/* * Copyright (c) 2020, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include #include "aom_dsp/arm/mem_neon.h" #include "aom_dsp/arm/sum_neon.h" #include "config/aom_dsp_rtcd.h" static INLINE uint64_t aom_sum_squares_2d_i16_4x4_neon(const int16_t *src, int stride) { int16x4_t s0 = vld1_s16(src + 0 * stride); int16x4_t s1 = vld1_s16(src + 1 * stride); int16x4_t s2 = vld1_s16(src + 2 * stride); int16x4_t s3 = vld1_s16(src + 3 * stride); int32x4_t sum_squares = vmull_s16(s0, s0); sum_squares = vmlal_s16(sum_squares, s1, s1); sum_squares = vmlal_s16(sum_squares, s2, s2); sum_squares = vmlal_s16(sum_squares, s3, s3); return horizontal_long_add_u32x4(vreinterpretq_u32_s32(sum_squares)); } static INLINE uint64_t aom_sum_squares_2d_i16_4xn_neon(const int16_t *src, int stride, int height) { int32x4_t sum_squares[2] = { vdupq_n_s32(0), vdupq_n_s32(0) }; int h = height; do { int16x4_t s0 = vld1_s16(src + 0 * stride); int16x4_t s1 = vld1_s16(src + 1 * stride); int16x4_t s2 = vld1_s16(src + 2 * stride); int16x4_t s3 = vld1_s16(src + 3 * stride); sum_squares[0] = vmlal_s16(sum_squares[0], s0, s0); sum_squares[0] = vmlal_s16(sum_squares[0], s1, s1); sum_squares[1] = vmlal_s16(sum_squares[1], s2, s2); sum_squares[1] = vmlal_s16(sum_squares[1], s3, s3); src += 4 * stride; h -= 4; } while (h != 0); return horizontal_long_add_u32x4( vreinterpretq_u32_s32(vaddq_s32(sum_squares[0], sum_squares[1]))); } static INLINE uint64_t aom_sum_squares_2d_i16_nxn_neon(const int16_t *src, int stride, int width, int height) { uint64x2_t sum_squares = vdupq_n_u64(0); int h = height; do { int32x4_t ss_row[2] = { vdupq_n_s32(0), vdupq_n_s32(0) }; int w = 0; do { const int16_t *s = src + w; int16x8_t s0 = vld1q_s16(s + 0 * stride); int16x8_t s1 = vld1q_s16(s + 1 * stride); int16x8_t s2 = vld1q_s16(s + 2 * stride); int16x8_t s3 = vld1q_s16(s + 3 * stride); ss_row[0] = vmlal_s16(ss_row[0], vget_low_s16(s0), vget_low_s16(s0)); ss_row[0] = vmlal_s16(ss_row[0], vget_low_s16(s1), vget_low_s16(s1)); ss_row[0] = vmlal_s16(ss_row[0], vget_low_s16(s2), vget_low_s16(s2)); ss_row[0] = vmlal_s16(ss_row[0], vget_low_s16(s3), vget_low_s16(s3)); ss_row[1] = vmlal_s16(ss_row[1], vget_high_s16(s0), vget_high_s16(s0)); ss_row[1] = vmlal_s16(ss_row[1], vget_high_s16(s1), vget_high_s16(s1)); ss_row[1] = vmlal_s16(ss_row[1], vget_high_s16(s2), vget_high_s16(s2)); ss_row[1] = vmlal_s16(ss_row[1], vget_high_s16(s3), vget_high_s16(s3)); w += 8; } while (w < width); sum_squares = vpadalq_u32( sum_squares, vreinterpretq_u32_s32(vaddq_s32(ss_row[0], ss_row[1]))); src += 4 * stride; h -= 4; } while (h != 0); return horizontal_add_u64x2(sum_squares); } uint64_t aom_sum_squares_2d_i16_neon(const int16_t *src, int stride, int width, int height) { // 4 elements per row only requires half an SIMD register, so this // must be a special case, but also note that over 75% of all calls // are with size == 4, so it is also the common case. if (LIKELY(width == 4 && height == 4)) { return aom_sum_squares_2d_i16_4x4_neon(src, stride); } else if (LIKELY(width == 4 && (height & 3) == 0)) { return aom_sum_squares_2d_i16_4xn_neon(src, stride, height); } else if (LIKELY((width & 7) == 0 && (height & 3) == 0)) { // Generic case return aom_sum_squares_2d_i16_nxn_neon(src, stride, width, height); } else { return aom_sum_squares_2d_i16_c(src, stride, width, height); } } static INLINE uint64_t aom_sum_sse_2d_i16_4x4_neon(const int16_t *src, int stride, int *sum) { int16x4_t s0 = vld1_s16(src + 0 * stride); int16x4_t s1 = vld1_s16(src + 1 * stride); int16x4_t s2 = vld1_s16(src + 2 * stride); int16x4_t s3 = vld1_s16(src + 3 * stride); int32x4_t sse = vmull_s16(s0, s0); sse = vmlal_s16(sse, s1, s1); sse = vmlal_s16(sse, s2, s2); sse = vmlal_s16(sse, s3, s3); int32x4_t sum_01 = vaddl_s16(s0, s1); int32x4_t sum_23 = vaddl_s16(s2, s3); *sum += horizontal_add_s32x4(vaddq_s32(sum_01, sum_23)); return horizontal_long_add_u32x4(vreinterpretq_u32_s32(sse)); } static INLINE uint64_t aom_sum_sse_2d_i16_4xn_neon(const int16_t *src, int stride, int height, int *sum) { int32x4_t sse[2] = { vdupq_n_s32(0), vdupq_n_s32(0) }; int32x2_t sum_acc[2] = { vdup_n_s32(0), vdup_n_s32(0) }; int h = height; do { int16x4_t s0 = vld1_s16(src + 0 * stride); int16x4_t s1 = vld1_s16(src + 1 * stride); int16x4_t s2 = vld1_s16(src + 2 * stride); int16x4_t s3 = vld1_s16(src + 3 * stride); sse[0] = vmlal_s16(sse[0], s0, s0); sse[0] = vmlal_s16(sse[0], s1, s1); sse[1] = vmlal_s16(sse[1], s2, s2); sse[1] = vmlal_s16(sse[1], s3, s3); sum_acc[0] = vpadal_s16(sum_acc[0], s0); sum_acc[0] = vpadal_s16(sum_acc[0], s1); sum_acc[1] = vpadal_s16(sum_acc[1], s2); sum_acc[1] = vpadal_s16(sum_acc[1], s3); src += 4 * stride; h -= 4; } while (h != 0); *sum += horizontal_add_s32x4(vcombine_s32(sum_acc[0], sum_acc[1])); return horizontal_long_add_u32x4( vreinterpretq_u32_s32(vaddq_s32(sse[0], sse[1]))); } static INLINE uint64_t aom_sum_sse_2d_i16_nxn_neon(const int16_t *src, int stride, int width, int height, int *sum) { uint64x2_t sse = vdupq_n_u64(0); int32x4_t sum_acc = vdupq_n_s32(0); int h = height; do { int32x4_t sse_row[2] = { vdupq_n_s32(0), vdupq_n_s32(0) }; int w = 0; do { const int16_t *s = src + w; int16x8_t s0 = vld1q_s16(s + 0 * stride); int16x8_t s1 = vld1q_s16(s + 1 * stride); int16x8_t s2 = vld1q_s16(s + 2 * stride); int16x8_t s3 = vld1q_s16(s + 3 * stride); sse_row[0] = vmlal_s16(sse_row[0], vget_low_s16(s0), vget_low_s16(s0)); sse_row[0] = vmlal_s16(sse_row[0], vget_low_s16(s1), vget_low_s16(s1)); sse_row[0] = vmlal_s16(sse_row[0], vget_low_s16(s2), vget_low_s16(s2)); sse_row[0] = vmlal_s16(sse_row[0], vget_low_s16(s3), vget_low_s16(s3)); sse_row[1] = vmlal_s16(sse_row[1], vget_high_s16(s0), vget_high_s16(s0)); sse_row[1] = vmlal_s16(sse_row[1], vget_high_s16(s1), vget_high_s16(s1)); sse_row[1] = vmlal_s16(sse_row[1], vget_high_s16(s2), vget_high_s16(s2)); sse_row[1] = vmlal_s16(sse_row[1], vget_high_s16(s3), vget_high_s16(s3)); sum_acc = vpadalq_s16(sum_acc, s0); sum_acc = vpadalq_s16(sum_acc, s1); sum_acc = vpadalq_s16(sum_acc, s2); sum_acc = vpadalq_s16(sum_acc, s3); w += 8; } while (w < width); sse = vpadalq_u32(sse, vreinterpretq_u32_s32(vaddq_s32(sse_row[0], sse_row[1]))); src += 4 * stride; h -= 4; } while (h != 0); *sum += horizontal_add_s32x4(sum_acc); return horizontal_add_u64x2(sse); } uint64_t aom_sum_sse_2d_i16_neon(const int16_t *src, int stride, int width, int height, int *sum) { uint64_t sse; if (LIKELY(width == 4 && height == 4)) { sse = aom_sum_sse_2d_i16_4x4_neon(src, stride, sum); } else if (LIKELY(width == 4 && (height & 3) == 0)) { // width = 4, height is a multiple of 4. sse = aom_sum_sse_2d_i16_4xn_neon(src, stride, height, sum); } else if (LIKELY((width & 7) == 0 && (height & 3) == 0)) { // Generic case - width is multiple of 8, height is multiple of 4. sse = aom_sum_sse_2d_i16_nxn_neon(src, stride, width, height, sum); } else { sse = aom_sum_sse_2d_i16_c(src, stride, width, height, sum); } return sse; } static INLINE uint64_t aom_sum_squares_i16_4xn_neon(const int16_t *src, uint32_t n) { uint64x2_t sum_u64 = vdupq_n_u64(0); int i = n; do { uint32x4_t sum; int16x4_t s0 = vld1_s16(src); sum = vreinterpretq_u32_s32(vmull_s16(s0, s0)); sum_u64 = vpadalq_u32(sum_u64, sum); src += 4; i -= 4; } while (i >= 4); if (i > 0) { return horizontal_add_u64x2(sum_u64) + aom_sum_squares_i16_c(src, i); } return horizontal_add_u64x2(sum_u64); } static INLINE uint64_t aom_sum_squares_i16_8xn_neon(const int16_t *src, uint32_t n) { uint64x2_t sum_u64[2] = { vdupq_n_u64(0), vdupq_n_u64(0) }; int i = n; do { uint32x4_t sum[2]; int16x8_t s0 = vld1q_s16(src); sum[0] = vreinterpretq_u32_s32(vmull_s16(vget_low_s16(s0), vget_low_s16(s0))); sum[1] = vreinterpretq_u32_s32(vmull_s16(vget_high_s16(s0), vget_high_s16(s0))); sum_u64[0] = vpadalq_u32(sum_u64[0], sum[0]); sum_u64[1] = vpadalq_u32(sum_u64[1], sum[1]); src += 8; i -= 8; } while (i >= 8); if (i > 0) { return horizontal_add_u64x2(vaddq_u64(sum_u64[0], sum_u64[1])) + aom_sum_squares_i16_c(src, i); } return horizontal_add_u64x2(vaddq_u64(sum_u64[0], sum_u64[1])); } uint64_t aom_sum_squares_i16_neon(const int16_t *src, uint32_t n) { // This function seems to be called only for values of N >= 64. See // av1/encoder/compound_type.c. if (LIKELY(n >= 8)) { return aom_sum_squares_i16_8xn_neon(src, n); } if (n >= 4) { return aom_sum_squares_i16_4xn_neon(src, n); } return aom_sum_squares_i16_c(src, n); } static INLINE uint64_t aom_var_2d_u8_4xh_neon(uint8_t *src, int src_stride, int width, int height) { uint64_t sum = 0; uint64_t sse = 0; uint32x2_t sum_u32 = vdup_n_u32(0); uint32x4_t sse_u32 = vdupq_n_u32(0); // 255*256 = 65280, so we can accumulate up to 256 8-bit elements in a 16-bit // element before we need to accumulate to 32-bit elements. Since we're // accumulating in uint16x4_t vectors, this means we can accumulate up to 4 // rows of 256 elements. Therefore the limit can be computed as: h_limit = (4 // * 256) / width. int h_limit = (4 * 256) / width; int h_tmp = height > h_limit ? h_limit : height; int h = 0; do { uint16x4_t sum_u16 = vdup_n_u16(0); do { uint8_t *src_ptr = src; int w = width; do { uint8x8_t s0 = load_unaligned_u8(src_ptr, src_stride); sum_u16 = vpadal_u8(sum_u16, s0); uint16x8_t sse_u16 = vmull_u8(s0, s0); sse_u32 = vpadalq_u16(sse_u32, sse_u16); src_ptr += 8; w -= 8; } while (w >= 8); // Process remaining columns in the row using C. while (w > 0) { int idx = width - w; const uint8_t v = src[idx]; sum += v; sse += v * v; w--; } src += 2 * src_stride; h += 2; } while (h < h_tmp && h < height); sum_u32 = vpadal_u16(sum_u32, sum_u16); h_tmp += h_limit; } while (h < height); sum += horizontal_long_add_u32x2(sum_u32); sse += horizontal_long_add_u32x4(sse_u32); return sse - sum * sum / (width * height); } static INLINE uint64_t aom_var_2d_u8_8xh_neon(uint8_t *src, int src_stride, int width, int height) { uint64_t sum = 0; uint64_t sse = 0; uint32x2_t sum_u32 = vdup_n_u32(0); uint32x4_t sse_u32 = vdupq_n_u32(0); // 255*256 = 65280, so we can accumulate up to 256 8-bit elements in a 16-bit // element before we need to accumulate to 32-bit elements. Since we're // accumulating in uint16x4_t vectors, this means we can accumulate up to 4 // rows of 256 elements. Therefore the limit can be computed as: h_limit = (4 // * 256) / width. int h_limit = (4 * 256) / width; int h_tmp = height > h_limit ? h_limit : height; int h = 0; do { uint16x4_t sum_u16 = vdup_n_u16(0); do { uint8_t *src_ptr = src; int w = width; do { uint8x8_t s0 = vld1_u8(src_ptr); sum_u16 = vpadal_u8(sum_u16, s0); uint16x8_t sse_u16 = vmull_u8(s0, s0); sse_u32 = vpadalq_u16(sse_u32, sse_u16); src_ptr += 8; w -= 8; } while (w >= 8); // Process remaining columns in the row using C. while (w > 0) { int idx = width - w; const uint8_t v = src[idx]; sum += v; sse += v * v; w--; } src += src_stride; ++h; } while (h < h_tmp && h < height); sum_u32 = vpadal_u16(sum_u32, sum_u16); h_tmp += h_limit; } while (h < height); sum += horizontal_long_add_u32x2(sum_u32); sse += horizontal_long_add_u32x4(sse_u32); return sse - sum * sum / (width * height); } static INLINE uint64_t aom_var_2d_u8_16xh_neon(uint8_t *src, int src_stride, int width, int height) { uint64_t sum = 0; uint64_t sse = 0; uint32x4_t sum_u32 = vdupq_n_u32(0); uint32x4_t sse_u32[2] = { vdupq_n_u32(0), vdupq_n_u32(0) }; // 255*256 = 65280, so we can accumulate up to 256 8-bit elements in a 16-bit // element before we need to accumulate to 32-bit elements. Since we're // accumulating in uint16x8_t vectors, this means we can accumulate up to 8 // rows of 256 elements. Therefore the limit can be computed as: h_limit = (8 // * 256) / width. int h_limit = (8 * 256) / width; int h_tmp = height > h_limit ? h_limit : height; int h = 0; do { uint16x8_t sum_u16 = vdupq_n_u16(0); do { int w = width; uint8_t *src_ptr = src; do { uint8x16_t s0 = vld1q_u8(src_ptr); sum_u16 = vpadalq_u8(sum_u16, s0); uint16x8_t sse_u16_lo = vmull_u8(vget_low_u8(s0), vget_low_u8(s0)); uint16x8_t sse_u16_hi = vmull_u8(vget_high_u8(s0), vget_high_u8(s0)); sse_u32[0] = vpadalq_u16(sse_u32[0], sse_u16_lo); sse_u32[1] = vpadalq_u16(sse_u32[1], sse_u16_hi); src_ptr += 16; w -= 16; } while (w >= 16); // Process