dc_from_sum(32, 64, sum, 5, DC_MULTIPLIER_1X2); dc_store_32xh(dst, stride, 64, vdupq_n_u8(dc)); } void aom_dc_predictor_64x32_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { uint16x8_t sum_above = dc_load_partial_sum_64(above); uint16x8_t sum_left = dc_load_partial_sum_32(left); uint16x8_t sum_al = vaddq_u16(sum_above, sum_left); uint32_t sum = horizontal_add_u16x8(sum_al); uint32_t dc = calculate_dc_from_sum(64, 32, sum, 5, DC_MULTIPLIER_1X2); dc_store_64xh(dst, stride, 32, vdupq_n_u8(dc)); } #undef DC_MULTIPLIER_1X2 #undef DC_MULTIPLIER_1X4 #define DC_PREDICTOR_128(w, h, q) \ void aom_dc_128_predictor_##w##x##h##_neon(uint8_t *dst, ptrdiff_t stride, \ const uint8_t *above, \ const uint8_t *left) { \ (void)above; \ (void)left; \ dc_store_##w##xh(dst, stride, (h), vdup##q##_n_u8(0x80)); \ } DC_PREDICTOR_128(4, 8, ) DC_PREDICTOR_128(4, 16, ) DC_PREDICTOR_128(8, 4, ) DC_PREDICTOR_128(8, 16, ) DC_PREDICTOR_128(8, 32, ) DC_PREDICTOR_128(16, 4, q) DC_PREDICTOR_128(16, 8, q) DC_PREDICTOR_128(16, 32, q) DC_PREDICTOR_128(16, 64, q) DC_PREDICTOR_128(32, 8, q) DC_PREDICTOR_128(32, 16, q) DC_PREDICTOR_128(32, 64, q) DC_PREDICTOR_128(64, 32, q) DC_PREDICTOR_128(64, 16, q) #undef DC_PREDICTOR_128 #define DC_PREDICTOR_LEFT(w, h, shift, q) \ void aom_dc_left_predictor_##w##x##h##_neon(uint8_t *dst, ptrdiff_t stride, \ const uint8_t *above, \ const uint8_t *left) { \ (void)above; \ const uint16x8_t sum = dc_load_sum_##h(left); \ const uint8x8_t dc0 = vrshrn_n_u16(sum, (shift)); \ dc_store_##w##xh(dst, stride, (h), vdup##q##_lane_u8(dc0, 0)); \ } DC_PREDICTOR_LEFT(4, 8, 3, ) DC_PREDICTOR_LEFT(8, 4, 2, ) DC_PREDICTOR_LEFT(8, 16, 4, ) DC_PREDICTOR_LEFT(16, 8, 3, q) DC_PREDICTOR_LEFT(16, 32, 5, q) DC_PREDICTOR_LEFT(32, 16, 4, q) DC_PREDICTOR_LEFT(32, 64, 6, q) DC_PREDICTOR_LEFT(64, 32, 5, q) DC_PREDICTOR_LEFT(4, 16, 4, ) DC_PREDICTOR_LEFT(16, 4, 2, q) DC_PREDICTOR_LEFT(8, 32, 5, ) DC_PREDICTOR_LEFT(32, 8, 3, q) DC_PREDICTOR_LEFT(16, 64, 6, q) DC_PREDICTOR_LEFT(64, 16, 4, q) #undef DC_PREDICTOR_LEFT #define DC_PREDICTOR_TOP(w, h, shift, q) \ void aom_dc_top_predictor_##w##x##h##_neon(uint8_t *dst, ptrdiff_t stride, \ const uint8_t *above, \ const uint8_t *left) { \ (void)left; \ const uint16x8_t sum = dc_load_sum_##w(above); \ const uint8x8_t dc0 = vrshrn_n_u16(sum, (shift)); \ dc_store_##w##xh(dst, stride, (h), vdup##q##_lane_u8(dc0, 0)); \ } DC_PREDICTOR_TOP(4, 8, 2, ) DC_PREDICTOR_TOP(4, 16, 2, ) DC_PREDICTOR_TOP(8, 4, 3, ) DC_PREDICTOR_TOP(8, 16, 3, ) DC_PREDICTOR_TOP(8, 32, 3, ) DC_PREDICTOR_TOP(16, 4, 4, q) DC_PREDICTOR_TOP(16, 8, 4, q) DC_PREDICTOR_TOP(16, 32, 4, q) DC_PREDICTOR_TOP(16, 64, 4, q) DC_PREDICTOR_TOP(32, 8, 5, q) DC_PREDICTOR_TOP(32, 16, 5, q) DC_PREDICTOR_TOP(32, 64, 5, q) DC_PREDICTOR_TOP(64, 16, 6, q) DC_PREDICTOR_TOP(64, 32, 6, q) #undef DC_PREDICTOR_TOP // ----------------------------------------------------------------------------- static INLINE void v_store_4xh(uint8_t *dst, ptrdiff_t stride, int h, uint8x8_t d0) { for (int i = 0; i < h; ++i) { store_u8_4x1(dst + i * stride, d0); } } static INLINE void v_store_8xh(uint8_t *dst, ptrdiff_t stride, int h, uint8x8_t d0) { for (int i = 0; i < h; ++i) { vst1_u8(dst + i * stride, d0); } } static INLINE void v_store_16xh(uint8_t *dst, ptrdiff_t stride, int h, uint8x16_t d0) { for (int i = 0; i < h; ++i) { vst1q_u8(dst + i * stride, d0); } } static INLINE void v_store_32xh(uint8_t *dst, ptrdiff_t stride, int h, uint8x16_t d0, uint8x16_t d1) { for (int i = 0; i < h; ++i) { vst1q_u8(dst + 0, d0); vst1q_u8(dst + 16, d1); dst += stride; } } static INLINE void v_store_64xh(uint8_t *dst, ptrdiff_t stride, int h, uint8x16_t d0, uint8x16_t d1, uint8x16_t d2, uint8x16_t d3) { for (int i = 0; i < h; ++i) { vst1q_u8(dst + 0, d0); vst1q_u8(dst + 16, d1); vst1q_u8(dst + 32, d2); vst1q_u8(dst + 48, d3); dst += stride; } } void aom_v_predictor_4x4_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { (void)left; v_store_4xh(dst, stride, 4, load_u8_4x1(above)); } void aom_v_predictor_8x8_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { (void)left; v_store_8xh(dst, stride, 8, vld1_u8(above)); } void aom_v_predictor_16x16_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { (void)left; v_store_16xh(dst, stride, 16, vld1q_u8(above)); } void aom_v_predictor_32x32_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { const uint8x16_t d0 = vld1q_u8(above); const uint8x16_t d1 = vld1q_u8(above + 16); (void)left; v_store_32xh(dst, stride, 32, d0, d1); } void aom_v_predictor_4x8_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { (void)left; v_store_4xh(dst, stride, 8, load_u8_4x1(above)); } void aom_v_predictor_4x16_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { (void)left; v_store_4xh(dst, stride, 16, load_u8_4x1(above)); } void aom_v_predictor_8x4_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { (void)left; v_store_8xh(dst, stride, 4, vld1_u8(above)); } void aom_v_predictor_8x16_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { (void)left; v_store_8xh(dst, stride, 16, vld1_u8(above)); } void aom_v_predictor_8x32_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { (void)left; v_store_8xh(dst, stride, 32, vld1_u8(above)); } void aom_v_predictor_16x4_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { (void)left; v_store_16xh(dst, stride, 4, vld1q_u8(above)); } void aom_v_predictor_16x8_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { (void)left; v_store_16xh(dst, stride, 8, vld1q_u8(above)); } void aom_v_predictor_16x32_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { (void)left; v_store_16xh(dst, stride, 32, vld1q_u8(above)); } void aom_v_predictor_16x64_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { (void)left; v_store_16xh(dst, stride, 64, vld1q_u8(above)); } void aom_v_predictor_32x8_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { const uint8x16_t d0 = vld1q_u8(above); const uint8x16_t d1 = vld1q_u8(above + 16); (void)left; v_store_32xh(dst, stride, 8, d0, d1); } void aom_v_predictor_32x16_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { const uint8x16_t d0 = vld1q_u8(above); const uint8x16_t d1 = vld1q_u8(above + 16); (void)left; v_store_32xh(dst, stride, 16, d0, d1); } void aom_v_predictor_32x64_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { const uint8x16_t d0 = vld1q_u8(above); const uint8x16_t d1 = vld1q_u8(above + 16); (void)left; v_store_32xh(dst, stride, 64, d0, d1); } void aom_v_predictor_64x16_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { const uint8x16_t d0 = vld1q_u8(above); const uint8x16_t d1 = vld1q_u8(above + 16); const uint8x16_t d2 = vld1q_u8(above + 32); const uint8x16_t d3 = vld1q_u8(above + 48); (void)left; v_store_64xh(dst, stride, 16, d0, d1, d2, d3); } void aom_v_predictor_64x32_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { const uint8x16_t d0 = vld1q_u8(above); const uint8x16_t d1 = vld1q_u8(above + 16); const uint8x16_t d2 = vld1q_u8(above + 32); const uint8x16_t d3 = vld1q_u8(above + 48); (void)left; v_store_64xh(dst, stride, 32, d0, d1, d2, d3); } void aom_v_predictor_64x64_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { const uint8x16_t d0 = vld1q_u8(above); const uint8x16_t d1 = vld1q_u8(above + 16); const uint8x16_t d2 = vld1q_u8(above + 32); const uint8x16_t d3 = vld1q_u8(above + 48); (void)left; v_store_64xh(dst, stride, 64, d0, d1, d2, d3); } // ----------------------------------------------------------------------------- static INLINE void h_store_4x8(uint8_t *dst, ptrdiff_t stride, uint8x8_t d0) { store_u8_4x1(dst + 0 * stride, vdup_lane_u8(d0, 0)); store_u8_4x1(dst + 1 * stride, vdup_lane_u8(d0, 1)); store_u8_4x1(dst + 2 * stride, vdup_lane_u8(d0, 2)); store_u8_4x1(dst + 3 * stride, vdup_lane_u8(d0, 3)); store_u8_4x1(dst + 4 * stride, vdup_lane_u8(d0, 4)); store_u8_4x1(dst + 5 * stride, vdup_lane_u8(d0, 5)); store_u8_4x1(dst + 6 * stride, vdup_lane_u8(d0, 6)); store_u8_4x1(dst + 7 * stride, vdup_lane_u8(d0, 7)); } static INLINE void h_store_8x8(uint8_t *dst, ptrdiff_t stride, uint8x8_t d0) { vst1_u8(dst + 0 * stride, vdup_lane_u8(d0, 0)); vst1_u8(dst + 1 * stride, vdup_lane_u8(d0, 1)); vst1_u8(dst + 2 * stride, vdup_lane_u8(d0, 2)); vst1_u8(dst + 3 * stride, vdup_lane_u8(d0, 3)); vst1_u8(dst + 4 * stride, vdup_lane_u8(d0, 4)); vst1_u8(dst + 5 * stride, vdup_lane_u8(d0, 5)); vst1_u8(dst + 6 * stride, vdup_lane_u8(d0, 6)); vst1_u8(dst + 7 * stride, vdup_lane_u8(d0, 7)); } static INLINE void h_store_16x8(uint8_t *dst, ptrdiff_t stride, uint8x8_t d0) { vst1q_u8(dst + 0 * stride, vdupq_lane_u8(d0, 0)); vst1q_u8(dst + 1 * stride, vdupq_lane_u8(d0, 1)); vst1q_u8(dst + 2 * stride, vdupq_lane_u8(d0, 2)); vst1q_u8(dst + 3 * stride, vdupq_lane_u8(d0, 3)); vst1q_u8(dst + 4 * stride, vdupq_lane_u8(d0, 4)); vst1q_u8(dst + 5 * stride, vdupq_lane_u8(d0, 5)); vst1q_u8(dst + 6 * stride, vdupq_lane_u8(d0, 6)); vst1q_u8(dst + 7 * stride, vdupq_lane_u8(d0, 7)); } static INLINE void h_store_32x8(uint8_t *dst, ptrdiff_t stride, uint8x8_t d0) { vst1q_u8(dst + 0, vdupq_lane_u8(d0, 0)); vst1q_u8(dst + 16, vdupq_lane_u8(d0, 0)); dst += stride; vst1q_u8(dst + 0, vdupq_lane_u8(d0, 1)); vst1q_u8(dst + 16, vdupq_lane_u8(d0, 1)); dst += stride; vst1q_u8(dst + 0, vdupq_lane_u8(d0, 2)); vst1q_u8(dst + 16, vdupq_lane_u8(d0, 2)); dst += stride; vst1q_u8(dst + 0, vdupq_lane_u8(d0, 3)); vst1q_u8(dst + 16, vdupq_lane_u8(d0, 3)); dst += stride; vst1q_u8(dst + 0, vdupq_lane_u8(d0, 4)); vst1q_u8(dst + 16, vdupq_lane_u8(d0, 4)); dst += stride; vst1q_u8(dst + 0, vdupq_lane_u8(d0, 5)); vst1q_u8(dst + 16, vdupq_lane_u8(d0, 5)); dst += stride; vst1q_u8(dst + 0, vdupq_lane_u8(d0, 6)); vst1q_u8(dst + 16, vdupq_lane_u8(d0, 6)); dst += stride; vst1q_u8(dst + 0, vdupq_lane_u8(d0, 7)); vst1q_u8(dst + 16, vdupq_lane_u8(d0, 7)); } static INLINE void h_store_64x8(uint8_t *dst, ptrdiff_t stride, uint8x8_t d0) { vst1q_u8(dst + 0, vdupq_lane_u8(d0, 0)); vst1q_u8(dst + 16, vdupq_lane_u8(d0, 0)); vst1q_u8(dst + 32, vdupq_lane_u8(d0, 0)); vst1q_u8(dst + 48, vdupq_lane_u8(d0, 0)); dst += stride; vst1q_u8(dst + 0, vdupq_lane_u8(d0, 1)); vst1q_u8(dst + 16, vdupq_lane_u8(d0, 1)); vst1q_u8(dst + 32, vdupq_lane_u8(d0, 1)); vst1q_u8(dst + 48, vdupq_lane_u8(d0, 1)); dst += stride; vst1q_u8(dst + 0, vdupq_lane_u8(d0, 2)); vst1q_u8(dst + 16, vdupq_lane_u8(d0, 2)); vst1q_u8(dst + 32, vdupq_lane_u8(d0, 2)); vst1q_u8(dst + 48, vdupq_lane_u8(d0, 2)); dst += stride; vst1q_u8(dst + 0, vdupq_lane_u8(d0, 3)); vst1q_u8(dst + 16, vdupq_lane_u8(d0, 3)); vst1q_u8(dst + 32, vdupq_lane_u8(d0, 3)); vst1q_u8(dst + 48, vdupq_lane_u8(d0, 3)); dst += stride; vst1q_u8(dst + 0, vdupq_lane_u8(d0, 4)); vst1q_u8(dst + 16, vdupq_lane_u8(d0, 4)); vst1q_u8(dst + 32, vdupq_lane_u8(d0, 4)); vst1q_u8(dst + 48, vdupq_lane_u8(d0, 4)); dst += stride; vst1q_u8(dst + 0, vdupq_lane_u8(d0, 5)); vst1q_u8(dst + 16, vdupq_lane_u8(d0, 5)); vst1q_u8(dst + 32, vdupq_lane_u8(d0, 5)); vst1q_u8(dst + 48, vdupq_lane_u8(d0, 5)); dst += stride; vst1q_u8(dst + 0, vdupq_lane_u8(d0, 6)); vst1q_u8(dst + 16, vdupq_lane_u8(d0, 6)); vst1q_u8(dst + 32, vdupq_lane_u8(d0, 6)); vst1q_u8(dst + 48, vdupq_lane_u8(d0, 6)); dst += stride; vst1q_u8(dst + 0, vdupq_lane_u8(d0, 7)); vst1q_u8(dst + 16, vdupq_lane_u8(d0, 7)); vst1q_u8(dst + 32, vdupq_lane_u8(d0, 7)); vst1q_u8(dst + 48, vdupq_lane_u8(d0, 7)); } void aom_h_predictor_4x4_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { const uint8x8_t d0 = load_u8_4x1(left); (void)above; store_u8_4x1(dst + 0 * stride, vdup_lane_u8(d0, 0)); store_u8_4x1(dst + 1 * stride, vdup_lane_u8(d0, 1)); store_u8_4x1(dst + 2 * stride, vdup_lane_u8(d0, 2)); store_u8_4x1(dst + 3 * stride, vdup_lane_u8(d0, 3)); } void aom_h_predictor_8x8_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { const uint8x8_t d0 = vld1_u8(left); (void)above; h_store_8x8(dst, stride, d0); } void aom_h_predictor_16x16_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { const uint8x16_t d0 = vld1q_u8(left); (void)above; h_store_16x8(dst, stride, vget_low_u8(d0)); h_store_16x8(dst + 8 * stride, stride, vget_high_u8(d0)); } void aom_h_predictor_32x32_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { const uint8x16_t d0 = vld1q_u8(left); const uint8x16_t d1 = vld1q_u8(left + 16); (void)above; h_store_32x8(dst + 0 * stride, stride, vget_low_u8(d0)); h_store_32x8(dst + 8 * stride, stride, vget_high_u8(d0)); h_store_32x8(dst + 16 * stride, stride, vget_low_u8(d1)); h_store_32x8(dst + 24 * stride, stride, vget_high_u8(d1)); } void aom_h_predictor_4x8_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { const uint8x8_t d0 = vld1_u8(left); (void)above; h_store_4x8(dst, stride, d0); } void aom_h_predictor_4x16_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { const uint8x16_t d0 = vld1q_u8(left); (void)above; h_store_4x8(dst + 0 * stride, stride, vget_low_u8(d0)); h_store_4x8(dst + 8 * stride, stride, vget_high_u8(d0)); } void aom_h_predictor_8x4_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { const uint8x8_t d0 = load_u8_4x1(left); (void)above; vst1_u8(dst + 0 * stride, vdup_lane_u8(d0, 0)); vst1_u8(dst + 1 * stride, vdup_lane_u8(d0, 1)); vst1_u8(dst + 2 * stride, vdup_lane_u8(d0, 2)); vst1_u8(dst + 3 * stride, vdup_lane_u8(d0, 3)); } void aom_h_predictor_8x16_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { const uint8x16_t d0 = vld1q_u8(left); (void)above; h_store_8x8(dst + 0 * stride, stride, vget_low_u8(d0)); h_store_8x8(dst + 8 * stride, stride, vget_high_u8(d0)); } void aom_h_predictor_8x32_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { const uint8x16_t d0 = vld1q_u8(left); const uint8x16_t d1 = vld1q_u8(left + 16); (void)above; h_store_8x8(dst + 0 * stride, stride, vget_low_u8(d0)); h_store_8x8(dst + 8 * stride, stride, vget_high_u8(d0)); h_store_8x8(dst + 16 * stride, stride, vget_low_u8(d1)); h_store_8x8(dst + 24 * stride, stride, vget_high_u8(d1)); } void aom_h_predictor_16x4_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { const uint8x8_t d0 = load_u8_4x1(left); (void)above; vst1q_u8(dst + 0 * stride, vdupq_lane_u8(d0, 0)); vst1q_u8(dst + 1 * stride, vdupq_lane_u8(d0, 1)); vst1q_u8(dst + 2 * stride, vdupq_lane_u8(d0, 2)); vst1q_u8(dst + 3 * stride, vdupq_lane_u8(d0, 3)); } void aom_h_predictor_16x8_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { const uint8x8_t d0 = vld1_u8(left); (void)above; h_store_16x8(dst, stride, d0); } void aom_h_predictor_16x32_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { const uint8x16_t d0 = vld1q_u8(left); const uint8x16_t d1 = vld1q_u8(left + 16); (void)above; h_store_16x8(dst + 0 * stride, stride, vget_low_u8(d0)); h_store_16x8(dst + 8 * stride, stride, vget_high_u8(d0)); h_store_16x8(dst + 16 * stride, stride, vget_low_u8(d1)); h_store_16x8(dst + 24 * stride, stride, vget_high_u8(d1)); } void aom_h_predictor_16x64_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { const uint8x16_t d0 = vld1q_u8(left); const uint8x16_t d1 = vld1q_u8(left + 16); const uint8x16_t d2 = vld1q_u8(left + 32); const uint8x16_t d3 = vld1q_u8(left + 48); (void)above; h_store_16x8(dst + 0 * stride, stride, vget_low_u8(d0)); h_store_16x8(dst + 8 * stride, stride, vget_high_u8(d0)); h_store_16x8(dst + 16 * stride, stride, vget_low_u8(d1)); h_store_16x8(dst + 24 * stride, stride, vget_high_u8(d1)); h_store_16x8(dst + 32 * stride, stride, vget_low_u8(d2)); h_store_16x8(dst + 40 * stride, stride, vget_high_u8(d2)); h_store_16x8(dst + 48 * stride, stride, vget_low_u8(d3)); h_store_16x8(dst + 56 * stride, stride, vget_high_u8(d3)); } void aom_h_predictor_32x8_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { const uint8x8_t d0 = vld1_u8(left); (void)above; h_store_32x8(dst, stride, d0); } void aom_h_predictor_32x16_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { const uint8x16_t d0 = vld1q_u8(left); (void)above; h_store_32x8(dst + 0 * stride, stride, vget_low_u8(d0)); h_store_32x8(dst + 8 * stride, stride, vget_high_u8(d0)); } void aom_h_predictor_32x64_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { const uint8x16_t d0 = vld1q_u8(left + 0); const uint8x16_t d1 = vld1q_u8(left + 16); const uint8x16_t d2 = vld1q_u8(left + 32); const uint8x16_t d3 = vld1q_u8(left + 48); (void)above; h_store_32x8(dst + 0 * stride, stride, vget_low_u8(d0)); h_store_32x8(dst + 8 * stride, stride, vget_high_u8(d0)); h_store_32x8(dst + 16 * stride, stride, vget_low_u8(d1)); h_store_32x8(dst + 24 * stride, stride, vget_high_u8(d1)); h_store_32x8(dst + 32 * stride, stride, vget_low_u8(d2)); h_store_32x8(dst + 40 * stride, stride, vget_high_u8(d2)); h_store_32x8(dst + 48 * stride, stride, vget_low_u8(d3)); h_store_32x8(dst + 56 * stride, stride, vget_high_u8(d3)); } void aom_h_predictor_64x16_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { const uint8x16_t d0 = vld1q_u8(left); (void)above; h_store_64x8(dst + 0 * stride, stride, vget_low_u8(d0)); h_store_64x8(dst + 8 * stride, stride, vget_high_u8(d0)); } void aom_h_predictor_64x32_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { (void)above; for (int i = 0; i < 2; ++i) { const uint8x16_t d0 = vld1q_u8(left); h_store_64x8(dst + 0 * stride, stride, vget_low_u8(d0)); h_store_64x8(dst + 8 * stride, stride, vget_high_u8(d0)); left += 16; dst += 16 * stride; } } void aom_h_predictor_64x64_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left) { (void)above; for (int i = 0; i < 4; ++i) { const uint8x16_t d0 = vld1q_u8(left); h_store_64x8(dst + 0 * stride, stride, vget_low_u8(d0)); h_store_64x8(dst + 8 * stride, stride, vget_high_u8(d0)); left += 16; dst += 16 * stride; } } /* ---------------------P R E D I C T I O N Z 1--------------------------- */ // Low bit depth functions static DECLARE_ALIGNED(32, uint8_t, BaseMask[33][32]) = { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0 }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0 }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0 }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0 }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0 }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0 }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0 }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }, }; static AOM_FORCE_INLINE void dr_prediction_z1_HxW_internal_neon_64( int H, int W, uint8x8_t *dst, const uint8_t *above, int upsample_above, int dx) { const int frac_bits = 6 - upsample_above; const int max_base_x = ((W + H) - 1) << upsample_above; assert(dx > 0); // pre-filter above pixels // store in temp buffers: // above[x] * 32 + 16 // above[x+1] - above[x] // final pixels will be calculated as: // (above[x] * 32 + 16 + (above[x+1] - above[x]) * shift) >> 5 const uint8x8_t a_mbase_x = vdup_n_u8(above[max_base_x]); int x = dx; for (int r = 0; r < W; r++) { int base = x >> frac_bits; int base_max_diff = (max_base_x - base) >> upsample_above; if (base_max_diff <= 0) { for (int i = r; i < W; ++i) { dst[i] = a_mbase_x; // save 4 values } return; } if (base_max_diff > H) base_max_diff = H; uint8x8x2_t a01_128; uint16x8_t shift; if (upsample_above) { a01_128 = vld2_u8(above + base); shift = vdupq_n_u16(((x << upsample_above) & 0x3f) >> 1); } else { a01_128.val[0] = vld1_u8(above + base); a01_128.val[1] = vld1_u8(above + base + 1); shift = vdupq_n_u16((x & 0x3f) >> 1); } uint16x8_t diff = vsubl_u8(a01_128.val[1], a01_128.val[0]); uint16x8_t a32 = vmlal_u8(vdupq_n_u16(16), a01_128.val[0], vdup_n_u8(32)); uint16x8_t res = vmlaq_u16(a32, diff, shift); uint8x8_t mask = vld1_u8(BaseMask[base_max_diff]); dst[r] = vbsl_u8(mask, vshrn_n_u16(res, 5), a_mbase_x); x += dx; } } static void dr_prediction_z1_4xN_neon(int N, uint8_t *dst, ptrdiff_t stride, const uint8_t *above, int upsample_above, int dx) { uint8x8_t dstvec[16]; dr_prediction_z1_HxW_internal_neon_64(4, N, dstvec, above, upsample_above, dx); for (int i = 0; i < N; i++) { vst1_lane_u32((uint32_t *)(dst + stride * i), vreinterpret_u32_u8(dstvec[i]), 0); } } static void dr_prediction_z1_8xN_neon(int N, uint8_t *dst, ptrdiff_t stride, const uint8_t *above, int upsample_above, int dx) { uint8x8_t dstvec[32]; dr_prediction_z1_HxW_internal_neon_64(8, N, dstvec, above, upsample_above, dx); for (int i = 0; i < N; i++) { vst1_u8(dst + stride * i, dstvec[i]); } } static AOM_FORCE_INLINE void dr_prediction_z1_HxW_internal_neon( int H, int W, uint8x16_t *dst, const uint8_t *above, int upsample_above, int dx) { const int frac_bits = 6 - upsample_above; const int max_base_x = ((W + H) - 1) << upsample_above; assert(dx > 0); // pre-filter above pixels // store in temp buffers: // above[x] * 32 + 16 // above[x+1] - above[x] // final pixels will be calculated as: // (above[x] * 32 + 16 + (above[x+1] - above[x]) * shift) >> 5 const uint8x16_t a_mbase_x = vdupq_n_u8(above[max_base_x]); int x = dx; for (int r = 0; r < W; r++) { int base = x >> frac_bits; int base_max_diff = (max_base_x - base) >> upsample_above; if (base_max_diff <= 0) { for (int i = r; i < W; ++i) { dst[i] = a_mbase_x; // save 4 values } return; } if (base_max_diff > H) base_max_diff = H; uint16x8_t shift; uint8x16_t a0_128, a1_128; if (upsample_above) { uint8x8x2_t v_tmp_a0_128 = vld2_u8(above + base); a0_128 = vcombine_u8(v_tmp_a0_128.val[0], v_tmp_a0_128.val[1]); a1_128 = vextq_u8(a0_128, vdupq_n_u8(0), 8); shift = vdupq_n_u16(x & 0x1f); } else { a0_128 = vld1q_u8(above + base); a1_128 = vld1q_u8(above + base + 1); shift = vdupq_n_u16((x & 0x3f) >> 1); } uint16x8_t diff_lo = vsubl_u8(vget_low_u8(a1_128), vget_low_u8(a0_128)); uint16x8_t diff_hi = vsubl_u8(vget_high_u8(a1_128), vget_high_u8(a0_128)); uint16x8_t a32_lo = vmlal_u8(vdupq_n_u16(16), vget_low_u8(a0_128), vdup_n_u8(32)); uint16x8_t a32_hi = vmlal_u8(vdupq_n_u16(16), vget_high_u8(a0_128), vdup_n_u8(32)); uint16x8_t res_lo = vmlaq_u16(a32_lo, diff_lo, shift); uint16x8_t res_hi = vmlaq_u16(a32_hi, diff_hi, shift); uint8x16_t v_temp = vcombine_u8(vshrn_n_u16(res_lo, 5), vshrn_n_u16(res_hi, 5)); uint8x16_t mask = vld1q_u8(BaseMask[base_max_diff]); dst[r] = vbslq_u8(mask, v_temp, a_mbase_x); x += dx; } } static void dr_prediction_z1_16xN_neon(int N, uint8_t *dst, ptrdiff_t stride, const uint8_t *above, int upsample_above, int dx) { uint8x16_t dstvec[64]; dr_prediction_z1_HxW_internal_neon(16, N, dstvec, above, upsample_above, dx); for (int i = 0; i < N; i++) { vst1q_u8(dst + stride * i, dstvec[i]); } } static AOM_FORCE_INLINE void dr_prediction_z1_32xN_internal_neon( int N, uint8x16x2_t *dstvec, const uint8_t *above, int dx) { const int frac_bits = 6; const int max_base_x = ((32 + N) - 1); // pre-filter above pixels // store in temp buffers: // above[x] * 32 + 16 // above[x+1] - above[x] // final pixels will be calculated as: // (above[x] * 32 + 16 + (above[x+1] - above[x]) * shift) >> 5 const uint8x16_t a_mbase_x = vdupq_n_u8(above[max_base_x]); int x = dx; for (int r = 0; r < N; r++) { int base = x >> frac_bits; int base_max_diff = (max_base_x - base); if (base_max_diff <= 0) { for (int i = r; i < N; ++i) { dstvec[i].val[0] = a_mbase_x; // save 32 values dstvec[i].val[1] = a_mbase_x; } return; } if (base_max_diff > 32) base_max_diff = 32; uint16x8_t shift = vdupq_n_u16((x & 0x3f) >> 1); uint8x16_t res16[2]; for (int j = 0, jj = 0; j < 32; j += 16, jj++) { int mdiff = base_max_diff - j; if (mdiff <= 0) { res16[jj] = a_mbase_x; } else { uint8x16_t a0_128 = vld1q_u8(above + base + j); uint8x16_t a1_128 = vld1q_u8(above + base + j + 1); uint16x8_t diff_lo = vsubl_u8(vget_low_u8(a1_128), vget_low_u8(a0_128)); uint16x8_t diff_hi = vsubl_u8(vget_high_u8(a1_128), vget_high_u8(a0_128)); uint16x8_t a32_lo = vmlal_u8(vdupq_n_u16(16), vget_low_u8(a0_128), vdup_n_u8(32)); uint16x8_t a32_hi = vmlal_u8(vdupq_n_u16(16), vget_high_u8(a0_128), vdup_n_u8(32)); uint16x8_t res_lo = vmlaq_u16(a32_lo, diff_lo, shift); uint16x8_t res_hi = vmlaq_u16(a32_hi, diff_hi, shift); res16[jj] = vcombine_u8(vshrn_n_u16(res_lo, 5), vshrn_n_u16(res_hi, 5)); } } uint8x16_t mask_lo = vld1q_u8(BaseMask[base_max_diff]); uint8x16_t mask_hi = vld1q_u8(BaseMask[base_max_diff] + 16); dstvec[r].val[0] = vbslq_u8(mask_lo, res16[0], a_mbase_x); dstvec[r].val[1] = vbslq_u8(mask_hi, res16[1], a_mbase_x); x += dx; } } static void dr_prediction_z1_32xN_neon(int N, uint8_t *dst, ptrdiff_t stride, const uint8_t *above, int dx) { uint8x16x2_t dstvec[64]; dr_prediction_z1_32xN_internal_neon(N, dstvec, above, dx); for (int i = 0; i < N; i++) { vst1q_u8(dst + stride * i, dstvec[i].val[0]); vst1q_u8(dst + stride * i + 16, dstvec[i].val[1]); } } static void dr_prediction_z1_64xN_neon(int N, uint8_t *dst, ptrdiff_t stride, const uint8_t *above, int dx) { const int frac_bits = 6; const int max_base_x = ((64 + N) - 1); // pre-filter above pixels // store in temp buffers: // above[x] * 32 + 16 // above[x+1] - above[x] // final pixels will be calculated as: // (above[x] * 32 + 16 + (above[x+1] - above[x]) * shift) >> 5 const uint8x16_t a_mbase_x = vdupq_n_u8(above[max_base_x]); const uint8x16_t max_base_x128 = vdupq_n_u8(max_base_x); int x = dx; for (int r = 0; r < N; r++, dst += stride) { int base = x >> frac_bits; if (base >= max_base_x) { for (int i = r; i < N; ++i) { vst1q_u8(dst, a_mbase_x); vst1q_u8(dst + 16, a_mbase_x); vst1q_u8(dst + 32, a_mbase_x); vst1q_u8(dst + 48, a_mbase_x); dst += stride; } return; } uint16x8_t shift = vdupq_n_u16((x & 0x3f) >> 1); uint8x16_t base_inc128 = vaddq_u8(vdupq_n_u8(base), vcombine_u8(vcreate_u8(0x0706050403020100), vcreate_u8(0x0F0E0D0C0B0A0908))); for (int j = 0; j < 64; j += 16) { int mdif = max_base_x - (base + j); if (mdif <= 0) { vst1q_u8(dst + j, a_mbase_x); } else { uint8x16_t a0_128 = vld1q_u8(above + base + j); uint8x16_t a1_128 = vld1q_u8(above + base + 1 + j); uint16x8_t diff_lo = vsubl_u8(vget_low_u8(a1_128), vget_low_u8(a0_128)); uint16x8_t diff_hi = vsubl_u8(vget_high_u8(a1_128), vget_high_u8(a0_128)); uint16x8_t a32_lo = vmlal_u8(vdupq_n_u16(16), vget_low_u8(a0_128), vdup_n_u8(32)); uint16x8_t a32_hi = vmlal_u8(vdupq_n_u16(16), vget_high_u8(a0_128), vdup_n_u8(32)); uint16x8_t res_lo = vmlaq_u16(a32_lo, diff_lo, shift); uint16x8_t res_hi = vmlaq_u16(a32_hi, diff_hi, shift); uint8x16_t v_temp = vcombine_u8(vshrn_n_u16(res_lo, 5), vshrn_n_u16(res_hi, 5)); uint8x16_t mask128 = vcgtq_u8(vqsubq_u8(max_base_x128, base_inc128), vdupq_n_u8(0)); uint8x16_t res128 = vbslq_u8(mask128, v_temp, a_mbase_x); vst1q_u8(dst + j, res128); base_inc128 = vaddq_u8(base_inc128, vdupq_n_u8(16)); } } x += dx; } } // Directional prediction, zone 1: 0 < angle < 90 void av1_dr_prediction_z1_neon(uint8_t *dst, ptrdiff_t stride, int bw, int bh, const uint8_t *above, const uint8_t *left, int upsample_above, int dx, int dy) { (void)left; (void)dy; switch (bw) { case 4: dr_prediction_z1_4xN_neon(bh, dst, stride, above, upsample_above, dx); break; case 8: dr_prediction_z1_8xN_neon(bh, dst, stride, above, upsample_above, dx); break; case 16: dr_prediction_z1_16xN_neon(bh, dst, stride, above, upsample_above, dx); break; case 32: dr_prediction_z1_32xN_neon(bh, dst, stride, above, dx); break; case 64: dr_prediction_z1_64xN_neon(bh, dst, stride, above, dx); break; default: break; } } /* ---------------------P R E D I C T I O N Z 2--------------------------- */ #if !AOM_ARCH_AARCH64 static DECLARE_ALIGNED(16, uint8_t, LoadMaskz2[4][16]) = { { 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0 }, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff } }; #endif // !AOM_ARCH_AARCH64 static AOM_FORCE_INLINE void dr_prediction_z2_Nx4_above_neon( const uint8_t *above, int upsample_above, int dx, int base_x, int y, uint8x8_t *a0_x, uint8x8_t *a1_x, uint16x4_t *shift0) { uint16x4_t r6 = vcreate_u16(0x00C0008000400000); uint16x4_t ydx = vdup_n_u16(y * dx); if (upsample_above) { // Cannot use LD2 here since we only want to load eight bytes, but LD2 can // only load either 16 or 32. uint8x8_t v_tmp = vld1_u8(above + base_x); *a0_x = vuzp_u8(v_tmp, vdup_n_u8(0)).val[0]; *a1_x = vuzp_u8(v_tmp, vdup_n_u8(0)).val[1]; *shift0 = vand_u16(vsub_u16(r6, ydx), vdup_n_u16(0x1f)); } else { *a0_x = load_u8_4x1(above + base_x); *a1_x = load_u8_4x1(above + base_x + 1); *shift0 = vand_u16(vhsub_u16(r6, ydx), vdup_n_u16(0x1f)); } } static AOM_FORCE_INLINE void dr_prediction_z2_Nx4_left_neon( #if AOM_ARCH_AARCH64 uint8x16x2_t left_vals, #else const uint8_t *left, #endif int upsample_left, int dy, int r, int min_base_y, int frac_bits_y, uint16x4_t *a0_y, uint16x4_t *a1_y, uint16x4_t *shift1) { int16x4_t dy64 = vdup_n_s16(dy); int16x4_t v_1234 = vcreate_s16(0x0004000300020001); int16x4_t v_frac_bits_y = vdup_n_s16(-frac_bits_y); int16x4_t min_base_y64 = vdup_n_s16(min_base_y); int16x4_t v_r6 = vdup_n_s16(r << 6); int16x4_t y_c64 = vmls_s16(v_r6, v_1234, dy64); int16x4_t base_y_c64 = vshl_s16(y_c64, v_frac_bits_y); // Values in base_y_c64 range from -2 through 14 inclusive. base_y_c64 = vmax_s16(base_y_c64, min_base_y64); #if AOM_ARCH_AARCH64 uint8x8_t left_idx0 = vreinterpret_u8_s16(vadd_s16(base_y_c64, vdup_n_s16(2))); // [0, 16] uint8x8_t left_idx1 = vreinterpret_u8_s16(vadd_s16(base_y_c64, vdup_n_s16(3))); // [1, 17] *a0_y = vreinterpret_u16_u8(vqtbl2_u8(left_vals, left_idx0)); *a1_y = vreinterpret_u16_u8(vqtbl2_u8(left_vals, left_idx1)); #else // !AOM_ARCH_AARCH64 DECLARE_ALIGNED(32, int16_t, base_y_c[4]); vst1_s16(base_y_c, base_y_c64); uint8x8_t a0_y_u8 = vdup_n_u8(0); a0_y_u8 = vld1_lane_u8(left + base_y_c[0], a0_y_u8, 0); a0_y_u8 = vld1_lane_u8(left + base_y_c[1], a0_y_u8, 2); a0_y_u8 = vld1_lane_u8(left + base_y_c[2], a0_y_u8, 4); a0_y_u8 = vld1_lane_u8(left + base_y_c[3], a0_y_u8, 6); base_y_c64 = vadd_s16(base_y_c64, vdup_n_s16(1)); vst1_s16(base_y_c, base_y_c64); uint8x8_t a1_y_u8 = vdup_n_u8(0); a1_y_u8 = vld1_lane_u8(left + base_y_c[0], a1_y_u8, 0); a1_y_u8 = vld1_lane_u8(left + base_y_c[1], a1_y_u8, 2); a1_y_u8 = vld1_lane_u8(left + base_y_c[2], a1_y_u8, 4); a1_y_u8 = vld1_lane_u8(left + base_y_c[3], a1_y_u8, 6); *a0_y = vreinterpret_u16_u8(a0_y_u8); *a1_y = vreinterpret_u16_u8(a1_y_u8); #endif // AOM_ARCH_AARCH64 if (upsample_left) { *shift1 = vand_u16(vreinterpret_u16_s16(y_c64), vdup_n_u16(0x1f)); } else { *shift1 = vand_u16(vshr_n_u16(vreinterpret_u16_s16(y_c64), 1), vdup_n_u16(0x1f)); } } static AOM_FORCE_INLINE