/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include "aom/aom_integer.h" #include "aom_dsp/arm/mem_neon.h" #include "aom_dsp/arm/sum_neon.h" #include "aom_ports/mem.h" #include "config/aom_config.h" #include "config/aom_dsp_rtcd.h" static INLINE void variance_4xh_neon(const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, int h, uint32_t *sse, int *sum) { int16x8_t sum_s16 = vdupq_n_s16(0); int32x4_t sse_s32 = vdupq_n_s32(0); // Number of rows we can process before 'sum_s16' overflows: // 32767 / 255 ~= 128, but we use an 8-wide accumulator; so 256 4-wide rows. assert(h <= 256); int i = h; do { uint8x8_t s = load_unaligned_u8(src, src_stride); uint8x8_t r = load_unaligned_u8(ref, ref_stride); int16x8_t diff = vreinterpretq_s16_u16(vsubl_u8(s, r)); sum_s16 = vaddq_s16(sum_s16, diff); sse_s32 = vmlal_s16(sse_s32, vget_low_s16(diff), vget_low_s16(diff)); sse_s32 = vmlal_s16(sse_s32, vget_high_s16(diff), vget_high_s16(diff)); src += 2 * src_stride; ref += 2 * ref_stride; i -= 2; } while (i != 0); *sum = horizontal_add_s16x8(sum_s16); *sse = (uint32_t)horizontal_add_s32x4(sse_s32); } static INLINE void variance_8xh_neon(const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, int h, uint32_t *sse, int *sum) { int16x8_t sum_s16 = vdupq_n_s16(0); int32x4_t sse_s32[2] = { vdupq_n_s32(0), vdupq_n_s32(0) }; // Number of rows we can process before 'sum_s16' overflows: // 32767 / 255 ~= 128 assert(h <= 128); int i = h; do { uint8x8_t s = vld1_u8(src); uint8x8_t r = vld1_u8(ref); int16x8_t diff = vreinterpretq_s16_u16(vsubl_u8(s, r)); sum_s16 = vaddq_s16(sum_s16, diff); sse_s32[0] = vmlal_s16(sse_s32[0], vget_low_s16(diff), vget_low_s16(diff)); sse_s32[1] = vmlal_s16(sse_s32[1], vget_high_s16(diff), vget_high_s16(diff)); src += src_stride; ref += ref_stride; } while (--i != 0); *sum = horizontal_add_s16x8(sum_s16); *sse = (uint32_t)horizontal_add_s32x4(vaddq_s32(sse_s32[0], sse_s32[1])); } static INLINE void variance_16xh_neon(const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, int h, uint32_t *sse, int *sum) { int16x8_t sum_s16[2] = { vdupq_n_s16(0), vdupq_n_s16(0) }; int32x4_t sse_s32[2] = { vdupq_n_s32(0), vdupq_n_s32(0) }; // Number of rows we can process before 'sum_s16' accumulators overflow: // 32767 / 255 ~= 128, so 128 16-wide rows. assert(h <= 128); int i = h; do { uint8x16_t s = vld1q_u8(src); uint8x16_t r = vld1q_u8(ref); int16x8_t diff_l = vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(s), vget_low_u8(r))); int16x8_t diff_h = vreinterpretq_s16_u16(vsubl_u8(vget_high_u8(s), vget_high_u8(r))); sum_s16[0] = vaddq_s16(sum_s16[0], diff_l); sum_s16[1] = vaddq_s16(sum_s16[1], diff_h); sse_s32[0] = vmlal_s16(sse_s32[0], vget_low_s16(diff_l), vget_low_s16(diff_l)); sse_s32[1] = vmlal_s16(sse_s32[1], vget_high_s16(diff_l), vget_high_s16(diff_l)); sse_s32[0] = vmlal_s16(sse_s32[0], vget_low_s16(diff_h), vget_low_s16(diff_h)); sse_s32[1] = vmlal_s16(sse_s32[1], vget_high_s16(diff_h), vget_high_s16(diff_h)); src += src_stride; ref += ref_stride; } while (--i != 0); *sum = horizontal_add_s16x8(vaddq_s16(sum_s16[0], sum_s16[1])); *sse = (uint32_t)horizontal_add_s32x4(vaddq_s32(sse_s32[0], sse_s32[1])); } static INLINE void variance_large_neon(const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, int w, int h, int h_limit, uint32_t *sse, int *sum) { int32x4_t sum_s32 = vdupq_n_s32(0); int32x4_t sse_s32[2] = { vdupq_n_s32(0), vdupq_n_s32(0) }; // 'h_limit' is the number of 'w'-width rows we can process before our 16-bit // accumulator overflows. After hitting this limit we accumulate into 32-bit // elements. int h_tmp = h > h_limit ? h_limit : h; int i = 0; do { int16x8_t sum_s16[2] = { vdupq_n_s16(0), vdupq_n_s16(0) }; do { int j = 0; do { uint8x16_t s = vld1q_u8(src + j); uint8x16_t r = vld1q_u8(ref + j); int16x8_t diff_l = vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(s), vget_low_u8(r))); int16x8_t diff_h = vreinterpretq_s16_u16(vsubl_u8(vget_high_u8(s), vget_high_u8(r))); sum_s16[0] = vaddq_s16(sum_s16[0], diff_l); sum_s16[1] = vaddq_s16(sum_s16[1], diff_h); sse_s32[0] = vmlal_s16(sse_s32[0], vget_low_s16(diff_l), vget_low_s16(diff_l)); sse_s32[1] = vmlal_s16(sse_s32[1], vget_high_s16(diff_l), vget_high_s16(diff_l)); sse_s32[0] = vmlal_s16(sse_s32[0], vget_low_s16(diff_h), vget_low_s16(diff_h)); sse_s32[1] = vmlal_s16(sse_s32[1], vget_high_s16(diff_h), vget_high_s16(diff_h)); j += 16; } while (j < w); src += src_stride; ref += ref_stride; i++; } while (i < h_tmp); sum_s32 = vpadalq_s16(sum_s32, sum_s16[0]); sum_s32 = vpadalq_s16(sum_s32, sum_s16[1]); h_tmp += h_limit; } while (i < h); *sum = horizontal_add_s32x4(sum_s32); *sse = (uint32_t)horizontal_add_s32x4(vaddq_s32(sse_s32[0], sse_s32[1])); } static INLINE void variance_32xh_neon(const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, int h, uint32_t *sse, int *sum) { variance_large_neon(src, src_stride, ref, ref_stride, 32, h, 64, sse, sum); } static INLINE void variance_64xh_neon(const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, int h, uint32_t *sse, int *sum) { variance_large_neon(src, src_stride, ref, ref_stride, 64, h, 32, sse, sum); } static INLINE void variance_128xh_neon(const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, int h, uint32_t *sse, int *sum) { variance_large_neon(src, src_stride, ref, ref_stride, 128, h, 16, sse, sum); } #define VARIANCE_WXH_NEON(w, h, shift) \ unsigned int aom_variance##w##x##h##_neon( \ const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, \ unsigned int *sse) { \ int sum; \ variance_##w##xh_neon(src, src_stride, ref, ref_stride, h, sse, &sum); \ return *sse - (uint32_t)(((int64_t)sum * sum) >> shift); \ } VARIANCE_WXH_NEON(4, 4, 4) VARIANCE_WXH_NEON(4, 8, 5) VARIANCE_WXH_NEON(4, 16, 6) VARIANCE_WXH_NEON(8, 4, 5) VARIANCE_WXH_NEON(8, 8, 6) VARIANCE_WXH_NEON(8, 16, 7) VARIANCE_WXH_NEON(8, 32, 8) VARIANCE_WXH_NEON(16, 4, 6) VARIANCE_WXH_NEON(16, 8, 7) VARIANCE_WXH_NEON(16, 16, 8) VARIANCE_WXH_NEON(16, 32, 9) VARIANCE_WXH_NEON(16, 64, 10) VARIANCE_WXH_NEON(32, 8, 8) VARIANCE_WXH_NEON(32, 16, 9) VARIANCE_WXH_NEON(32, 32, 10) VARIANCE_WXH_NEON(32, 64, 11) VARIANCE_WXH_NEON(64, 16, 10) VARIANCE_WXH_NEON(64, 32, 11) VARIANCE_WXH_NEON(64, 64, 12) VARIANCE_WXH_NEON(64, 128, 13) VARIANCE_WXH_NEON(128, 64, 13) VARIANCE_WXH_NEON(128, 128, 14) #undef VARIANCE_WXH_NEON // TODO(yunqingwang): Perform variance of two/four 8x8 blocks similar to that of // AVX2. Also, implement the NEON for variance computation present in this // function. void aom_get_var_sse_sum_8x8_quad_neon(const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, uint32_t *sse8x8, int *sum8x8, unsigned int *tot_sse, int *tot_sum, uint32_t *var8x8) { // Loop over four 8x8 blocks. Process one 8x32 block. for (int k = 0; k < 4; k++) { variance_8xh_neon(src + (k * 8), src_stride, ref + (k * 8), ref_stride, 8, &sse8x8[k], &sum8x8[k]); } *tot_sse += sse8x8[0] + sse8x8[1] + sse8x8[2] + sse8x8[3]; *tot_sum += sum8x8[0] + sum8x8[1] + sum8x8[2] + sum8x8[3]; for (int i = 0; i < 4; i++) { var8x8[i] = sse8x8[i] - (uint32_t)(((int64_t)sum8x8[i] * sum8x8[i]) >> 6); } } void aom_get_var_sse_sum_16x16_dual_neon(const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, uint32_t *sse16x16, unsigned int *tot_sse, int *tot_sum, uint32_t *var16x16) { int sum16x16[2] = { 0 }; // Loop over two 16x16 blocks. Process one 16x32 block. for (int k = 0; k < 2; k++) { variance_16xh_neon(src + (k * 16), src_stride, ref + (k * 16), ref_stride, 16, &sse16x16[k], &sum16x16[k]); } *tot_sse += sse16x16[0] + sse16x16[1]; *tot_sum += sum16x16[0] + sum16x16[1]; for (int i = 0; i < 2; i++) { var16x16[i] = sse16x16[i] - (uint32_t)(((int64_t)sum16x16[i] * sum16x16[i]) >> 8); } } static INLINE unsigned int mse8xh_neon(const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, unsigned int *sse, int h) { uint8x8_t s[2], r[2]; int16x4_t diff_lo[2], diff_hi[2]; uint16x8_t diff[2]; int32x4_t sse_s32[2] = { vdupq_n_s32(0), vdupq_n_s32(0) }; int i = h; do { s[0] = vld1_u8(src); src += src_stride; s[1] = vld1_u8(src); src += src_stride; r[0] = vld1_u8(ref); ref += ref_stride; r[1] = vld1_u8(ref); ref += ref_stride; diff[0] = vsubl_u8(s[0], r[0]); diff[1] = vsubl_u8(s[1], r[1]); diff_lo[0] = vreinterpret_s16_u16(vget_low_u16(diff[0])); diff_lo[1] = vreinterpret_s16_u16(vget_low_u16(diff[1])); sse_s32[0] = vmlal_s16(sse_s32[0], diff_lo[0], diff_lo[0]); sse_s32[1] = vmlal_s16(sse_s32[1], diff_lo[1], diff_lo[1]); diff_hi[0] = vreinterpret_s16_u16(vget_high_u16(diff[0])); diff_hi[1] = vreinterpret_s16_u16(vget_high_u16(diff[1])); sse_s32[0] = vmlal_s16(sse_s32[0], diff_hi[0], diff_hi[0]); sse_s32[1] = vmlal_s16(sse_s32[1], diff_hi[1], diff_hi[1]); i -= 2; } while (i != 0); sse_s32[0] = vaddq_s32(sse_s32[0], sse_s32[1]); *sse = horizontal_add_u32x4(vreinterpretq_u32_s32(sse_s32[0])); return horizontal_add_u32x4(vreinterpretq_u32_s32(sse_s32[0])); } static INLINE unsigned int mse16xh_neon(const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, unsigned int *sse, int h) { uint8x16_t s[2], r[2]; int16x4_t diff_lo[4], diff_hi[4]; uint16x8_t diff[4]; int32x4_t sse_s32[4] = { vdupq_n_s32(0), vdupq_n_s32(0), vdupq_n_s32(0), vdupq_n_s32(0) }; int i = h; do { s[0] = vld1q_u8(src); src += src_stride; s[1] = vld1q_u8(src); src += src_stride; r[0] = vld1q_u8(ref); ref += ref_stride; r[1] = vld1q_u8(ref); ref += ref_stride; diff[0] = vsubl_u8(vget_low_u8(s[0]), vget_low_u8(r[0])); diff[1] = vsubl_u8(vget_high_u8(s[0]), vget_high_u8(r[0])); diff[2] = vsubl_u8(vget_low_u8(s[1]), vget_low_u8(r[1])); diff[3] = vsubl_u8(vget_high_u8(s[1]), vget_high_u8(r[1])); diff_lo[0] = vreinterpret_s16_u16(vget_low_u16(diff[0])); diff_lo[1] = vreinterpret_s16_u16(vget_low_u16(diff[1])); sse_s32[0] = vmlal_s16(sse_s32[0], diff_lo[0], diff_lo[0]); sse_s32[1] = vmlal_s16(sse_s32[1], diff_lo[1], diff_lo[1]); diff_lo[2] = vreinterpret_s16_u16(vget_low_u16(diff[2])); diff_lo[3] = vreinterpret_s16_u16(vget_low_u16(diff[3])); sse_s32[2] = vmlal_s16(sse_s32[2], diff_lo[2], diff_lo[2]); sse_s32[3] = vmlal_s16(sse_s32[3], diff_lo[3], diff_lo[3]); diff_hi[0] = vreinterpret_s16_u16(vget_high_u16(diff[0])); diff_hi[1] = vreinterpret_s16_u16(vget_high_u16(diff[1])); sse_s32[0] = vmlal_s16(sse_s32[0], diff_hi[0], diff_hi[0]); sse_s32[1] = vmlal_s16(sse_s32[1], diff_hi[1], diff_hi[1]); diff_hi[2] = vreinterpret_s16_u16(vget_high_u16(diff[2])); diff_hi[3] = vreinterpret_s16_u16(vget_high_u16(diff[3])); sse_s32[2] = vmlal_s16(sse_s32[2], diff_hi[2], diff_hi[2]); sse_s32[3] = vmlal_s16(sse_s32[3], diff_hi[3], diff_hi[3]); i -= 2; } while (i != 0); sse_s32[0] = vaddq_s32(sse_s32[0], sse_s32[1]); sse_s32[2] = vaddq_s32(sse_s32[2], sse_s32[3]); sse_s32[0] = vaddq_s32(sse_s32[0], sse_s32[2]); *sse = horizontal_add_u32x4(vreinterpretq_u32_s32(sse_s32[0])); return horizontal_add_u32x4(vreinterpretq_u32_s32(sse_s32[0])); } #define MSE_WXH_NEON(w, h) \ unsigned int aom_mse##w##x##h##_neon(const