/* * Copyright (c) 2023, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include "config/aom_config.h" #include "config/aom_dsp_rtcd.h" #include "mem_neon.h" #include "sum_neon.h" static INLINE void obmc_variance_8x1_s16_neon(int16x8_t pre_s16, const int32_t *wsrc, const int32_t *mask, int32x4_t *ssev, int32x4_t *sumv) { // For 4xh and 8xh we observe it is faster to avoid the double-widening of // pre. Instead we do a single widening step and narrow the mask to 16-bits // to allow us to perform a widening multiply. Widening multiply // instructions have better throughput on some micro-architectures but for // the larger block sizes this benefit is outweighed by the additional // instruction needed to first narrow the mask vectors. int32x4_t wsrc_s32_lo = vld1q_s32(&wsrc[0]); int32x4_t wsrc_s32_hi = vld1q_s32(&wsrc[4]); int16x8_t mask_s16 = vuzpq_s16(vreinterpretq_s16_s32(vld1q_s32(&mask[0])), vreinterpretq_s16_s32(vld1q_s32(&mask[4]))) .val[0]; int32x4_t diff_s32_lo = vmlsl_s16(wsrc_s32_lo, vget_low_s16(pre_s16), vget_low_s16(mask_s16)); int32x4_t diff_s32_hi = vmlsl_s16(wsrc_s32_hi, vget_high_s16(pre_s16), vget_high_s16(mask_s16)); // ROUND_POWER_OF_TWO_SIGNED(value, 12) rounds to nearest with ties away // from zero, however vrshrq_n_s32 rounds to nearest with ties rounded up. // This difference only affects the bit patterns at the rounding breakpoints // exactly, so we can add -1 to all negative numbers to move the breakpoint // one value across and into the correct rounding region. diff_s32_lo = vsraq_n_s32(diff_s32_lo, diff_s32_lo, 31); diff_s32_hi = vsraq_n_s32(diff_s32_hi, diff_s32_hi, 31); int32x4_t round_s32_lo = vrshrq_n_s32(diff_s32_lo, 12); int32x4_t round_s32_hi = vrshrq_n_s32(diff_s32_hi, 12); *sumv = vrsraq_n_s32(*sumv, diff_s32_lo, 12); *sumv = vrsraq_n_s32(*sumv, diff_s32_hi, 12); *ssev = vmlaq_s32(*ssev, round_s32_lo, round_s32_lo); *ssev = vmlaq_s32(*ssev, round_s32_hi, round_s32_hi); } #if AOM_ARCH_AARCH64 // Use tbl for doing a double-width zero extension from 8->32 bits since we can // do this in one instruction rather than two (indices out of range (255 here) // are set to zero by tbl). DECLARE_ALIGNED(16, static const uint8_t, obmc_variance_permute_idx[]) = { 0, 255, 255, 255, 1, 255, 255, 255, 2, 255, 255, 255, 3, 255, 255, 255, 4, 255, 255, 255, 5, 255, 255, 255, 6, 255, 255, 255, 7, 255, 255, 255, 8, 255, 255, 255, 9, 255, 255, 255, 10, 255, 255, 255, 11, 255, 255, 255, 12, 255, 255, 255, 13, 255, 255, 255, 14, 255, 255, 255, 15, 255, 255, 255 }; static INLINE void obmc_variance_8x1_s32_neon( int32x4_t pre_lo, int32x4_t pre_hi, const int32_t *wsrc, const int32_t *mask, int32x4_t *ssev, int32x4_t *sumv) { int32x4_t wsrc_lo = vld1q_s32(&wsrc[0]); int32x4_t wsrc_hi = vld1q_s32(&wsrc[4]); int32x4_t mask_lo = vld1q_s32(&mask[0]); int32x4_t mask_hi = vld1q_s32(&mask[4]); int32x4_t diff_lo = vmlsq_s32(wsrc_lo, pre_lo, mask_lo); int32x4_t diff_hi = vmlsq_s32(wsrc_hi, pre_hi, mask_hi); // ROUND_POWER_OF_TWO_SIGNED(value, 12) rounds to