uint8x8_t dr_prediction_z2_Nx8_above_neon( const uint8_t *above, int upsample_above, int dx, int base_x, int y) { uint16x8_t c1234 = vcombine_u16(vcreate_u16(0x0004000300020001), vcreate_u16(0x0008000700060005)); uint16x8_t ydx = vdupq_n_u16(y * dx); uint16x8_t r6 = vshlq_n_u16(vextq_u16(c1234, vdupq_n_u16(0), 2), 6); uint16x8_t shift0; uint8x8_t a0_x0; uint8x8_t a1_x0; if (upsample_above) { uint8x8x2_t v_tmp = vld2_u8(above + base_x); a0_x0 = v_tmp.val[0]; a1_x0 = v_tmp.val[1]; shift0 = vandq_u16(vsubq_u16(r6, ydx), vdupq_n_u16(0x1f)); } else { a0_x0 = vld1_u8(above + base_x); a1_x0 = vld1_u8(above + base_x + 1); shift0 = vandq_u16(vhsubq_u16(r6, ydx), vdupq_n_u16(0x1f)); } uint16x8_t diff0 = vsubl_u8(a1_x0, a0_x0); // a[x+1] - a[x] uint16x8_t a32 = vmlal_u8(vdupq_n_u16(16), a0_x0, vdup_n_u8(32)); // a[x] * 32 + 16 uint16x8_t res = vmlaq_u16(a32, diff0, shift0); return vshrn_n_u16(res, 5); } static AOM_FORCE_INLINE uint8x8_t dr_prediction_z2_Nx8_left_neon( #if AOM_ARCH_AARCH64 uint8x16x3_t left_vals, #else const uint8_t *left, #endif int upsample_left, int dy, int r, int min_base_y, int frac_bits_y) { int16x8_t v_r6 = vdupq_n_s16(r << 6); int16x8_t dy128 = vdupq_n_s16(dy); int16x8_t v_frac_bits_y = vdupq_n_s16(-frac_bits_y); int16x8_t min_base_y128 = vdupq_n_s16(min_base_y); uint16x8_t c1234 = vcombine_u16(vcreate_u16(0x0004000300020001), vcreate_u16(0x0008000700060005)); int16x8_t y_c128 = vmlsq_s16(v_r6, vreinterpretq_s16_u16(c1234), dy128); int16x8_t base_y_c128 = vshlq_s16(y_c128, v_frac_bits_y); // Values in base_y_c128 range from -2 through 31 inclusive. base_y_c128 = vmaxq_s16(base_y_c128, min_base_y128); #if AOM_ARCH_AARCH64 uint8x16_t left_idx0 = vreinterpretq_u8_s16(vaddq_s16(base_y_c128, vdupq_n_s16(2))); // [0, 33] uint8x16_t left_idx1 = vreinterpretq_u8_s16(vaddq_s16(base_y_c128, vdupq_n_s16(3))); // [1, 34] uint8x16_t left_idx01 = vuzp1q_u8(left_idx0, left_idx1); uint8x16_t a01_x = vqtbl3q_u8(left_vals, left_idx01); uint8x8_t a0_x1 = vget_low_u8(a01_x); uint8x8_t a1_x1 = vget_high_u8(a01_x); #else // !AOM_ARCH_AARCH64 uint8x8_t a0_x1 = load_u8_gather_s16_x8(left, base_y_c128); uint8x8_t a1_x1 = load_u8_gather_s16_x8(left + 1, base_y_c128); #endif // AOM_ARCH_AARCH64 uint16x8_t shift1; if (upsample_left) { shift1 = vandq_u16(vreinterpretq_u16_s16(y_c128), vdupq_n_u16(0x1f)); } else { shift1 = vshrq_n_u16( vandq_u16(vreinterpretq_u16_s16(y_c128), vdupq_n_u16(0x3f)), 1); } uint16x8_t diff1 = vsubl_u8(a1_x1, a0_x1); uint16x8_t a32 = vmlal_u8(vdupq_n_u16(16), a0_x1, vdup_n_u8(32)); uint16x8_t res = vmlaq_u16(a32, diff1, shift1); return vshrn_n_u16(res, 5); } static AOM_FORCE_INLINE uint8x16_t dr_prediction_z2_NxW_above_neon( const uint8_t *above, int dx, int base_x, int y, int j) { uint16x8x2_t c0123 = { { vcombine_u16(vcreate_u16(0x0003000200010000), vcreate_u16(0x0007000600050004)), vcombine_u16(vcreate_u16(0x000B000A00090008), vcreate_u16(0x000F000E000D000C)) } }; uint16x8_t j256 = vdupq_n_u16(j); uint16x8_t ydx = vdupq_n_u16((uint16_t)(y * dx)); const uint8x16_t a0_x128 = vld1q_u8(above + base_x + j); const uint8x16_t a1_x128 = vld1q_u8(above + base_x + j + 1); uint16x8_t res6_0 = vshlq_n_u16(vaddq_u16(c0123.val[0], j256), 6); uint16x8_t res6_1 = vshlq_n_u16(vaddq_u16(c0123.val[1], j256), 6); uint16x8_t shift0 = vshrq_n_u16(vandq_u16(vsubq_u16(res6_0, ydx), vdupq_n_u16(0x3f)), 1); uint16x8_t shift1 = vshrq_n_u16(vandq_u16(vsubq_u16(res6_1, ydx), vdupq_n_u16(0x3f)), 1); // a[x+1] - a[x] uint16x8_t diff0 = vsubl_u8(vget_low_u8(a1_x128), vget_low_u8(a0_x128)); uint16x8_t diff1 = vsubl_u8(vget_high_u8(a1_x128), vget_high_u8(a0_x128)); // a[x] * 32 + 16 uint16x8_t a32_0 = vmlal_u8(vdupq_n_u16(16), vget_low_u8(a0_x128), vdup_n_u8(32)); uint16x8_t a32_1 = vmlal_u8(vdupq_n_u16(16), vget_high_u8(a0_x128), vdup_n_u8(32)); uint16x8_t res0 = vmlaq_u16(a32_0, diff0, shift0); uint16x8_t res1 = vmlaq_u16(a32_1, diff1, shift1); return vcombine_u8(vshrn_n_u16(res0, 5), vshrn_n_u16(res1, 5)); } static AOM_FORCE_INLINE uint8x16_t dr_prediction_z2_NxW_left_neon( #if AOM_ARCH_AARCH64 uint8x16x4_t left_vals0, uint8x16x4_t left_vals1, #else const uint8_t *left, #endif int dy, int r, int j) { // here upsample_above and upsample_left are 0 by design of // av1_use_intra_edge_upsample const int min_base_y = -1; int16x8_t min_base_y256 = vdupq_n_s16(min_base_y); int16x8_t half_min_base_y256 = vdupq_n_s16(min_base_y >> 1); int16x8_t dy256 = vdupq_n_s16(dy); uint16x8_t j256 = vdupq_n_u16(j); uint16x8x2_t c0123 = { { vcombine_u16(vcreate_u16(0x0003000200010000), vcreate_u16(0x0007000600050004)), vcombine_u16(vcreate_u16(0x000B000A00090008), vcreate_u16(0x000F000E000D000C)) } }; uint16x8x2_t c1234 = { { vaddq_u16(c0123.val[0], vdupq_n_u16(1)), vaddq_u16(c0123.val[1], vdupq_n_u16(1)) } }; int16x8_t v_r6 = vdupq_n_s16(r << 6); int16x8_t c256_0 = vreinterpretq_s16_u16(vaddq_u16(j256, c1234.val[0])); int16x8_t c256_1 = vreinterpretq_s16_u16(vaddq_u16(j256, c1234.val[1])); int16x8_t mul16_lo = vreinterpretq_s16_u16( vminq_u16(vreinterpretq_u16_s16(vmulq_s16(c256_0, dy256)), vreinterpretq_u16_s16(half_min_base_y256))); int16x8_t mul16_hi = vreinterpretq_s16_u16( vminq_u16(vreinterpretq_u16_s16(vmulq_s16(c256_1, dy256)), vreinterpretq_u16_s16(half_min_base_y256))); int16x8_t y_c256_lo = vsubq_s16(v_r6, mul16_lo); int16x8_t y_c256_hi = vsubq_s16(v_r6, mul16_hi); int16x8_t base_y_c256_lo = vshrq_n_s16(y_c256_lo, 6); int16x8_t base_y_c256_hi = vshrq_n_s16(y_c256_hi, 6); base_y_c256_lo = vmaxq_s16(min_base_y256, base_y_c256_lo); base_y_c256_hi = vmaxq_s16(min_base_y256, base_y_c256_hi); #if !AOM_ARCH_AARCH64 int16_t min_y = vgetq_lane_s16(base_y_c256_hi, 7); int16_t max_y = vgetq_lane_s16(base_y_c256_lo, 0); int16_t offset_diff = max_y - min_y; uint8x8_t a0_y0; uint8x8_t a0_y1; uint8x8_t a1_y0; uint8x8_t a1_y1; if (offset_diff < 16) { // Avoid gathers where the data we want is close together in memory. // We don't need this for AArch64 since we can already use TBL to cover the // full range of possible values. assert(offset_diff >= 0); int16x8_t min_y256 = vdupq_lane_s16(vget_high_s16(base_y_c256_hi), 3); int16x8x2_t base_y_offset; base_y_offset.val[0] = vsubq_s16(base_y_c256_lo, min_y256); base_y_offset.val[1] = vsubq_s16(base_y_c256_hi, min_y256); int8x16_t base_y_offset128 = vcombine_s8(vqmovn_s16(base_y_offset.val[0]), vqmovn_s16(base_y_offset.val[1])); uint8x16_t v_loadmaskz2 = vld1q_u8(LoadMaskz2[offset_diff / 4]); uint8x16_t a0_y128 = vld1q_u8(left + min_y); uint8x16_t a1_y128 = vld1q_u8(left + min_y + 1); a0_y128 = vandq_u8(a0_y128, v_loadmaskz2); a1_y128 = vandq_u8(a1_y128, v_loadmaskz2); uint8x8_t v_index_low = vget_low_u8(vreinterpretq_u8_s8(base_y_offset128)); uint8x8_t v_index_high = vget_high_u8(vreinterpretq_u8_s8(base_y_offset128)); uint8x8x2_t v_tmp, v_res; v_tmp.val[0] = vget_low_u8(a0_y128); v_tmp.val[1] = vget_high_u8(a0_y128); v_res.val[0] = vtbl2_u8(v_tmp, v_index_low); v_res.val[1] = vtbl2_u8(v_tmp, v_index_high); a0_y128 = vcombine_u8(v_res.val[0], v_res.val[1]); v_tmp.val[0] = vget_low_u8(a1_y128); v_tmp.val[1] = vget_high_u8(a1_y128); v_res.val[0] = vtbl2_u8(v_tmp, v_index_low); v_res.val[1] = vtbl2_u8(v_tmp, v_index_high); a1_y128 = vcombine_u8(v_res.val[0], v_res.val[1]); a0_y0 = vget_low_u8(a0_y128); a0_y1 = vget_high_u8(a0_y128); a1_y0 = vget_low_u8(a1_y128); a1_y1 = vget_high_u8(a1_y128); } else { a0_y0 = load_u8_gather_s16_x8(left, base_y_c256_lo); a0_y1 = load_u8_gather_s16_x8(left, base_y_c256_hi); a1_y0 = load_u8_gather_s16_x8(left + 1, base_y_c256_lo); a1_y1 = load_u8_gather_s16_x8(left + 1, base_y_c256_hi); } #else // Values in left_idx{0,1} range from 0 through 63 inclusive. uint8x16_t left_idx0 = vreinterpretq_u8_s16(vaddq_s16(base_y_c256_lo, vdupq_n_s16(1))); uint8x16_t left_idx1 = vreinterpretq_u8_s16(vaddq_s16(base_y_c256_hi, vdupq_n_s16(1))); uint8x16_t left_idx01 = vuzp1q_u8(left_idx0, left_idx1); uint8x16_t a0_y01 = vqtbl4q_u8(left_vals0, left_idx01); uint8x16_t a1_y01 = vqtbl4q_u8(left_vals1, left_idx01); uint8x8_t a0_y0 = vget_low_u8(a0_y01); uint8x8_t a0_y1 = vget_high_u8(a0_y01); uint8x8_t a1_y0 = vget_low_u8(a1_y01); uint8x8_t a1_y1 = vget_high_u8(a1_y01); #endif // !AOM_ARCH_AARCH64 uint16x8_t shifty_lo = vshrq_n_u16( vandq_u16(vreinterpretq_u16_s16(y_c256_lo), vdupq_n_u16(0x3f)), 1); uint16x8_t shifty_hi = vshrq_n_u16( vandq_u16(vreinterpretq_u16_s16(y_c256_hi), vdupq_n_u16(0x3f)), 1); // a[x+1] - a[x] uint16x8_t diff_lo = vsubl_u8(a1_y0, a0_y0); uint16x8_t diff_hi = vsubl_u8(a1_y1, a0_y1); // a[x] * 32 + 16 uint16x8_t a32_lo = vmlal_u8(vdupq_n_u16(16), a0_y0, vdup_n_u8(32)); uint16x8_t a32_hi = vmlal_u8(vdupq_n_u16(16), a0_y1, vdup_n_u8(32)); uint16x8_t res0 = vmlaq_u16(a32_lo, diff_lo, shifty_lo); uint16x8_t res1 = vmlaq_u16(a32_hi, diff_hi, shifty_hi); return vcombine_u8(vshrn_n_u16(res0, 5), vshrn_n_u16(res1, 5)); } static void dr_prediction_z2_Nx4_neon(int N, uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left, int upsample_above, int upsample_left, int dx, int dy) { const int min_base_x = -(1 << upsample_above); const int min_base_y = -(1 << upsample_left); const int frac_bits_x = 6 - upsample_above; const int frac_bits_y = 6 - upsample_left; assert(dx > 0); // pre-filter above pixels // store in temp buffers: // above[x] * 32 + 16 // above[x+1] - above[x] // final pixels will be calculated as: // (above[x] * 32 + 16 + (above[x+1] - above[x]) * shift) >> 5 #if AOM_ARCH_AARCH64 // Use ext rather than loading left + 14 directly to avoid over-read. const uint8x16_t left_m2 = vld1q_u8(left - 2); const uint8x16_t left_0 = vld1q_u8(left); const uint8x16_t left_14 = vextq_u8(left_0, left_0, 14); const uint8x16x2_t left_vals = { { left_m2, left_14 } }; #define LEFT left_vals #else // !AOM_ARCH_AARCH64 #define LEFT left #endif // AOM_ARCH_AARCH64 for (int r = 0; r < N; r++) { int y = r + 1; int base_x = (-y * dx) >> frac_bits_x; const int base_min_diff = (min_base_x - ((-y * dx) >> frac_bits_x) + upsample_above) >> upsample_above; if (base_min_diff <= 0) { uint8x8_t a0_x_u8, a1_x_u8; uint16x4_t