/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include #include #include "config/aom_dsp_rtcd.h" #include "aom_dsp/flow_estimation/corner_detect.h" #include "aom_dsp/flow_estimation/corner_match.h" #include "aom_dsp/flow_estimation/flow_estimation.h" #include "aom_dsp/flow_estimation/ransac.h" #include "aom_dsp/pyramid.h" #include "aom_scale/yv12config.h" #define SEARCH_SZ 9 #define SEARCH_SZ_BY2 ((SEARCH_SZ - 1) / 2) #define THRESHOLD_NCC 0.75 /* Compute var(frame) * MATCH_SZ_SQ over a MATCH_SZ by MATCH_SZ window of frame, centered at (x, y). */ static double compute_variance(const unsigned char *frame, int stride, int x, int y) { int sum = 0; int sumsq = 0; int var; int i, j; for (i = 0; i < MATCH_SZ; ++i) for (j = 0; j < MATCH_SZ; ++j) { sum += frame[(i + y - MATCH_SZ_BY2) * stride + (j + x - MATCH_SZ_BY2)]; sumsq += frame[(i + y - MATCH_SZ_BY2) * stride + (j + x - MATCH_SZ_BY2)] * frame[(i + y - MATCH_SZ_BY2) * stride + (j + x - MATCH_SZ_BY2)]; } var = sumsq * MATCH_SZ_SQ - sum * sum; return (double)var; } /* Compute corr(frame1, frame2) * MATCH_SZ * stddev(frame1), where the correlation/standard deviation are taken over MATCH_SZ by MATCH_SZ windows of each image, centered at (x1, y1) and (x2, y2) respectively. */ double av1_compute_cross_correlation_c(const unsigned char *frame1, int stride1, int x1, int y1, const unsigned char *frame2, int stride2, int x2, int y2) { int v1, v2; int sum1 = 0; int sum2 = 0; int sumsq2 = 0; int cross = 0; int var2, cov; int i, j; for (i = 0; i < MATCH_SZ; ++i) for (j = 0; j < MATCH_SZ; ++j) { v1 = frame1[(i + y1 - MATCH_SZ_BY2) * stride1 + (j + x1 - MATCH_SZ_BY2)]; v2 = frame2[(i + y2 - MATCH_SZ_BY2) * stride2 + (j + x2 - MATCH_SZ_BY2)]; sum1 += v1; sum2 += v2; sumsq2 += v2 * v2; cross += v1 * v2; } var2 = sumsq2 * MATCH_SZ_SQ - sum2 * sum2; cov = cross * MATCH_SZ_SQ - sum1 * sum2; return cov / sqrt((double)var2); } static int is_eligible_point(int pointx, int pointy, int width, int height) { return (pointx >= MATCH_SZ_BY2 && pointy >= MATCH_SZ_BY2 && pointx + MATCH_SZ_BY2 < width && pointy + MATCH_SZ_BY2 < height); } static int is_eligible_distance(int point1x, int point1y, int point2x, int point2y, int width, int height) { const int thresh = (width < height ? height : width) >> 4; return ((point1x - point2x) * (point1x - point2x) + (point1y - point2y) * (point1y - point2y)) <= thresh * thresh; } static void improve_correspondence(const unsigned char *src, const unsigned char *ref, int width, int height, int src_stride, int ref_stride, Correspondence *correspondences, int num_correspondences) { int i; for (i = 0; i < num_correspondences; ++i) { int x, y, best_x = 0, best_y = 0; double best_match_ncc = 0.0; // For this algorithm, all points have integer coordinates. // It's a little more efficient to convert them to ints once, // before the inner loops int x0 = (int)correspondences[i].x; int y0 = (int)correspondences[i].y; int rx0 = (int)correspondences[i].rx; int ry0 = (int)correspondences[i].ry; for (y = -SEARCH_SZ_BY2; y <= SEARCH_SZ_BY2; ++y) { for (x = -SEARCH_SZ_BY2; x <= SEARCH_SZ_BY2; ++x) { double match_ncc; if (!is_eligible_point(rx0 + x, ry0 + y, width, height)) continue; if (!is_eligible_distance(x0, y0, rx0 + x, ry0 + y, width, height)) continue; match_ncc = av1_compute_cross_correlation(src, src_stride, x0, y0, ref, ref_stride, rx0 + x, ry0 + y); if (match_ncc > best_match_ncc) { best_match_ncc = match_ncc; best_y = y; best_x = x; } } } correspondences[i].rx += best_x; correspondences[i].ry += best_y; } for (i = 0; i < num_correspondences; ++i) { int x, y, best_x = 0, best_y = 0; double best_match_ncc = 0.0; int x0 = (int)correspondences[i].x; int y0 = (int)correspondences[i].y; int rx0 = (int)correspondences[i].rx; int ry0 = (int)correspondences[i].ry; for (y = -SEARCH_SZ_BY2; y <= SEARCH_SZ_BY2; ++y) for (x = -SEARCH_SZ_BY2; x <= SEARCH_SZ_BY2; ++x) { double match_ncc; if (!is_eligible_point(x0 + x, y0 + y, width, height)) continue; if (!is_eligible_distance(x0 + x, y0 + y, rx0, ry0, width, height)) continue; match_ncc = av1_compute_cross_correlation( ref, ref_stride, rx0, ry0, src, src_stride, x0 + x, y0 + y); if (match_ncc > best_match_ncc) { best_match_ncc = match_ncc; best_y = y; best_x = x; } } correspondences[i].x += best_x; correspondences[i].y += best_y; } } static int determine_correspondence(const unsigned char *src, const int *src_corners, int num_src_corners, const unsigned char *ref, const int *ref_corners, int num_ref_corners, int width, int height, int src_stride, int ref_stride, Correspondence *correspondences) { // TODO(sarahparker) Improve this to include 2-way match int i, j; int num_correspondences = 0; for (i = 0; i < num_src_corners; ++i) { double best_match_ncc = 0.0; double template_norm; int best_match_j = -1; if (!is_eligible_point(src_corners[2 * i], src_corners[2 * i + 1], width, height)) continue; for (j = 0; j < num_ref_corners; ++j) { double match_ncc; if (!is_eligible_point(ref_corners[2 * j], ref_corners[2 * j + 1], width, height)) continue; if (!is_eligible_distance(src_corners[2 * i], src_corners[2 * i + 1], ref_corners[2 * j], ref_corners[2 * j + 1], width, height)) continue; match_ncc = av1_compute_cross_correlation( src, src_stride, src_corners[2 * i], src_corners[2 * i + 1], ref, ref_stride, ref_corners[2 * j], ref_corners[2 * j + 1]); if (match_ncc > best_match_ncc) { best_match_ncc = match_ncc; best_match_j = j; } } // Note: We want to test if the best correlation is >= THRESHOLD_NCC, // but need to account for the normalization in // av1_compute_cross_correlation. template_norm = compute_variance(src, src_stride, src_corners[2 * i], src_corners[2 * i + 1]); if (best_match_ncc > THRESHOLD_NCC * sqrt(template_norm)) { correspondences[num_correspondences].x = src_corners[2 * i]; correspondences[num_correspondences].y = src_corners[2 * i + 1]; correspondences[num_correspondences].rx = ref_corners[2 * best_match_j]; correspondences[num_correspondences].ry = ref_corners[2 * best_match_j + 1]; num_correspondences++; } } improve_correspondence(src, ref, width, height, src_stride, ref_stride, correspondences, num_correspondences); return num_correspondences; } bool av1_compute_global_motion_feature_match( TransformationType type, YV12_BUFFER_CONFIG *src, YV12_BUFFER_CONFIG *ref, int bit_depth, MotionModel *motion_models, int num_motion_models, bool *mem_alloc_failed) { int num_correspondences; Correspondence *correspondences; ImagePyramid *src_pyramid = src->y_pyramid; CornerList *src_corners = src->corners; ImagePyramid *ref_pyramid = ref->y_pyramid; CornerList *ref_corners = ref->corners; // Precompute information we will need about each frame if (!aom_compute_pyramid(src, bit_depth, src_pyramid)) { *mem_alloc_failed = true; return false; } if (!av1_compute_corner_list(src_pyramid, src_corners)) { *mem_alloc_failed = true; return false; } if (!aom_compute_pyramid(ref, bit_depth, ref_pyramid)) { *mem_alloc_failed = true; return false; } if (!av1_compute_corner_list(src_pyramid, src_corners)) { *mem_alloc_failed = true; return false; } const uint8_t *src_buffer = src_pyramid->layers[0].buffer; const int src_width = src_pyramid->layers[0].width; const int src_height = src_pyramid->layers[0].height; const int src_stride = src_pyramid->layers[0].stride; const uint8_t *ref_buffer = ref_pyramid->layers[0].buffer; assert(ref_pyramid->layers[0].width == src_width); assert(ref_pyramid->layers[0].height == src_height); const int ref_stride = ref_pyramid->layers[0].stride; // find correspondences between the two images correspondences = (Correspondence *)aom_malloc(src_corners->num_corners * sizeof(*correspondences)); if (!correspondences) { *mem_alloc_failed = true; return false; } num_correspondences = determine_correspondence( src_buffer, src_corners->corners, src_corners->num_corners, ref_buffer, ref_corners->corners, ref_corners->num_corners, src_width, src_height, src_stride, ref_stride, correspondences); bool result = ransac(correspondences, num_correspondences, type, motion_models, num_motion_models, mem_alloc_failed); aom_free(correspondences); return result; }