nearest with ties away from // zero, however vrshrq_n_s32 rounds to nearest with ties rounded up. This // difference only affects the bit patterns at the rounding breakpoints // exactly, so we can add -1 to all negative numbers to move the breakpoint // one value across and into the correct rounding region. diff_lo = vsraq_n_s32(diff_lo, diff_lo, 31); diff_hi = vsraq_n_s32(diff_hi, diff_hi, 31); int32x4_t round_lo = vrshrq_n_s32(diff_lo, 12); int32x4_t round_hi = vrshrq_n_s32(diff_hi, 12); *sumv = vrsraq_n_s32(*sumv, diff_lo, 12); *sumv = vrsraq_n_s32(*sumv, diff_hi, 12); *ssev = vmlaq_s32(*ssev, round_lo, round_lo); *ssev = vmlaq_s32(*ssev, round_hi, round_hi); } static INLINE void obmc_variance_large_neon(const uint8_t *pre, int pre_stride, const int32_t *wsrc, const int32_t *mask, int width, int height, unsigned *sse, int *sum) { assert(width % 16 == 0); // Use tbl for doing a double-width zero extension from 8->32 bits since we // can do this in one instruction rather than two. uint8x16_t pre_idx0 = vld1q_u8(&obmc_variance_permute_idx[0]); uint8x16_t pre_idx1 = vld1q_u8(&obmc_variance_permute_idx[16]); uint8x16_t pre_idx2 = vld1q_u8(&obmc_variance_permute_idx[32]); uint8x16_t pre_idx3 = vld1q_u8(&obmc_variance_permute_idx[48]); int32x4_t ssev = vdupq_n_s32(0); int32x4_t sumv = vdupq_n_s32(0); int h = height; do { int w = width; do { uint8x16_t pre_u8 = vld1q_u8(pre); int32x4_t pre_s32_lo = vreinterpretq_s32_u8(vqtbl1q_u8(pre_u8, pre_idx0)); int32x4_t pre_s32_hi = vreinterpretq_s32_u8(vqtbl1q_u8(pre_u8, pre_idx1)); obmc_variance_8x1_s32_neon(pre_s32_lo, pre_s32_hi, &wsrc[0], &mask[0], &ssev, &sumv); pre_s32_lo = vreinterpretq_s32_u8(vqtbl1q_u8(pre_u8, pre_idx2)); pre_s32_hi = vreinterpretq_s32_u8(vqtbl1q_u8(pre_u8, pre_idx3)); obmc_variance_8x1_s32_neon(pre_s32_lo, pre_s32_hi, &wsrc[8], &mask[8], &ssev, &sumv); wsrc += 16; mask += 16; pre += 16; w -= 16; } while (w != 0); pre += pre_stride - width; } while (--h != 0); *sse = horizontal_add_s32x4(ssev); *sum = horizontal_add_s32x4(sumv); } #else // !AOM_ARCH_AARCH64 static INLINE void obmc_variance_large_neon(const uint8_t *pre, int pre_stride, const int32_t *wsrc, const int32_t *mask, int width, int height, unsigned *sse, int *sum) { // Non-aarch64 targets do not have a 128-bit tbl instruction, so use the // widening version of the core kernel instead. assert(width % 16 == 0); int32x4_t ssev = vdupq_n_s32(0); int32x4_t sumv = vdupq_n_s32(0); int h = height; do { int w = width; do { uint8x16_t pre_u8 = vld1q_u8(pre); int16x8_t pre_s16 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(pre_u8))); obmc_variance_8x1_s16_neon(pre_s16, &wsrc[0], &mask[0], &ssev, &sumv); pre_s16 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(pre_u8))); obmc_variance_8x1_s16_neon(pre_s16, &wsrc[8], &mask[8], &ssev, &sumv); wsrc += 16; mask += 16; pre += 16; w -= 16; } while (w != 0); pre += pre_stride - width; } while (--h != 0); *sse = horizontal_add_s32x4(ssev); *sum = horizontal_add_s32x4(sumv); } #endif // AOM_ARCH_AARCH64 