shift0; dr_prediction_z2_Nx4_above_neon(above, upsample_above, dx, base_x, y, &a0_x_u8, &a1_x_u8, &shift0); uint8x8_t a0_x = a0_x_u8; uint8x8_t a1_x = a1_x_u8; uint16x8_t diff = vsubl_u8(a1_x, a0_x); // a[x+1] - a[x] uint16x8_t a32 = vmlal_u8(vdupq_n_u16(16), a0_x, vdup_n_u8(32)); // a[x] * 32 + 16 uint16x8_t res = vmlaq_u16(a32, diff, vcombine_u16(shift0, vdup_n_u16(0))); uint8x8_t resx = vshrn_n_u16(res, 5); vst1_lane_u32((uint32_t *)dst, vreinterpret_u32_u8(resx), 0); } else if (base_min_diff < 4) { uint8x8_t a0_x_u8, a1_x_u8; uint16x4_t shift0; dr_prediction_z2_Nx4_above_neon(above, upsample_above, dx, base_x, y, &a0_x_u8, &a1_x_u8, &shift0); uint16x8_t a0_x = vmovl_u8(a0_x_u8); uint16x8_t a1_x = vmovl_u8(a1_x_u8); uint16x4_t a0_y; uint16x4_t a1_y; uint16x4_t shift1; dr_prediction_z2_Nx4_left_neon(LEFT, upsample_left, dy, r, min_base_y, frac_bits_y, &a0_y, &a1_y, &shift1); a0_x = vcombine_u16(vget_low_u16(a0_x), a0_y); a1_x = vcombine_u16(vget_low_u16(a1_x), a1_y); uint16x8_t shift = vcombine_u16(shift0, shift1); uint16x8_t diff = vsubq_u16(a1_x, a0_x); // a[x+1] - a[x] uint16x8_t a32 = vmlaq_n_u16(vdupq_n_u16(16), a0_x, 32); // a[x] * 32 + 16 uint16x8_t res = vmlaq_u16(a32, diff, shift); uint8x8_t resx = vshrn_n_u16(res, 5); uint8x8_t resy = vext_u8(resx, vdup_n_u8(0), 4); uint8x8_t mask = vld1_u8(BaseMask[base_min_diff]); uint8x8_t v_resxy = vbsl_u8(mask, resy, resx); vst1_lane_u32((uint32_t *)dst, vreinterpret_u32_u8(v_resxy), 0); } else { uint16x4_t a0_y, a1_y; uint16x4_t shift1; dr_prediction_z2_Nx4_left_neon(LEFT, upsample_left, dy, r, min_base_y, frac_bits_y, &a0_y, &a1_y, &shift1); uint16x4_t diff = vsub_u16(a1_y, a0_y); // a[x+1] - a[x] uint16x4_t a32 = vmla_n_u16(vdup_n_u16(16), a0_y, 32); // a[x] * 32 + 16 uint16x4_t res = vmla_u16(a32, diff, shift1); uint8x8_t resy = vshrn_n_u16(vcombine_u16(res, vdup_n_u16(0)), 5); vst1_lane_u32((uint32_t *)dst, vreinterpret_u32_u8(resy), 0); } dst += stride; } #undef LEFT } static void dr_prediction_z2_Nx8_neon(int N, uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left, int upsample_above, int upsample_left, int dx, int dy) { const int min_base_x = -(1 << upsample_above); const int min_base_y = -(1 << upsample_left); const int frac_bits_x = 6 - upsample_above; const int frac_bits_y = 6 - upsample_left; // pre-filter above pixels // store in temp buffers: // above[x] * 32 + 16 // above[x+1] - above[x] // final pixels will be calculated as: // (above[x] * 32 + 16 + (above[x+1] - above[x]) * shift) >> 5 #if AOM_ARCH_AARCH64 // Use ext rather than loading left + 30 directly to avoid over-read. const uint8x16_t left_m2 = vld1q_u8(left - 2); const uint8x16_t left_0 = vld1q_u8(left + 0); const uint8x16_t left_16 = vld1q_u8(left + 16); const uint8x16_t left_14 = vextq_u8(left_0, left_16, 14); const uint8x16_t left_30 = vextq_u8(left_16, left_16, 14); const uint8x16x3_t left_vals = { { left_m2, left_14, left_30 } }; #define LEFT left_vals #else // !AOM_ARCH_AARCH64 #define LEFT left #endif // AOM_ARCH_AARCH64 for (int r = 0; r < N; r++) { int y = r + 1; int base_x = (-y * dx) >> frac_bits_x; int base_min_diff = (min_base_x - base_x + upsample_above) >> upsample_above; if (base_min_diff <= 0) { uint8x8_t resx = dr_prediction_z2_Nx8_above_neon(above, upsample_above, dx, base_x, y); vst1_u8(dst, resx); } else if (base_min_diff < 8) { uint8x8_t resx = dr_prediction_z2_Nx8_above_neon(above, upsample_above, dx, base_x, y); uint8x8_t resy = dr_prediction_z2_Nx8_left_neon( LEFT, upsample_left, dy, r, min_base_y, frac_bits_y); uint8x8_t mask = vld1_u8(BaseMask[base_min_diff]); uint8x8_t resxy = vbsl_u8(mask, resy, resx); vst1_u8(dst, resxy); } else { uint8x8_t resy = dr_prediction_z2_Nx8_left_neon( LEFT, upsample_left, dy, r, min_base_y, frac_bits_y); vst1_u8(dst, resy); } dst += stride; } #undef LEFT } static void dr_prediction_z2_HxW_neon(int H, int W, uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left, int dx, int dy) { // here upsample_above and upsample_left are 0 by design of // av1_use_intra_edge_upsample const int min_base_x = -1; #if AOM_ARCH_AARCH64 const uint8x16_t left_m1 = vld1q_u8(left - 1); const uint8x16_t left_0 = vld1q_u8(left + 0); const uint8x16_t left_16 = vld1q_u8(left + 16); const uint8x16_t left_32 = vld1q_u8(left + 32); const uint8x16_t left_48 = vld1q_u8(left + 48); const uint8x16_t left_15 = vextq_u8(left_0, left_16, 15); const uint8x16_t left_31 = vextq_u8(left_16, left_32, 15); const uint8x16_t left_47 = vextq_u8(left_32, left_48, 15); const uint8x16x4_t left_vals0 = { { left_m1, left_15, left_31, left_47 } }; const uint8x16x4_t left_vals1 = { { left_0, left_16, left_32, left_48 } }; #define LEFT left_vals0, left_vals1 #else // !AOM_ARCH_AARCH64 #define LEFT left #endif // AOM_ARCH_AARCH64 for (int r = 0; r < H; r++) { int y = r + 1; int base_x = (-y * dx) >> 6; for (int j = 0; j < W; j += 16) { const int base_min_diff = min_base_x - base_x - j; if (base_min_diff <= 0) { uint8x16_t resx = dr_prediction_z2_NxW_above_neon(above, dx, base_x, y, j); vst1q_u8(dst + j, resx); } else if (base_min_diff < 16) { uint8x16_t resx = dr_prediction_z2_NxW_above_neon(above, dx, base_x, y, j); uint8x16_t resy = dr_prediction_z2_NxW_left_neon(LEFT, dy, r, j); uint8x16_t mask = vld1q_u8(BaseMask[base_min_diff]); uint8x16_t resxy = vbslq_u8(mask, resy, resx); vst1q_u8(dst + j, resxy); } else { uint8x16_t resy = dr_prediction_z2_NxW_left_neon(LEFT, dy, r, j); vst1q_u8(dst + j, resy); } } // for j dst += stride; } #undef LEFT } // Directional prediction, zone 2: 90 < angle < 180 void av1_dr_prediction_z2_neon(uint8_t *dst, ptrdiff_t stride, int bw, int bh, const uint8_t *above, const uint8_t *left, int upsample_above, int upsample_left, int dx, int dy) { assert(dx > 0); assert(dy > 0); switch (bw) { case 4: dr_prediction_z2_Nx4_neon(bh, dst, stride, above, left, upsample_above, upsample_left, dx, dy); break; case 8: dr_prediction_z2_Nx8_neon(bh, dst, stride, above, left, upsample_above, upsample_left, dx, dy); break; default: dr_prediction_z2_HxW_neon(bh, bw, dst, stride, above, left, dx, dy); break; } } /* ---------------------P R E D I C T I O N Z 3--------------------------- */ static AOM_FORCE_INLINE void z3_transpose_arrays_u8_16x4(const uint8x16_t *x, uint8x16x2_t *d) { uint8x16x2_t w0 = vzipq_u8(x[0], x[1]); uint8x16x2_t w1 = vzipq_u8(x[2], x[3]); d[0] = aom_reinterpretq_u8_u16_x2(vzipq_u16(vreinterpretq_u16_u8(w0.val[0]), vreinterpretq_u16_u8(w1.val[0]))); d[1] = aom_reinterpretq_u8_u16_x2(vzipq_u16(vreinterpretq_u16_u8(w0.val[1]), vreinterpretq_u16_u8(w1.val[1]))); } static AOM_FORCE_INLINE void z3_transpose_arrays_u8_4x4(const uint8x8_t *x, uint8x8x2_t *d) { uint8x8x2_t w0 = vzip_u8(x[0], x[1]); uint8x8x2_t w1 = vzip_u8(x[2], x[3]); *d = aom_reinterpret_u8_u16_x2( vzip_u16(vreinterpret_u16_u8(w0.val[0]), vreinterpret_u16_u8(w1.val[0]))); } static AOM_FORCE_INLINE void z3_transpose_arrays_u8_8x4(const uint8x8_t *x, uint8x8x2_t *d) { uint8x8x2_t w0 = vzip_u8(x[0], x[1]); uint8x8x2_t w1 = vzip_u8(x[2], x[3]); d[0] = aom_reinterpret_u8_u16_x2( vzip_u16(vreinterpret_u16_u8(w0.val[0]), vreinterpret_u16_u8(w1.val[0]))); d[1] = aom_reinterpret_u8_u16_x2( vzip_u16(vreinterpret_u16_u8(w0.val[1]), vreinterpret_u16_u8(w1.val[1]))); } static void z3_transpose_arrays_u8_16x16(const uint8_t *src, ptrdiff_t pitchSrc, uint8_t *dst, ptrdiff_t pitchDst) { // The same as the normal transposes in transpose_neon.h, but with a stride // between consecutive vectors of elements. uint8x16_t r[16]; uint8x16_t d[16]; for (int i = 0; i < 16; i++) { r[i] = vld1q_u8(src + i * pitchSrc); } transpose_arrays_u8_16x16(r, d); for (int i = 0; i < 16; i++) { vst1q_u8(dst + i * pitchDst, d[i]); } } static void z3_transpose_arrays_u8_16nx16n(const uint8_t *src, ptrdiff_t pitchSrc, uint8_t *dst, ptrdiff_t pitchDst, int width, int height) { for (int j = 0; j < height; j += 16) { for (int i = 0; i < width; i += 16) { z3_transpose_arrays_u8_16x16(src + i * pitchSrc + j, pitchSrc, dst + j * pitchDst + i, pitchDst); } } } static void dr_prediction_z3_4x4_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *left, int upsample_left, int dy) { uint8x8_t dstvec[4]; uint8x8x2_t dest; dr_prediction_z1_HxW_internal_neon_64(4, 4, dstvec, left, upsample_left, dy); z3_transpose_arrays_u8_4x4(dstvec, &dest); store_u8x4_strided_x2(dst + stride * 0, stride, dest.val[0]); store_u8x4_strided_x2(dst + stride * 2, stride, dest.val[1]); } static void dr_prediction_z3_8x8_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *left, int upsample_left, int dy) { uint8x8_t dstvec[8]; uint8x8_t d[8]; dr_prediction_z1_HxW_internal_neon_64(8, 8, dstvec, left, upsample_left, dy); transpose_arrays_u8_8x8(dstvec, d); store_u8_8x8(dst, stride, d[0], d[1], d[2], d[3], d[4], d[5], d[6], d[7]); } static void dr_prediction_z3_4x8_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *left, int upsample_left, int dy) { uint8x8_t dstvec[4]; uint8x8x2_t d[2]; dr_prediction_z1_HxW_internal_neon_64(8, 4, dstvec, left, upsample_left, dy); z3_transpose_arrays_u8_8x4(dstvec, d); store_u8x4_strided_x2(dst + stride * 0, stride, d[0].val[0]); store_u8x4_strided_x2(dst + stride * 2, stride, d[0].val[1]); store_u8x4_strided_x2(dst + stride * 4, stride, d[1].val[0]); store_u8x4_strided_x2(dst + stride * 6, stride, d[1].val[1]); } static void dr_prediction_z3_8x4_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *left, int upsample_left, int dy) { uint8x8_t dstvec[8]; uint8x8_t d[8]; dr_prediction_z1_HxW_internal_neon_64(4, 8, dstvec, left, upsample_left, dy); transpose_arrays_u8_8x8(dstvec, d); store_u8_8x4(dst, stride, d[0], d[1], d[2], d[3]); } static void dr_prediction_z3_8x16_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *left, int upsample_left, int dy) { uint8x16_t dstvec[8]; uint8x8_t d[16]; dr_prediction_z1_HxW_internal_neon(16, 8, dstvec, left, upsample_left, dy); transpose_arrays_u8_16x8(dstvec, d); for (int i = 0; i < 16; i++) { vst1_u8(dst + i * stride, d[i]); } } static void