remaining columns in the row using C. while (w > 0) { int idx = width - w; const uint8_t v = src[idx]; sum += v; sse += v * v; w--; } src += src_stride; ++h; } while (h < h_tmp && h < height); sum_u32 = vpadalq_u16(sum_u32, sum_u16); h_tmp += h_limit; } while (h < height); sum += horizontal_long_add_u32x4(sum_u32); sse += horizontal_long_add_u32x4(vaddq_u32(sse_u32[0], sse_u32[1])); return sse - sum * sum / (width * height); } uint64_t aom_var_2d_u8_neon(uint8_t *src, int src_stride, int width, int height) { if (width >= 16) { return aom_var_2d_u8_16xh_neon(src, src_stride, width, height); } if (width >= 8) { return aom_var_2d_u8_8xh_neon(src, src_stride, width, height); } if (width >= 4 && height % 2 == 0) { return aom_var_2d_u8_4xh_neon(src, src_stride, width, height); } return aom_var_2d_u8_c(src, src_stride, width, height); } static INLINE uint64_t aom_var_2d_u16_4xh_neon(uint8_t *src, int src_stride, int width, int height) { uint16_t *src_u16 = CONVERT_TO_SHORTPTR(src); uint64_t sum = 0; uint64_t sse = 0; uint32x2_t sum_u32 = vdup_n_u32(0); uint64x2_t sse_u64 = vdupq_n_u64(0); int h = height; do { int w = width; uint16_t *src_ptr = src_u16; do { uint16x4_t s0 = vld1_u16(src_ptr); sum_u32 = vpadal_u16(sum_u32, s0); uint32x4_t sse_u32 = vmull_u16(s0, s0); sse_u64 = vpadalq_u32(sse_u64, sse_u32); src_ptr += 4; w -= 4; } while (w >= 4); // Process remaining columns in the row using C. while (w > 0) { int idx = width - w; const uint16_t v = src_u16[idx]; sum += v; sse += v * v; w--; } src_u16 += src_stride; } while (--h != 0); sum += horizontal_long_add_u32x2(sum_u32); sse += horizontal_add_u64x2(sse_u64); return sse - sum * sum / (width * height); } static INLINE uint64_t aom_var_2d_u16_8xh_neon(uint8_t *src, int src_stride, int width, int height) { uint16_t *src_u16 = CONVERT_TO_SHORTPTR(src); uint64_t sum = 0; uint64_t sse = 0; uint32x4_t sum_u32 = vdupq_n_u32(0); uint64x2_t sse_u64[2] = { vdupq_n_u64(0), vdupq_n_u64(0) }; int h = height; do { int w = width; uint16_t *src_ptr = src_u16; do { uint16x8_t s0 = vld1q_u16(src_ptr); sum_u32 = vpadalq_u16(sum_u32, s0); uint32x4_t sse_u32_lo = vmull_u16(vget_low_u16(s0), vget_low_u16(s0)); uint32x4_t sse_u32_hi = vmull_u16(vget_high_u16(s0), vget_high_u16(s0)); sse_u64[0] = vpadalq_u32(sse_u64[0], sse_u32_lo); sse_u64[1] = vpadalq_u32(sse_u64[1], sse_u32_hi); src_ptr += 8; w -= 8; } while (w >= 8); // Process remaining columns in the row using C. while (w > 0) { int idx = width - w; const uint16_t v = src_u16[idx]; sum += v; sse += v * v; w--; } src_u16 += src_stride; } while (--h != 0); sum += horizontal_long_add_u32x4(sum_u32); sse += horizontal_add_u64x2(vaddq_u64(sse_u64[0], sse_u64[1])); return sse - sum * sum / (width * height); } uint64_t aom_var_2d_u16_neon(uint8_t *src, int src_stride, int width, int height) { if (width >= 8) { return aom_var_2d_u16_8xh_neon(src, src_stride, width, height); } if (width >= 4) { return aom_var_2d_u16_4xh_neon(src, src_stride, width, height); } return aom_var_2d_u16_c(src, src_stride, width, height); }