uint8_t *src, int src_stride, \ const uint8_t *ref, int ref_stride, \ unsigned int *sse) { \ return mse##w##xh_neon(src, src_stride, ref, ref_stride, sse, h); \ } MSE_WXH_NEON(8, 8) MSE_WXH_NEON(8, 16) MSE_WXH_NEON(16, 8) MSE_WXH_NEON(16, 16) #undef MSE_WXH_NEON static INLINE uint64x2_t mse_accumulate_u16_u8_8x2(uint64x2_t sum, uint16x8_t s0, uint16x8_t s1, uint8x8_t d0, uint8x8_t d1) { int16x8_t e0 = vreinterpretq_s16_u16(vsubw_u8(s0, d0)); int16x8_t e1 = vreinterpretq_s16_u16(vsubw_u8(s1, d1)); int32x4_t mse = vmull_s16(vget_low_s16(e0), vget_low_s16(e0)); mse = vmlal_s16(mse, vget_high_s16(e0), vget_high_s16(e0)); mse = vmlal_s16(mse, vget_low_s16(e1), vget_low_s16(e1)); mse = vmlal_s16(mse, vget_high_s16(e1), vget_high_s16(e1)); return vpadalq_u32(sum, vreinterpretq_u32_s32(mse)); } static uint64x2_t mse_wxh_16bit(uint8_t *dst, int dstride, const uint16_t *src, int sstride, int w, int h) { assert((w == 8 || w == 4) && (h == 8 || h == 4)); uint64x2_t sum = vdupq_n_u64(0); if (w == 8) { do { uint8x8_t d0 = vld1_u8(dst + 0 * dstride); uint8x8_t d1 = vld1_u8(dst + 1 * dstride); uint16x8_t s0 = vld1q_u16(src + 0 * sstride); uint16x8_t s1 = vld1q_u16(src + 1 * sstride); sum = mse_accumulate_u16_u8_8x2(sum, s0, s1, d0, d1); dst += 2 * dstride; src += 2 * sstride; h -= 2; } while (h != 0); } else { do { uint8x8_t d0 = load_unaligned_u8_4x2(dst + 0 * dstride, dstride); uint8x8_t d1 = load_unaligned_u8_4x2(dst + 2 * dstride, dstride); uint16x8_t s0 = load_unaligned_u16_4x2(src + 0 * sstride, sstride); uint16x8_t s1 = load_unaligned_u16_4x2(src + 2 * sstride, sstride); sum = mse_accumulate_u16_u8_8x2(sum, s0, s1, d0, d1); dst += 4 * dstride; src += 4 * sstride; h -= 4; } while (h != 0); } return sum; } // Computes mse for a given block size. This function gets called for specific // block sizes, which are 8x8, 8x4, 4x8 and 4x4. uint64_t aom_mse_wxh_16bit_neon(uint8_t *dst, int dstride, uint16_t *src, int sstride, int w, int h) { return horizontal_add_u64x2(mse_wxh_16bit(dst, dstride, src, sstride, w, h)); } uint32_t aom_get_mb_ss_neon(const int16_t *a) { int32x4_t sse[2] = { vdupq_n_s32(0), vdupq_n_s32(0) }; for (int i = 0; i < 256; i = i + 8) { int16x8_t a_s16 = vld1q_s16(a + i); sse[0] = vmlal_s16(sse[0], vget_low_s16(a_s16), vget_low_s16(a_s16)); sse[1] = vmlal_s16(sse[1], vget_high_s16(a_s16), vget_high_s16(a_s16)); } return horizontal_add_s32x4(vaddq_s32(sse[0], sse[1])); } uint64_t aom_mse_16xh_16bit_neon(uint8_t *dst, int dstride, uint16_t *src, int w, int h) { uint64x2_t sum = vdupq_n_u64(0); int num_blks = 16 / w; do { sum = vaddq_u64(sum, mse_wxh_16bit(dst, dstride, src, w, w, h)); dst += w; src += w * h; } while (--num_blks != 0); return horizontal_add_u64x2(sum); }