dr_prediction_z3_16x8_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *left, int upsample_left, int dy) { uint8x8_t dstvec[16]; uint8x16_t d[8]; dr_prediction_z1_HxW_internal_neon_64(8, 16, dstvec, left, upsample_left, dy); transpose_arrays_u8_8x16(dstvec, d); for (int i = 0; i < 8; i++) { vst1q_u8(dst + i * stride, d[i]); } } static void dr_prediction_z3_4x16_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *left, int upsample_left, int dy) { uint8x16_t dstvec[4]; uint8x16x2_t d[2]; dr_prediction_z1_HxW_internal_neon(16, 4, dstvec, left, upsample_left, dy); z3_transpose_arrays_u8_16x4(dstvec, d); store_u8x4_strided_x4(dst + stride * 0, stride, d[0].val[0]); store_u8x4_strided_x4(dst + stride * 4, stride, d[0].val[1]); store_u8x4_strided_x4(dst + stride * 8, stride, d[1].val[0]); store_u8x4_strided_x4(dst + stride * 12, stride, d[1].val[1]); } static void dr_prediction_z3_16x4_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *left, int upsample_left, int dy) { uint8x8_t dstvec[16]; uint8x16_t d[8]; dr_prediction_z1_HxW_internal_neon_64(4, 16, dstvec, left, upsample_left, dy); transpose_arrays_u8_8x16(dstvec, d); for (int i = 0; i < 4; i++) { vst1q_u8(dst + i * stride, d[i]); } } static void dr_prediction_z3_8x32_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *left, int upsample_left, int dy) { (void)upsample_left; uint8x16x2_t dstvec[16]; uint8x16_t d[32]; uint8x16_t v_zero = vdupq_n_u8(0); dr_prediction_z1_32xN_internal_neon(8, dstvec, left, dy); for (int i = 8; i < 16; i++) { dstvec[i].val[0] = v_zero; dstvec[i].val[1] = v_zero; } transpose_arrays_u8_32x16(dstvec, d); for (int i = 0; i < 32; i++) { vst1_u8(dst + i * stride, vget_low_u8(d[i])); } } static void dr_prediction_z3_32x8_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *left, int upsample_left, int dy) { uint8x8_t dstvec[32]; uint8x16_t d[16]; dr_prediction_z1_HxW_internal_neon_64(8, 32, dstvec, left, upsample_left, dy); transpose_arrays_u8_8x16(dstvec, d); transpose_arrays_u8_8x16(dstvec + 16, d + 8); for (int i = 0; i < 8; i++) { vst1q_u8(dst + i * stride, d[i]); vst1q_u8(dst + i * stride + 16, d[i + 8]); } } static void dr_prediction_z3_16x16_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *left, int upsample_left, int dy) { uint8x16_t dstvec[16]; uint8x16_t d[16]; dr_prediction_z1_HxW_internal_neon(16, 16, dstvec, left, upsample_left, dy); transpose_arrays_u8_16x16(dstvec, d); for (int i = 0; i < 16; i++) { vst1q_u8(dst + i * stride, d[i]); } } static void dr_prediction_z3_32x32_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *left, int upsample_left, int dy) { (void)upsample_left; uint8x16x2_t dstvec[32]; uint8x16_t d[64]; dr_prediction_z1_32xN_internal_neon(32, dstvec, left, dy); transpose_arrays_u8_32x16(dstvec, d); transpose_arrays_u8_32x16(dstvec + 16, d + 32); for (int i = 0; i < 32; i++) { vst1q_u8(dst + i * stride, d[i]); vst1q_u8(dst + i * stride + 16, d[i + 32]); } } static void dr_prediction_z3_64x64_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *left, int upsample_left, int dy) { (void)upsample_left; DECLARE_ALIGNED(16, uint8_t, dstT[64 * 64]); dr_prediction_z1_64xN_neon(64, dstT, 64, left, dy); z3_transpose_arrays_u8_16nx16n(dstT, 64, dst, stride, 64, 64); } static void dr_prediction_z3_16x32_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *left, int upsample_left, int dy) { (void)upsample_left; uint8x16x2_t dstvec[16]; uint8x16_t d[32]; dr_prediction_z1_32xN_internal_neon(16, dstvec, left, dy); transpose_arrays_u8_32x16(dstvec, d); for (int i = 0; i < 16; i++) { vst1q_u8(dst + 2 * i * stride, d[2 * i + 0]); vst1q_u8(dst + (2 * i + 1) * stride, d[2 * i + 1]); } } static void dr_prediction_z3_32x16_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *left, int upsample_left, int dy) { uint8x16_t dstvec[32]; dr_prediction_z1_HxW_internal_neon(16, 32, dstvec, left, upsample_left, dy); for (int i = 0; i < 32; i += 16) { uint8x16_t d[16]; transpose_arrays_u8_16x16(dstvec + i, d); for (int j = 0; j < 16; j++) { vst1q_u8(dst + j * stride + i, d[j]); } } } static void dr_prediction_z3_32x64_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *left, int upsample_left, int dy) { (void)upsample_left; uint8_t dstT[64 * 32]; dr_prediction_z1_64xN_neon(32, dstT, 64, left, dy); z3_transpose_arrays_u8_16nx16n(dstT, 64, dst, stride, 32, 64); } static void dr_prediction_z3_64x32_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *left, int upsample_left, int dy) { (void)upsample_left; uint8_t dstT[32 * 64]; dr_prediction_z1_32xN_neon(64, dstT, 32, left, dy); z3_transpose_arrays_u8_16nx16n(dstT, 32, dst, stride, 64, 32); } static void dr_prediction_z3_16x64_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *left, int upsample_left, int dy) { (void)upsample_left; uint8_t dstT[64 * 16]; dr_prediction_z1_64xN_neon(16, dstT, 64, left, dy); z3_transpose_arrays_u8_16nx16n(dstT, 64, dst, stride, 16, 64); } static void dr_prediction_z3_64x16_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *left, int upsample_left, int dy) { uint8x16_t dstvec[64]; dr_prediction_z1_HxW_internal_neon(16, 64, dstvec, left, upsample_left, dy); for (int i = 0; i < 64; i += 16) { uint8x16_t d[16]; transpose_arrays_u8_16x16(dstvec + i, d); for (int j = 0; j < 16; ++j) { vst1q_u8(dst + j * stride + i, d[j]); } } } typedef void (*dr_prediction_z3_fn)(uint8_t *dst, ptrdiff_t stride, const uint8_t *left, int upsample_left, int dy); static dr_prediction_z3_fn dr_prediction_z3_arr[7][7] = { { NULL, NULL, NULL, NULL, NULL, NULL, NULL }, { NULL, NULL, NULL, NULL, NULL, NULL, NULL }, { NULL, NULL, dr_prediction_z3_4x4_neon, dr_prediction_z3_4x8_neon, dr_prediction_z3_4x16_neon, NULL, NULL }, { NULL, NULL, dr_prediction_z3_8x4_neon, dr_prediction_z3_8x8_neon, dr_prediction_z3_8x16_neon, dr_prediction_z3_8x32_neon, NULL }, { NULL, NULL, dr_prediction_z3_16x4_neon, dr_prediction_z3_16x8_neon, dr_prediction_z3_16x16_neon, dr_prediction_z3_16x32_neon, dr_prediction_z3_16x64_neon }, { NULL, NULL, NULL, dr_prediction_z3_32x8_neon, dr_prediction_z3_32x16_neon, dr_prediction_z3_32x32_neon, dr_prediction_z3_32x64_neon }, { NULL, NULL, NULL, NULL, dr_prediction_z3_64x16_neon, dr_prediction_z3_64x32_neon, dr_prediction_z3_64x64_neon }, }; void av1_dr_prediction_z3_neon(uint8_t *dst, ptrdiff_t stride, int bw, int bh, const uint8_t *above, const uint8_t *left, int upsample_left, int dx, int dy) { (void)above; (void)dx; assert(dx == 1); assert(dy > 0); dr_prediction_z3_fn f = dr_prediction_z3_arr[get_msb(bw)][get_msb(bh)]; assert(f != NULL); f(dst, stride, left, upsample_left, dy); } // ----------------------------------------------------------------------------- // SMOOTH_PRED // 256 - v = vneg_s8(v) static INLINE uint8x8_t negate_s8(const uint8x8_t v) { return vreinterpret_u8_s8(vneg_s8(vreinterpret_s8_u8(v))); } static void smooth_4xh_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *const top_row, const uint8_t *const left_column, const int height) { const uint8_t top_right = top_row[3]; const uint8_t bottom_left = left_column[height - 1]; const uint8_t *const weights_y = smooth_weights + height - 4; uint8x8_t top_v = load_u8_4x1(top_row); const uint8x8_t top_right_v = vdup_n_u8(top_right); const uint8x8_t bottom_left_v = vdup_n_u8(bottom_left); uint8x8_t weights_x_v = load_u8_4x1(smooth_weights); const uint8x8_t scaled_weights_x = negate_s8(weights_x_v); const uint16x8_t weighted_tr = vmull_u8(scaled_weights_x, top_right_v); assert(height > 0); int y = 0; do { const uint8x8_t left_v = vdup_n_u8(left_column[y]); const uint8x8_t weights_y_v = vdup_n_u8(weights_y[y]); const uint8x8_t scaled_weights_y = negate_s8(weights_y_v); const uint16x8_t weighted_bl = vmull_u8(scaled_weights_y, bottom_left_v); const uint16x8_t weighted_top_bl = vmlal_u8(weighted_bl, weights_y_v, top_v); const uint16x8_t weighted_left_tr = vmlal_u8(weighted_tr, weights_x_v, left_v); // Maximum value of each parameter: 0xFF00 const uint16x8_t avg = vhaddq_u16(weighted_top_bl, weighted_left_tr); const uint8x8_t result = vrshrn_n_u16(avg, SMOOTH_WEIGHT_LOG2_SCALE); vst1_lane_u32((uint32_t *)dst, vreinterpret_u32_u8(result), 0); dst += stride; } while (++y != height); } static INLINE uint8x8_t calculate_pred(const uint16x8_t weighted_top_bl, const uint16x8_t weighted_left_tr) { // Maximum value of each parameter: 0xFF00 const uint16x8_t avg = vhaddq_u16(weighted_top_bl, weighted_left_tr); return vrshrn_n_u16(avg, SMOOTH_WEIGHT_LOG2_SCALE); } static INLINE uint8x8_t calculate_weights_and_pred( const uint8x8_t top, const uint8x8_t left, const uint16x8_t weighted_tr, const uint8x8_t bottom_left, const uint8x8_t weights_x, const uint8x8_t scaled_weights_y, const uint8x8_t weights_y) { const uint16x8_t weighted_top = vmull_u8(weights_y, top); const uint16x8_t weighted_top_bl = vmlal_u8(weighted_top, scaled_weights_y, bottom_left); const uint16x8_t weighted_left_tr = vmlal_u8(weighted_tr, weights_x, left); return calculate_pred(weighted_top_bl, weighted_left_tr); } static void smooth_8xh_neon(uint8_t *dst, ptrdiff_t stride, const uint8_t *const top_row, const uint8_t *const left_column, const int height) { const uint8_t top_right = top_row[7]; const uint8_t bottom_left = left_column[height - 1]; const uint8_t *const weights_y = smooth_weights + height - 4; const uint8x8_t top_v = vld1_u8(top_row); const uint8x8_t top_right_v = vdup_n_u8(top_right); const uint8x8_t bottom_left_v = vdup_n_u8(bottom_left); const uint8x8_t weights_x_v = vld1_u8(smooth_weights + 4); const uint8x8_t scaled_weights_x = negate_s8(weights_x_v); const uint16x8_t weighted_tr = vmull_u8(scaled_weights_x, top_right_v); assert(height > 0); int y = 0; do { const uint8x8_t left_v = vdup_n_u8(left_column[y]); const uint8x8_t weights_y_v = vdup_n_u8(weights_y[y]); const uint8x8_t scaled_weights_y = negate_s8(weights_y_v); const uint8x8_t result = calculate_weights_and_pred(top_v, left_v, weighted_tr, bottom_left_v, weights_x_v, scaled_weights_y, weights_y_v); vst1_u8(dst, result); dst += stride; } while (++y != height); } #define SMOOTH_NXM(W, H) \ void