/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include #include #include #include #include #include #include "aom_dsp/flow_estimation/ransac.h" #include "aom_dsp/mathutils.h" #include "aom_mem/aom_mem.h" // TODO(rachelbarker): Remove dependence on code in av1/encoder/ #include "av1/encoder/random.h" #define MAX_MINPTS 4 #define MINPTS_MULTIPLIER 5 #define INLIER_THRESHOLD 1.25 #define INLIER_THRESHOLD_SQUARED (INLIER_THRESHOLD * INLIER_THRESHOLD) // Number of initial models to generate #define NUM_TRIALS 20 // Number of times to refine the best model found #define NUM_REFINES 5 // Flag to enable functions for finding TRANSLATION type models. // // These modes are not considered currently due to a spec bug (see comments // in gm_get_motion_vector() in av1/common/mv.h). Thus we don't need to compile // the corresponding search functions, but it is nice to keep the source around // but disabled, for completeness. #define ALLOW_TRANSLATION_MODELS 0 typedef struct { int num_inliers; double sse; // Sum of squared errors of inliers int *inlier_indices; } RANSAC_MOTION; //////////////////////////////////////////////////////////////////////////////// // ransac typedef bool (*FindTransformationFunc)(const Correspondence *points, const int *indices, int num_indices, double *params); typedef void (*ScoreModelFunc)(const double *mat, const Correspondence *points, int num_points, RANSAC_MOTION *model); // vtable-like structure which stores all of the information needed by RANSAC // for a particular model type typedef struct { FindTransformationFunc find_transformation; ScoreModelFunc score_model; // The minimum number of points which can be passed to find_transformation // to generate a model. // // This should be set as small as possible. This is due to an observation // from section 4 of "Optimal Ransac" by A. Hast, J. Nysjö and // A. Marchetti (https://dspace5.zcu.cz/bitstream/11025/6869/1/Hast.pdf): // using the minimum possible number of points in the initial model maximizes // the chance that all of the selected points are inliers. // // That paper proposes a method which can deal with models which are // contaminated by outliers, which helps in cases where the inlier fraction // is low. However, for our purposes, global motion only gives significant // gains when the inlier fraction is high. // // So we do not use the method from this paper, but we do find that // minimizing the number of points used for initial model fitting helps // make the best use of the limited number of models we consider. int minpts; } RansacModelInfo; #if ALLOW_TRANSLATION_MODELS static void score_translation(const double *mat, const Correspondence *points, int num_points, RANSAC_MOTION *model) { model->num_inliers = 0; model->sse = 0.0; for (int i = 0; i < num_points; ++i) { const double x1 = points[i].x; const double y1 = points[i].y; const double x2 = points[i].rx; const double y2 = points[i].ry; const double proj_x = x1 + mat[0]; const double proj_y = y1 + mat[1]; const double dx = proj_x - x2; const double dy = proj_y - y2; const double sse = dx * dx + dy * dy; if (sse < INLIER_THRESHOLD_SQUARED) { model->inlier_indices[model->num_inliers++] = i; model->sse += sse; } } } #endif // ALLOW_TRANSLATION_MODELS static void score_affine(const double *mat, const Correspondence *points, int num_points, RANSAC_MOTION *model) { model->num_inliers = 0; model->sse = 0.0; for (int i = 0; i < num_points; ++i) { const double x1 = points[i].x; const double y1 = points[i].y; const double x2 = points[i].rx; const double y2 = points[i].ry; const double proj_x = mat[2] * x1 + mat[3] * y1 + mat[0]; const double proj_y = mat[4] * x1 + mat[5] * y1 + mat[1]; const double dx = proj_x - x2; const double dy = proj_y - y2; const double sse = dx * dx + dy * dy; if (sse < INLIER_THRESHOLD_SQUARED) { model->inlier_indices[model->num_inliers++] = i; model->sse += sse; } } } #if ALLOW_TRANSLATION_MODELS static bool find_translation(const Correspondence *points, const int *indices, int num_indices, double *params) { double sumx = 0; double sumy = 0; for (int i = 0; i < num_indices; ++i) { int index = indices[i]; const double sx = points[index].x; const double sy = points[index].y; const double dx = points[index].rx; const double dy = points[index].ry; sumx += dx - sx; sumy += dy - sy; } params[0] = sumx / np; params[1] = sumy / np; params[2] = 1; params[3] = 0; params[4] = 0; params[5] = 1; return true; } #endif // ALLOW_TRANSLATION_MODELS static bool find_rotzoom(const Correspondence *points, const int *indices, int num_indices, double *params) { const int n = 4; // Size of least-squares problem double mat[4 * 4]; // Accumulator for A'A double y[4]; // Accumulator for A'b double a[4]; // Single row of A double b; // Single element of b least_squares_init(mat, y, n); for (int i = 0; i < num_indices; ++i) { int index = indices[i]; const double sx = points[index].x; const double sy = points[index].y; const double dx = points[index].rx; const double dy = points[index].ry; a[0] = 1; a[1] = 0; a[2] = sx; a[3] = sy; b = dx; least_squares_accumulate(mat, y, a, b, n); a[0] = 0; a[1] = 1; a[2] = sy; a[3] = -sx; b = dy; least_squares_accumulate(mat, y, a, b, n); } // Fill in params[0] .. params[3] with output model if (!least_squares_solve(mat, y, params, n)) { return false; } // Fill in remaining parameters params[4] = -params[3]; params[5] = params[2]; return true; } static bool find_affine(const Correspondence *points, const int *indices, int num_indices, double *params) { // Note: The least squares problem for affine models is 6-dimensional, // but it splits into two independent 3-dimensional subproblems. // Solving these two subproblems separately and recombining at the end // results in less total computation than solving the 6-dimensional // problem directly. // // The two subproblems correspond to all the parameters which contribute // to the x output of the model, and all the parameters which contribute // to the y output, respectively. const int n = 3; // Size of each least-squares problem double mat[2][3 * 3]; // Accumulator for A'A double y[2][3]; // Accumulator for A'b double x[2][3]; // Output vector double a[2][3]; // Single row of A double b[2]; // Single element of b least_squares_init(mat[0], y[0], n); least_squares_init(mat[1], y[1], n); for (int i = 0; i < num_indices; ++i) { int index = indices[i]; const double sx = points[index].x; const double sy = points[index].y; const double dx = points[index].rx; const double dy = points[index].ry; a[0][0] = 1; a[0][1] = sx; a[0][2] = sy; b[0] = dx; least_squares_accumulate(mat[0], y[0], a[0], b[0], n); a[1][0] = 1; a[1][1] = sx; a[1][2] = sy; b[1] = dy; least_squares_accumulate(mat[1], y[1], a[1], b[1], n); } if (!least_squares_solve(mat[0], y[0], x[0], n)) { return false; } if (!least_squares_solve(mat[1], y[1], x[1], n)) { return false; } // Rearrange least squares result to form output model params[0] = x[0][0]; params[1] = x[1][0]; params[2] = x[0][1]; params[3] = x[0][2]; params[4] = x[1][1]; params[5] = x[1][2]; return true; } // Return -1 if 'a' is a better motion, 1 if 'b' is better, 0 otherwise. static int compare_motions(const void *arg_a, const void *arg_b) { const RANSAC_MOTION *motion_a = (RANSAC_MOTION *)arg_a; const RANSAC_MOTION *motion_b = (RANSAC_MOTION *)arg_b; if (motion_a->num_inliers > motion_b->num_inliers) return -1; if (motion_a->num_inliers < motion_b->num_inliers) return 1; if (motion_a->sse < motion_b->sse) return -1; if (motion_a->sse > motion_b->sse) return 1; return 0; } static bool is_better_motion(const RANSAC_MOTION *motion_a, const RANSAC_MOTION *motion_b) { return compare_motions(motion_a, motion_b) < 0; } // Returns true on success, false on error static bool ransac_internal(const Correspondence *matched_points, int npoints, MotionModel *motion_models, int num_desired_motions, const RansacModelInfo *model_info, bool *mem_alloc_failed) { assert(npoints >= 0); int i = 0; int minpts = model_info->minpts; bool ret_val = true; unsigned int seed = (unsigned int)npoints; int indices[MAX_MINPTS] = { 0 }; // Store information for the num_desired_motions best transformations found // and the worst motion among them, as well as the motion currently under // consideration. RANSAC_MOTION *motions, *worst_kept_motion = NULL; RANSAC_MOTION current_motion; // Store the parameters and the indices of the inlier points for the motion // currently under consideration. double params_this_motion[MAX_PARAMDIM]; // Initialize output models, as a fallback in case we can't find a model for (i = 0; i < num_desired_motions; i++) { memcpy(motion_models[i].params, kIdentityParams, MAX_PARAMDIM * sizeof(*(motion_models[i].params))); motion_models[i].num_inliers = 0; } if (npoints < minpts * MINPTS_MULTIPLIER || npoints == 0) { return false; } int min_inliers = AOMMAX((int)(MIN_INLIER_PROB * npoints), minpts); motions = (RANSAC_MOTION *)aom_calloc(num_desired_motions, sizeof(RANSAC_MOTION)); // Allocate one large buffer which will be carved up to store the inlier // indices for the current motion plus the num_desired_motions many // output models // This allows us to keep the allocation/deallocation logic simple, without // having to (for example) check that `motions` is non-null before allocating // the inlier arrays int *inlier_buffer = (int *)aom_malloc(sizeof(*inlier_buffer) * npoints * (num_desired_motions + 1)); if (!