static INLINE void obmc_variance_neon_128xh(const uint8_t *pre, int pre_stride, const int32_t *wsrc, const int32_t *mask, int h, unsigned *sse, int *sum) { obmc_variance_large_neon(pre, pre_stride, wsrc, mask, 128, h, sse, sum); } static INLINE void obmc_variance_neon_64xh(const uint8_t *pre, int pre_stride, const int32_t *wsrc, const int32_t *mask, int h, unsigned *sse, int *sum) { obmc_variance_large_neon(pre, pre_stride, wsrc, mask, 64, h, sse, sum); } static INLINE void obmc_variance_neon_32xh(const uint8_t *pre, int pre_stride, const int32_t *wsrc, const int32_t *mask, int h, unsigned *sse, int *sum) { obmc_variance_large_neon(pre, pre_stride, wsrc, mask, 32, h, sse, sum); } static INLINE void obmc_variance_neon_16xh(const uint8_t *pre, int pre_stride, const int32_t *wsrc, const int32_t *mask, int h, unsigned *sse, int *sum) { obmc_variance_large_neon(pre, pre_stride, wsrc, mask, 16, h, sse, sum); } static INLINE void obmc_variance_neon_8xh(const uint8_t *pre, int pre_stride, const int32_t *wsrc, const int32_t *mask, int h, unsigned *sse, int *sum) { int32x4_t ssev = vdupq_n_s32(0); int32x4_t sumv = vdupq_n_s32(0); do { uint8x8_t pre_u8 = vld1_u8(pre); int16x8_t pre_s16 = vreinterpretq_s16_u16(vmovl_u8(pre_u8)); obmc_variance_8x1_s16_neon(pre_s16, wsrc, mask, &ssev, &sumv); pre += pre_stride; wsrc += 8; mask += 8; } while (--h != 0); *sse = horizontal_add_s32x4(ssev); *sum = horizontal_add_s32x4(sumv); } static INLINE void obmc_variance_neon_4xh(const uint8_t *pre, int pre_stride, const int32_t *wsrc, const int32_t *mask, int h, unsigned *sse, int *sum) { assert(h % 2 == 0); int32x4_t ssev = vdupq_n_s32(0); int32x4_t sumv = vdupq_n_s32(0); do { uint8x8_t pre_u8 = load_unaligned_u8(pre, pre_stride); int16x8_t pre_s16 = vreinterpretq_s16_u16(vmovl_u8(pre_u8)); obmc_variance_8x1_s16_neon(pre_s16, wsrc, mask, &ssev, &sumv); pre += 2 * pre_stride; wsrc += 8; mask += 8; h -= 2; } while (h != 0); *sse = horizontal_add_s32x4(ssev); *sum = horizontal_add_s32x4(sumv); } #define OBMC_VARIANCE_WXH_NEON(W, H) \ unsigned aom_obmc_variance##W##x##H##_neon( \ const uint8_t *pre, int pre_stride, const int32_t *wsrc, \ const int32_t *mask, unsigned *sse) { \ int sum; \ obmc_variance_neon_##W##xh(pre, pre_stride, wsrc, mask, H, sse, &sum); \ return *sse - (unsigned)(((int64_t)sum * sum) / (W * H)); \ } OBMC_VARIANCE_WXH_NEON(4, 4) OBMC_VARIANCE_WXH_NEON(4, 8) OBMC_VARIANCE_WXH_NEON(8, 4) OBMC_VARIANCE_WXH_NEON(8, 8) OBMC_VARIANCE_WXH_NEON(8, 16) OBMC_VARIANCE_WXH_NEON(16, 8) OBMC_VARIANCE_WXH_NEON(16, 16) OBMC_VARIANCE_WXH_NEON(16, 32) OBMC_VARIANCE_WXH_NEON(32, 16) OBMC_VARIANCE_WXH_NEON(32, 32) OBMC_VARIANCE_WXH_NEON(32, 64) OBMC_VARIANCE_WXH_NEON(64, 32) OBMC_VARIANCE_WXH_NEON(64, 64) OBMC_VARIANCE_WXH_NEON(64, 128) OBMC_VARIANCE_WXH_NEON(128, 64) OBMC_VARIANCE_WXH_NEON(128, 128) OBMC_VARIANCE_WXH_NEON(4, 16) OBMC_VARIANCE_WXH_NEON(16, 4) OBMC_VARIANCE_WXH_NEON(8, 32) OBMC_VARIANCE_WXH_NEON(32, 8) OBMC_VARIANCE_WXH_NEON(16, 64) OBMC_VARIANCE_WXH_NEON(64, 16)