aom_smooth_predictor_##W##x##H##_neon(uint8_t *dst, ptrdiff_t y_stride, \ const uint8_t *above, \ const uint8_t *left) { \ smooth_##W##xh_neon(dst, y_stride, above, left, H); \ } SMOOTH_NXM(4, 4) SMOOTH_NXM(4, 8) SMOOTH_NXM(8, 4) SMOOTH_NXM(8, 8) SMOOTH_NXM(4, 16) SMOOTH_NXM(8, 16) SMOOTH_NXM(8, 32) #undef SMOOTH_NXM static INLINE uint8x16_t calculate_weights_and_predq( const uint8x16_t top, const uint8x8_t left, const uint8x8_t top_right, const uint8x8_t weights_y, const uint8x16_t weights_x, const uint8x16_t scaled_weights_x, const uint16x8_t weighted_bl) { const uint16x8_t weighted_top_bl_low = vmlal_u8(weighted_bl, weights_y, vget_low_u8(top)); const uint16x8_t weighted_left_low = vmull_u8(vget_low_u8(weights_x), left); const uint16x8_t weighted_left_tr_low = vmlal_u8(weighted_left_low, vget_low_u8(scaled_weights_x), top_right); const uint8x8_t result_low = calculate_pred(weighted_top_bl_low, weighted_left_tr_low); const uint16x8_t weighted_top_bl_high = vmlal_u8(weighted_bl, weights_y, vget_high_u8(top)); const uint16x8_t weighted_left_high = vmull_u8(vget_high_u8(weights_x), left); const uint16x8_t weighted_left_tr_high = vmlal_u8(weighted_left_high, vget_high_u8(scaled_weights_x), top_right); const uint8x8_t result_high = calculate_pred(weighted_top_bl_high, weighted_left_tr_high); return vcombine_u8(result_low, result_high); } // 256 - v = vneg_s8(v) static INLINE uint8x16_t negate_s8q(const uint8x16_t v) { return vreinterpretq_u8_s8(vnegq_s8(vreinterpretq_s8_u8(v))); } // For width 16 and above. #define SMOOTH_PREDICTOR(W) \ static void smooth_##W##xh_neon( \ uint8_t *dst, ptrdiff_t stride, const uint8_t *const top_row, \ const uint8_t *const left_column, const int height) { \ const uint8_t top_right = top_row[(W)-1]; \ const uint8_t bottom_left = left_column[height - 1]; \ const uint8_t *const weights_y = smooth_weights + height - 4; \ \ uint8x16_t top_v[4]; \ top_v[0] = vld1q_u8(top_row); \ if ((W) > 16) { \ top_v[1] = vld1q_u8(top_row + 16); \ if ((W) == 64) { \ top_v[2] = vld1q_u8(top_row + 32); \ top_v[3] = vld1q_u8(top_row + 48); \ } \ } \ \ const uint8x8_t top_right_v = vdup_n_u8(top_right); \ const uint8x8_t bottom_left_v = vdup_n_u8(bottom_left); \ \ uint8x16_t weights_x_v[4]; \ weights_x_v[0] = vld1q_u8(smooth_weights + (W)-4); \ if ((W) > 16) { \ weights_x_v[1] = vld1q_u8(smooth_weights + (W) + 16 - 4); \ if ((W) == 64) { \ weights_x_v[2] = vld1q_u8(smooth_weights + (W) + 32 - 4); \ weights_x_v[3] = vld1q_u8(smooth_weights + (W) + 48 - 4); \ } \ } \ \ uint8x16_t scaled_weights_x[4]; \ scaled_weights_x[0] = negate_s8q(weights_x_v[0]); \ if ((W) > 16) { \ scaled_weights_x[1] = negate_s8q(weights_x_v[1]); \ if ((W) == 64) { \ scaled_weights_x[2] = negate_s8q(weights_x_v[2]); \ scaled_weights_x[3] = negate_s8q(weights_x_v[3]); \ } \ } \ \ for (int y = 0; y < height; ++y) { \ const uint8x8_t left_v = vdup_n_u8(left_column[y]); \ const uint8x8_t weights_y_v = vdup_n_u8(weights_y[y]); \ const uint8x8_t scaled_weights_y = negate_s8(weights_y_v); \ const uint16x8_t weighted_bl = \ vmull_u8(scaled_weights_y, bottom_left_v); \ \ vst1q_u8(dst, calculate_weights_and_predq( \ top_v[0], left_v, top_right_v, weights_y_v, \ weights_x_v[0], scaled_weights_x[0], weighted_bl)); \ \ if ((W) > 16) { \ vst1q_u8(dst + 16, \ calculate_weights_and_predq( \ top_v[1], left_v, top_right_v, weights_y_v, \ weights_x_v[1], scaled_weights_x[1], weighted_bl)); \ if ((W) == 64) { \ vst1q_u8(dst + 32, \ calculate_weights_and_predq( \ top_v[2], left_v, top_right_v, weights_y_v, \ weights_x_v[2], scaled_weights_x[2], weighted_bl)); \ vst1q_u8(dst + 48, \ calculate_weights_and_predq( \ top_v[3], left_v, top_right_v, weights_y_v, \ weights_x_v[3], scaled_weights_x[3], weighted_bl)); \ } \ } \ \ dst += stride; \ } \ } SMOOTH_PREDICTOR(16) SMOOTH_PREDICTOR(32) SMOOTH_PREDICTOR(64) #undef SMOOTH_PREDICTOR #define SMOOTH_NXM_WIDE(W, H) \ void aom_smooth_predictor_##W##x##H##_neon(uint8_t *dst, ptrdiff_t y_stride, \ const uint8_t *above, \ const uint8_t *left) { \ smooth_##W##xh_neon(dst, y_stride, above, left, H); \ } SMOOTH_NXM_WIDE(16, 4) SMOOTH_NXM_WIDE(16, 8) SMOOTH_NXM_WIDE(16, 16) SMOOTH_NXM_WIDE(16, 32) SMOOTH_NXM_WIDE(16, 64) SMOOTH_NXM_WIDE(32, 8) SMOOTH_NXM_WIDE(32, 16) SMOOTH_NXM_WIDE(32, 32) SMOOTH_NXM_WIDE(32, 64) SMOOTH_NXM_WIDE(64, 16) SMOOTH_NXM_WIDE(64, 32) SMOOTH_NXM_WIDE(64, 64) #undef SMOOTH_NXM_WIDE // ----------------------------------------------------------------------------- // SMOOTH_V_PRED // For widths 4 and 8. #define SMOOTH_V_PREDICTOR(W) \ static void smooth_v_##W##xh_neon( \ uint8_t *dst, ptrdiff_t stride, const uint8_t *const top_row, \ const uint8_t *const left_column, const int height) { \ const uint8_t bottom_left = left_column[height - 1]; \ const uint8_t *const weights_y = smooth_weights + height - 4; \ \ uint8x8_t top_v; \ if ((W) == 4) { \ top_v = load_u8_4x1(top_row); \ } else { /* width == 8 */ \ top_v = vld1_u8(top_row); \ } \ \ const uint8x8_t bottom_left_v = vdup_n_u8(bottom_left); \ \ assert(height > 0); \ int y = 0; \ do { \ const uint8x8_t weights_y_v = vdup_n_u8(weights_y[y]); \ const uint8x8_t scaled_weights_y = negate_s8(weights_y_v); \ \ const uint16x8_t weighted_top = vmull_u8(weights_y_v, top_v); \ const uint16x8_t weighted_top_bl = \ vmlal_u8(weighted_top, scaled_weights_y, bottom_left_v); \ const uint8x8_t pred = \ vrshrn_n_u16(weighted_top_bl, SMOOTH_WEIGHT_LOG2_SCALE); \ \ if ((W) == 4) { \ vst1_lane_u32((uint32_t *)dst, vreinterpret_u32_u8(pred), 0); \ } else { /* width == 8 */ \ vst1_u8(dst, pred); \ } \ dst += stride; \ } while (++y != height); \ } SMOOTH_V_PREDICTOR(4) SMOOTH_V_PREDICTOR(8) #undef SMOOTH_V_PREDICTOR #define SMOOTH_V_NXM(W, H) \ void aom_smooth_v_predictor_##W##x##H##_neon( \ uint8_t *dst, ptrdiff_t y_stride, const uint8_t *above, \ const uint8_t *left) { \ smooth_v_##W##xh_neon(dst, y_stride, above, left, H); \ } SMOOTH_V_NXM(4, 4) SMOOTH_V_NXM(4, 8) SMOOTH_V_NXM(4, 16) SMOOTH_V_NXM(8, 4) SMOOTH_V_NXM(8, 8) SMOOTH_V_NXM(8, 16) SMOOTH_V_NXM(8, 32) #undef SMOOTH_V_NXM static INLINE uint8x16_t calculate_vertical_weights_and_pred( const uint8x16_t top, const uint8x8_t weights_y, const uint16x8_t weighted_bl) { const uint16x8_t pred_low = vmlal_u8(weighted_bl, weights_y, vget_low_u8(top)); const uint16x8_t pred_high = vmlal_u8(weighted_bl, weights_y, vget_high_u8(top)); const uint8x8_t pred_scaled_low = vrshrn_n_u16(pred_low, SMOOTH_WEIGHT_LOG2_SCALE); const uint8x8_t pred_scaled_high = vrshrn_n_u16(pred_high, SMOOTH_WEIGHT_LOG2_SCALE); return vcombine_u8(pred_scaled_low, pred_scaled_high); } // For width 16 and above. #define SMOOTH_V_PREDICTOR(W) \ static void smooth_v_##W##xh_neon( \ uint8_t *dst, ptrdiff_t stride, const uint8_t *const top_row, \ const uint8_t *const left_column, const int height) { \ const uint8_t bottom_left = left_column[height - 1]; \ const uint8_t *const weights_y = smooth_weights + height - 4; \ \ uint8x16_t top_v[4]; \ top_v[0] = vld1q_u8(top_row); \ if ((W) > 16) { \ top_v[1] = vld1q_u8(top_row + 16); \ if ((W) == 64) { \ top_v[2] = vld1q_u8(top_row + 32); \ top_v[3] = vld1q_u8(top_row + 48); \ } \ } \ \ const uint8x8_t bottom_left_v = vdup_n_u8(bottom_left); \ \ assert(height > 0); \ int y = 0; \ do { \ const uint8x8_t weights_y_v = vdup_n_u8(weights_y[y]); \ const uint8x8_t scaled_weights_y = negate_s8(weights_y_v); \ const uint16x8_t weighted_bl = \ vmull_u8(scaled_weights_y, bottom_left_v); \ \ const uint8x16_t pred_0 = calculate_vertical_weights_and_pred( \ top_v[0], weights_y_v, weighted_bl); \ vst1q_u8(dst, pred_0); \ \ if ((W) > 16) { \ const uint8x16_t pred_1 = calculate_vertical_weights_and_pred( \ top_v[1], weights_y_v, weighted_bl); \ vst1q_u8(dst + 16, pred_1); \ \ if ((W) == 64) { \ const uint8x16_t pred_2 = calculate_vertical_weights_and_pred( \ top_v[2], weights_y_v, weighted_bl); \ vst1q_u8(dst + 32, pred_2); \ \ const uint8x16_t pred_3 = calculate_vertical_weights_and_pred( \ top_v[3], weights_y_v, weighted_bl); \ vst1q_u8(dst + 48, pred_3); \ } \ } \ \ dst += stride; \ } while (++y != height); \ } SMOOTH_V_PREDICTOR(16) SMOOTH_V_PREDICTOR(32) SMOOTH_V_PREDICTOR(64) #undef SMOOTH_V_PREDICTOR #define SMOOTH_V_NXM_WIDE(W, H) \ void aom_smooth_v_predictor_##W##x##H##_neon( \ uint8_t *dst, ptrdiff_t y_stride, const uint8_t *above, \ const uint8_t *left) { \ smooth_v_##W##xh_neon(dst, y_stride, above, left, H); \ } SMOOTH_V_NXM_WIDE(16, 4) SMOOTH_V_NXM_WIDE(16, 8) SMOOTH_V_NXM_WIDE(16, 16) SMOOTH_V_NXM_WIDE(16, 32) SMOOTH_V_NXM_WIDE(16, 64) SMOOTH_V_NXM_WIDE(32, 8) SMOOTH_V_NXM_WIDE(32, 16) SMOOTH_V_NXM_WIDE(32, 32) SMOOTH_V_NXM_WIDE(32, 64) SMOOTH_V_NXM_WIDE(64, 16) SMOOTH_V_NXM_WIDE(64, 32) SMOOTH_V_NXM_WIDE(64, 64) #undef SMOOTH_V_NXM_WIDE // ----------------------------------------------------------------------------- // SMOOTH_H_PRED // For widths 4 and 8. #define SMOOTH_H_PREDICTOR(W) \ static void smooth_h_##W##xh_neon( \ uint8_t *dst, ptrdiff_t stride, const uint8_t *const top_row, \ const uint8_t *const left_column, const int height) { \ const uint8_t top_right = top_row[(W)-1]; \ \ const uint8x8_t top_right_v = vdup_n_u8(top_right); \ /* Over-reads for 4xN but still within the array. */ \ const uint8x8_t weights_x = vld1_u8(smooth_weights + (W)-4); \ const uint8x8_t scaled_weights_x = negate_s8(weights_x); \ const uint16x8_t weighted_tr = vmull_u8(scaled_weights_x, top_right_v); \ \ assert(height > 0); \ int y = 0; \ do { \ const uint8x8_t left_v = vdup_n_u8(left_column[y]); \ const uint16x8_t weighted_left_tr = \ vmlal_u8(weighted_tr, weights_x, left_v); \ const uint8x8_t pred = \ vrshrn_n_u16(weighted_left_tr, SMOOTH_WEIGHT_LOG2_SCALE); \ \ if ((W) == 4) { \ vst1_lane_u32((uint32_t *)dst, vreinterpret_u32_u8(pred), 0); \ } else { /* width == 8 */ \ vst1_u8(dst, pred); \ } \ dst += stride; \ } while (++y != height); \ } SMOOTH_H_PREDICTOR(4) SMOOTH_H_PREDICTOR(8) #undef SMOOTH_H_PREDICTOR #define SMOOTH_H_NXM(W, H) \ void aom_smooth_h_predictor_##W##x##H##_neon( \ uint8_t *dst, ptrdiff_t y_stride, const uint8_t *above, \ const uint8_t *left) { \ smooth_h_##W##xh_neon(dst, y_stride, above, left, H); \ } SMOOTH_H_NXM(4, 4) SMOOTH_H_NXM(4, 8) SMOOTH_H_NXM(4, 16) SMOOTH_H_NXM(8, 4) SMOOTH_H_NXM(8, 8) SMOOTH_H_NXM(8, 16) SMOOTH_H_NXM(8, 32) #undef SMOOTH_H_NXM static INLINE uint8x16_t calculate_horizontal_weights_and_pred( const uint8x8_t left, const uint8x8_t top_right, const uint8x16_t weights_x, const uint8x16_t scaled_weights_x) { const uint16x8_t weighted_left_low = vmull_u8(vget_low_u8(weights_x), left); const uint16x8_t weighted_left_tr_low = vmlal_u8(weighted_left_low, vget_low_u8(scaled_weights_x), top_right); const uint8x8_t pred_scaled_low = vrshrn_n_u16(weighted_left_tr_low, SMOOTH_WEIGHT_LOG2_SCALE); const uint16x8_t weighted_left_high = vmull_u8(vget_high_u8(weights_x), left); const uint16x8_t weighted_left_tr_high = vmlal_u8(weighted_left_high, vget_high_u8(scaled_weights_x), top_right); const uint8x8_t pred_scaled_high = vrshrn_n_u16(weighted_left_tr_high, SMOOTH_WEIGHT_LOG2_SCALE); return vcombine_u8(pred_scaled_low, pred_scaled_high); } // For width 16 and above. #define SMOOTH_H_PREDICTOR(W) \ static void smooth_h_##W##xh_neon( \ uint8_t *dst, ptrdiff_t stride, const uint8_t *const top_row, \ const uint8_t *const left_column, const int height) { \ const uint8_t top_right = top_row[(W)-1]; \ \ const uint8x8_t top_right_v = vdup_n_u8(top_right); \ \ uint8x16_t weights_x[4]; \ weights_x[0] = vld1q_u8(smooth_weights + (W)-4); \ if ((W) > 16) { \ weights_x[1] = vld1q_u8(smooth_weights + (W) + 16 - 4); \ if ((W) == 64) { \ weights_x[2] = vld1q_u8(smooth_weights + (W) + 32 - 4); \ weights_x[3] = vld1q_u8(smooth_weights + (W) + 48 - 4); \ } \ } \ \ uint8x16_t scaled_weights_x[4]; \ scaled_weights_x[0] = negate_s8q(weights_x[0]); \ if ((W) > 16) { \ scaled_weights_x[1] = negate_s8q(weights_x[1]); \ if ((W) == 64) { \ scaled_weights_x[2] = negate_s8q(weights_x[2]); \ scaled_weights_x[3] = negate_s8q(weights_x[3]); \ } \ } \ \ assert(height > 0); \ int y = 0; \ do { \ const uint8x8_t left_v = vdup_n_u8(left_column[y]); \ \ const uint8x16_t pred_0 = calculate_horizontal_weights_and_pred( \ left_v, top_right_v, weights_x[0], scaled_weights_x[0]); \ vst1q_u8(dst, pred_0); \ \ if ((W) > 16) { \ const uint8x16_t pred_1 = calculate_horizontal_weights_and_pred( \ left_v, top_right_v, weights_x[1], scaled_weights_x[1]); \ vst1q_u8(dst + 16, pred_1); \ \ if ((W) == 64) { \ const uint8x16_t pred_2 = calculate_horizontal_weights_and_pred( \ left_v, top_right_v, weights_x[2], scaled_weights_x[2]); \ vst1q_u8(dst + 32, pred_2); \ \ const uint8x16_t pred_3 = calculate_horizontal_weights_and_pred( \ left_v, top_right_v, weights_x[3], scaled_weights_x[3]); \ vst1q_u8(dst + 48, pred_3); \ } \ } \ dst += stride; \ } while (++y != height); \ } SMOOTH_H_PREDICTOR(16) SMOOTH_H_PREDICTOR(32) SMOOTH_H_PREDICTOR(64) #undef SMOOTH_H_PREDICTOR #define SMOOTH_H_NXM_WIDE(W, H) \ void aom_smooth_h_predictor_##W##x##H##_neon( \ uint8_t *dst, ptrdiff_t y_stride, const uint8_t *above, \ const uint8_t *left) { \ smooth_h_##W##xh_neon(dst, y_stride, above, left, H); \ } SMOOTH_H_NXM_WIDE(16, 4) SMOOTH_H_NXM_WIDE(16, 8) SMOOTH_H_NXM_WIDE(16, 16) SMOOTH_H_NXM_WIDE(16, 32) SMOOTH_H_NXM_WIDE(16, 64) SMOOTH_H_NXM_WIDE(32, 8) SMOOTH_H_NXM_WIDE(32, 16) SMOOTH_H_NXM_WIDE(32, 32) SMOOTH_H_NXM_WIDE(32, 64) SMOOTH_H_NXM_WIDE(64, 16) SMOOTH_H_NXM_WIDE(64, 32) SMOOTH_H_NXM_WIDE(64, 64) #undef SMOOTH_H_NXM_WIDE // ----------------------------------------------------------------------------- // PAETH static INLINE void paeth_4or8_x_h_neon(uint8_t *dest, ptrdiff_t stride, const uint8_t *const top_row, const uint8_t *const left_column, int width, int height) { const uint8x8_t top_left = vdup_n_u8(top_row[-1]); const uint16x8_t top_left_x2 = vdupq_n_u16(top_row[-1] + top_row[-1]); uint8x8_t top; if (width == 4) { top = load_u8_4x1(top_row); } else { // width == 8 top = vld1_u8(top_row); } assert(height > 0); int y = 0; do { const uint8x8_t left = vdup_n_u8(left_column[y]); const uint8x8_t left_dist = vabd_u8(top, top_left); const uint8x8_t top_dist = vabd_u8(left, top_left); const uint16x8_t top_left_dist = vabdq_u16(vaddl_u8(top, left), top_left_x2); const uint8x8_t left_le_top = vcle_u8(left_dist, top_dist); const uint8x8_t left_le_top_left = vmovn_u16(vcleq_u16(vmovl_u8(left_dist), top_left_dist)); const uint8x8_t top_le_top_left = vmovn_u16(vcleq_u16(vmovl_u8(top_dist), top_left_dist)); // if (left_dist <= top_dist && left_dist <= top_left_dist) const uint8x8_t left_mask = vand_u8(left_le_top, left_le_top_left); // dest[x] = left_column[y]; // Fill all the unused spaces with 'top'. They will be overwritten when // the positions for top_left are known. uint8x8_t result = vbsl_u8(left_mask, left, top); // else if (top_dist <= top_left_dist) // dest[x] = top_row[x]; // Add these values to the mask. They were already set. const uint8x8_t left_or_top_mask = vorr_u8(left_mask, top_le_top_left); // else // dest[x] = top_left; result = vbsl_u8(left_or_top_mask, result, top_left); if (width == 4) { store_u8_4x1(dest, result); } else { // width == 8 vst1_u8(dest, result); } dest += stride; } while (++y != height); } #define PAETH_NXM(W, H) \ void aom_paeth_predictor_##W##x##H##_neon(uint8_t *dst, ptrdiff_t stride, \ const uint8_t *above, \ const uint8_t *left) { \ paeth_4or8_x_h_neon(dst, stride, above, left, W, H); \ } PAETH_NXM(4, 4) PAETH_NXM(4, 8) PAETH_NXM(8, 4) PAETH_NXM(8, 8) PAETH_NXM(8, 16) PAETH_NXM(4, 16) PAETH_NXM(8, 32) // Calculate X distance <= TopLeft distance and pack the resulting mask into // uint8x8_t. static INLINE uint8x16_t x_le_top_left(const uint8x16_t x_dist, const uint16x8_t top_left_dist_low, const uint16x8_t top_left_dist_high) { const uint8x16_t top_left_dist = vcombine_u8(vqmovn_u16(top_left_dist_low), vqmovn_u16(top_left_dist_high)); return vcleq_u8(x_dist, top_left_dist); } // Select the closest values and collect them. static INLINE uint8x16_t select_paeth(const uint8x16_t top, const uint8x16_t left, const uint8x16_t top_left, const uint8x16_t left_le_top, const uint8x16_t left_le_top_left, const uint8x16_t top_le_top_left) { // if (left_dist <= top_dist && left_dist <= top_left_dist) const uint8x16_t left_mask = vandq_u8(left_le_top, left_le_top_left); // dest[x] = left_column[y]; // Fill all the unused spaces with 'top'. They will be overwritten when // the positions for top_left are known. uint8x16_t result = vbslq_u8(left_mask, left, top); // else if (top_dist <= top_left_dist) // dest[x] = top_row[x]; // Add these values to the mask. They were already set. const uint8x16_t left_or_top_mask = vorrq_u8(left_mask, top_le_top_left); // else // dest[x] = top_left; return vbslq_u8(left_or_top_mask, result, top_left); } // Generate numbered and high/low versions of top_left_dist. #define TOP_LEFT_DIST(num) \ const uint16x8_t top_left_##num##_dist_low = vabdq_u16( \ vaddl_u8(vget_low_u8(top[num]), vget_low_u8(left)), top_left_x2); \ const uint16x8_t top_left_##num##_dist_high = vabdq_u16( \ vaddl_u8(vget_high_u8(top[num]), vget_low_u8(left)), top_left_x2) // Generate numbered versions of XLeTopLeft with x = left. #define LEFT_LE_TOP_LEFT(num) \ const uint8x16_t left_le_top_left_##num = \ x_le_top_left(left_##num##_dist, top_left_##num##_dist_low, \ top_left_##num##_dist_high) // Generate numbered versions of XLeTopLeft with x = top. #define TOP_LE_TOP_LEFT(num) \ const uint8x16_t top_le_top_left_##num = x_le_top_left( \ top_dist, top_left_##num##_dist_low, top_left_##num##_dist_high) static INLINE void paeth16_plus_x_h_neon(uint8_t *dest, ptrdiff_t stride, const uint8_t *const top_row, const uint8_t *const left_column, int width, int height) { const uint8x16_t top_left = vdupq_n_u8(top_row[-1]); const uint16x8_t top_left_x2 = vdupq_n_u16(top_row[-1] + top_row[-1]); uint8x16_t top[4]; top[0] = vld1q_u8(top_row); if (width > 16) { top[1] = vld1q_u8(top_row + 16); if (width == 64) { top[2] = vld1q_u8(top_row + 32); top[3] = vld1q_u8(top_row + 48); } } assert(height > 0); int y = 0; do { const uint8x16_t left = vdupq_n_u8(left_column[y]); const uint8x16_t top_dist = vabdq_u8(left, top_left); const uint8x16_t left_0_dist = vabdq_u8(top[0], top_left); TOP_LEFT_DIST(0); const uint8x16_t left_0_le_top = vcleq_u8(left_0_dist, top_dist); LEFT_LE_TOP_LEFT(0); TOP_LE_TOP_LEFT(0); const uint8x16_t result_0 = select_paeth(top[0], left, top_left, left_0_le_top, left_le_top_left_0, top_le_top_left_0); vst1q_u8(dest, result_0); if (width > 16) { const uint8x16_t left_1_dist = vabdq_u8(top[1], top_left); TOP_LEFT_DIST(1); const uint8x16_t left_1_le_top = vcleq_u8(left_1_dist, top_dist); LEFT_LE_TOP_LEFT(1); TOP_LE_TOP_LEFT(1); const uint8x16_t result_1 = select_paeth(top[1], left, top_left, left_1_le_top, left_le_top_left_1, top_le_top_left_1); vst1q_u8(dest + 16, result_1); if (width == 64) { const uint8x16_t left_2_dist = vabdq_u8(top[2], top_left); TOP_LEFT_DIST(2); const uint8x16_t left_2_le_top = vcleq_u8(left_2_dist, top_dist); LEFT_LE_TOP_LEFT(2); TOP_LE_TOP_LEFT(2); const uint8x16_t result_2 = select_paeth(top[2], left, top_left, left_2_le_top, left_le_top_left_2, top_le_top_left_2); vst1q_u8(dest + 32, result_2); const uint8x16_t left_3_dist = vabdq_u8(top[3], top_left); TOP_LEFT_DIST(3); const uint8x16_t left_3_le_top = vcleq_u8(left_3_dist, top_dist); LEFT_LE_TOP_LEFT(3); TOP_LE_TOP_LEFT(3); const uint8x16_t result_3 = select_paeth(top[3], left, top_left, left_3_le_top, left_le_top_left_3, top_le_top_left_3); vst1q_u8(dest + 48, result_3); } } dest += stride; } while (++y != height); } #define PAETH_NXM_WIDE(W, H) \ void aom_paeth_predictor_##W##x##H##_neon(uint8_t *dst, ptrdiff_t stride, \ const uint8_t *above, \ const uint8_t *left) { \ paeth16_plus_x_h_neon(dst, stride, above, left, W, H); \ } PAETH_NXM_WIDE(16, 8) PAETH_NXM_WIDE(16, 16) PAETH_NXM_WIDE(16, 32) PAETH_NXM_WIDE(32, 16) PAETH_NXM_WIDE(32, 32) PAETH_NXM_WIDE(32, 64) PAETH_NXM_WIDE(64, 32) PAETH_NXM_WIDE(64, 64) PAETH_NXM_WIDE(16, 4) PAETH_NXM_WIDE(16, 64) PAETH_NXM_WIDE(32, 8) PAETH_NXM_WIDE(64, 16)