(motions && inlier_buffer)) { ret_val = false; *mem_alloc_failed = true; goto finish_ransac; } // Once all our allocations are known-good, we can fill in our structures worst_kept_motion = motions; for (i = 0; i < num_desired_motions; ++i) { motions[i].inlier_indices = inlier_buffer + i * npoints; } memset(¤t_motion, 0, sizeof(current_motion)); current_motion.inlier_indices = inlier_buffer + num_desired_motions * npoints; for (int trial_count = 0; trial_count < NUM_TRIALS; trial_count++) { lcg_pick(npoints, minpts, indices, &seed); if (!model_info->find_transformation(matched_points, indices, minpts, params_this_motion)) { continue; } model_info->score_model(params_this_motion, matched_points, npoints, ¤t_motion); if (current_motion.num_inliers < min_inliers) { // Reject models with too few inliers continue; } if (is_better_motion(¤t_motion, worst_kept_motion)) { // This motion is better than the worst currently kept motion. Remember // the inlier points and sse. The parameters for each kept motion // will be recomputed later using only the inliers. worst_kept_motion->num_inliers = current_motion.num_inliers; worst_kept_motion->sse = current_motion.sse; // Rather than copying the (potentially many) inlier indices from // current_motion.inlier_indices to worst_kept_motion->inlier_indices, // we can swap the underlying pointers. // // This is okay because the next time current_motion.inlier_indices // is used will be in the next trial, where we ignore its previous // contents anyway. And both arrays will be deallocated together at the // end of this function, so there are no lifetime issues. int *tmp = worst_kept_motion->inlier_indices; worst_kept_motion->inlier_indices = current_motion.inlier_indices; current_motion.inlier_indices = tmp; // Determine the new worst kept motion and its num_inliers and sse. for (i = 0; i < num_desired_motions; ++i) { if (is_better_motion(worst_kept_motion, &motions[i])) { worst_kept_motion = &motions[i]; } } } } // Sort the motions, best first. qsort(motions, num_desired_motions, sizeof(RANSAC_MOTION), compare_motions); // Refine each of the best N models using iterative estimation. // // The idea here is loosely based on the iterative method from // "Locally Optimized RANSAC" by O. Chum, J. Matas and Josef Kittler: // https://cmp.felk.cvut.cz/ftp/articles/matas/chum-dagm03.pdf // // However, we implement a simpler version than their proposal, and simply // refit the model repeatedly until the number of inliers stops increasing, // with a cap on the number of iterations to defend against edge cases which // only improve very slowly. for (i = 0; i < num_desired_motions; ++i) { if (motions[i].num_inliers <= 0) { // Output model has already been initialized to the identity model, // so just skip setup continue; } bool bad_model = false; for (int refine_count = 0; refine_count < NUM_REFINES; refine_count++) { int num_inliers = motions[i].num_inliers; assert(num_inliers >= min_inliers); if (!model_info->find_transformation(matched_points, motions[i].inlier_indices, num_inliers, params_this_motion)) { // In the unlikely event that this model fitting fails, we don't have a // good fallback. So leave this model set to the identity model bad_model = true; break; } // Score the newly generated model model_info->score_model(params_this_motion, matched_points, npoints, ¤t_motion); // At this point, there are three possibilities: // 1) If we found more inliers, keep refining. // 2) If we found the same number of inliers but a lower SSE, we want to // keep the new model, but further refinement is unlikely to gain much. // So commit to this new model // 3) It is possible, but very unlikely, that the new model will have // fewer inliers. If it does happen, we probably just lost a few // borderline inliers. So treat the same as case (2). if (current_motion.num_inliers > motions[i].num_inliers) { motions[i].num_inliers = current_motion.num_inliers; motions[i].sse = current_motion.sse; int *tmp = motions[i].inlier_indices; motions[i].inlier_indices = current_motion.inlier_indices; current_motion.inlier_indices = tmp; } else { // Refined model is no better, so stop // This shouldn't be significantly worse than the previous model, // so it's fine to use the parameters in params_this_motion. // This saves us from having to cache the previous iteration's params. break; } } if (bad_model) continue; // Fill in output struct memcpy(motion_models[i].params, params_this_motion, MAX_PARAMDIM * sizeof(*motion_models[i].params)); for (int j = 0; j < motions[i].num_inliers; j++) { int index = motions[i].inlier_indices[j]; const Correspondence *corr = &matched_points[index]; motion_models[i].inliers[2 * j + 0] = (int)rint(corr->x); motion_models[i].inliers[2 * j + 1] = (int)rint(corr->y); } motion_models[i].num_inliers = motions[i].num_inliers; } finish_ransac: aom_free(inlier_buffer); aom_free(motions); return ret_val; } static const RansacModelInfo ransac_model_info[TRANS_TYPES] = { // IDENTITY { NULL, NULL, 0 }, // TRANSLATION #if ALLOW_TRANSLATION_MODELS { find_translation, score_translation, 1 }, #else { NULL, NULL, 0 }, #endif // ROTZOOM { find_rotzoom, score_affine, 2 }, // AFFINE { find_affine, score_affine, 3 }, }; // Returns true on success, false on error bool ransac(const Correspondence *matched_points, int npoints, TransformationType type, MotionModel *motion_models, int num_desired_motions, bool *mem_alloc_failed) { #if ALLOW_TRANSLATION_MODELS assert(type > IDENTITY && type < TRANS_TYPES); #else assert(type > TRANSLATION && type < TRANS_TYPES); #endif // ALLOW_TRANSLATION_MODELS return ransac_internal(matched_points, npoints, motion_models, num_desired_motions, &ransac_model_info[type], mem_alloc_failed); }