/* * Copyright (c) 2024, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include #include #include "aom_dsp/aom_dsp_common.h" #include "aom_dsp/flow_estimation/disflow.h" #include "aom_dsp/x86/synonyms.h" #include "config/aom_dsp_rtcd.h" #if DISFLOW_PATCH_SIZE != 8 #error "Need to change disflow_sse4.c if DISFLOW_PATCH_SIZE != 8" #endif // Compute horizontal and vertical kernels and return them packed into a // register. The coefficient ordering is: // h0, h1, v0, v1, h2, h3, v2, v3 // This is chosen because it takes less work than fully separating the kernels, // but it is separated enough that we can pick out each coefficient pair in the // main compute_flow_at_point function static INLINE __m128i compute_cubic_kernels(double u, double v) { const __m128d x = _mm_set_pd(v, u); const __m128d x2 = _mm_mul_pd(x, x); const __m128d x3 = _mm_mul_pd(x2, x); // Macro to multiply a value v by a constant coefficient c #define MULC(c, v) _mm_mul_pd(_mm_set1_pd(c), v) // Compute floating-point kernel // Note: To ensure results are bit-identical to the C code, we need to perform // exactly the same sequence of operations here as in the C code. __m128d k0 = _mm_sub_pd(_mm_add_pd(MULC(-0.5, x), x2), MULC(0.5, x3)); __m128d k1 = _mm_add_pd(_mm_sub_pd(_mm_set1_pd(1.0), MULC(2.5, x2)), MULC(1.5, x3)); __m128d k2 = _mm_sub_pd(_mm_add_pd(MULC(0.5, x), MULC(2.0, x2)), MULC(1.5, x3)); __m128d k3 = _mm_add_pd(MULC(-0.5, x2), MULC(0.5, x3)); #undef MULC // Integerize __m128d prec = _mm_set1_pd((double)(1 << DISFLOW_INTERP_BITS)); k0 = _mm_round_pd(_mm_mul_pd(k0, prec), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); k1 = _mm_round_pd(_mm_mul_pd(k1, prec), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); k2 = _mm_round_pd(_mm_mul_pd(k2, prec), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); k3 = _mm_round_pd(_mm_mul_pd(k3, prec), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m128i c0 = _mm_cvtpd_epi32(k0); const __m128i c1 = _mm_cvtpd_epi32(k1); const __m128i c2 = _mm_cvtpd_epi32(k2); const __m128i c3 = _mm_cvtpd_epi32(k3); // Rearrange results and convert down to 16 bits, giving the target output // ordering const __m128i c01 = _mm_unpacklo_epi32(c0, c1); const __m128i c23 = _mm_unpacklo_epi32(c2, c3); return _mm_packs_epi32(c01, c23); } // Compare two regions of width x height pixels, one rooted at position // (x, y) in src and the other at (x + u, y + v) in ref. // This function returns the sum of squared pixel differences between // the two regions. // // TODO(rachelbarker): Test speed/quality impact of using bilinear interpolation // instad of bicubic interpolation static INLINE void compute_flow_vector(const uint8_t *src, const uint8_t *ref, int width, int height, int stride, int x, int y, double u, double v, const int16_t *dx, const int16_t *dy, int *b) { // This function is written to do 8x8 convolutions only assert(DISFLOW_PATCH_SIZE == 8); // Accumulate 4 32-bit partial sums for each element of b // These will be flattened at the end. __m128i b0_acc = _mm_setzero_si128(); __m128i b1_acc = _mm_setzero_si128(); // Split offset into integer and fractional parts, and compute cubic // interpolation kernels const int u_int = (int)floor(u); const int v_int = (int)floor(v); const double u_frac = u - floor(u); const double v_frac = v - floor(v); const __m128i kernels = compute_cubic_kernels(u_frac, v_frac); // Storage for intermediate values between the two convolution directions DECLARE_ALIGNED(16, int16_t, tmp_[DISFLOW_PATCH_SIZE * (DISFLOW_PATCH_SIZE + 3)]); int16_t *tmp = tmp_ + DISFLOW_PATCH_SIZE; // Offset by one row // Clamp coordinates so that all pixels we fetch will remain within the // allocated border region, but allow them to go far enough out that // the border pixels' values do not change. // Since we are calculating an 8x8 block, the bottom-right pixel // in the block has coordinates (x0 + 7, y0 + 7). Then, the cubic // interpolation has 4 taps, meaning that the output of pixel // (x_w, y_w) depends on the pixels in the range // ([x_w - 1, x_w + 2], [y_w - 1, y_w + 2]). // // Thus the most extreme coordinates which will be fetched are // (x0 - 1, y0 - 1) and (x0 + 9, y0 + 9). const int x0 = clamp(x + u_int, -9, width); const int y0 = clamp(y + v_int, -9, height); // Horizontal convolution // Prepare the kernel vectors // We split the kernel into two vectors with kernel indices: // 0, 1, 0, 1, 0, 1, 0, 1, and // 2, 3, 2, 3, 2, 3, 2, 3 __m128i h_kernel_01 = _mm_set1_epi32(_mm_extract_epi32(kernels, 0)); __m128i h_kernel_23 = _mm_set1_epi32(_mm_extract_epi32(kernels, 2)); __m128i round_const_h = _mm_set1_epi32(1 << (DISFLOW_INTERP_BITS - 6 - 1)); for (int i = -1; i < DISFLOW_PATCH_SIZE + 2; ++i) { const int y_w = y0 + i; const uint8_t *ref_row = &ref[y_w * stride + (x0 - 1)]; int16_t *tmp_row = &tmp[i * DISFLOW_PATCH_SIZE]; // Load this row of pixels. // For an 8x8 patch, we need to load the 8 image pixels + 3 extras, // for a total of 11 pixels. Here we load 16 pixels, but only use // the first 11. __m128i row = _mm_loadu_si128((__m128i *)ref_row); // Expand pixels to int16s __m128i px_0to7_i16 = _mm_cvtepu8_epi16(row); __m128i px_4to10_i16 = _mm_cvtepu8_epi16(_mm_srli_si128(row, 4)); // Compute first four outputs // input pixels 0, 1, 1, 2, 2, 3, 3, 4 // * kernel 0, 1, 0, 1, 0, 1, 0, 1 __m128i px0 = _mm_unpacklo_epi16(px_0to7_i16, _mm_srli_si128(px_0to7_i16, 2)); // input pixels 2, 3, 3, 4, 4, 5, 5, 6 // * kernel 2, 3, 2, 3, 2, 3, 2, 3 __m128i px1 = _mm_unpacklo_epi16(_mm_srli_si128(px_0to7_i16, 4), _mm_srli_si128(px_0to7_i16, 6)); // Convolve with kernel and sum 2x2 boxes to form first 4 outputs __m128i sum0 = _mm_add_epi32(_mm_madd_epi16(px0, h_kernel_01), _mm_madd_epi16(px1, h_kernel_23)); __m128i out0 = _mm_srai_epi32(_mm_add_epi32(sum0, round_const_h), DISFLOW_INTERP_BITS - 6); // Compute second four outputs __m128i px2 = _mm_unpacklo_epi16(px_4to10_i16, _mm_srli_si128(px_4to10_i16, 2)); __m128i px3 = _mm_unpacklo_epi16(_mm_srli_si128(px_4to10_i16, 4), _mm_srli_si128(px_4to10_i16, 6)); __m128i sum1 = _mm_add_epi32(_mm_madd_epi16(px2, h_kernel_01), _mm_madd_epi16(px3, h_kernel_23)); // Round by just enough bits that the result is // guaranteed to fit into an i16. Then the next stage can use 16 x 16 -> 32 // bit multiplies, which should be a fair bit faster than 32 x 32 -> 32 // as it does now // This means shifting down so we have 6 extra bits, for a maximum value // of +18360, which can occur if u_frac == 0.5 and the input pixels are // {0, 255, 255, 0}. __m128i out1 = _mm_srai_epi32(_mm_add_epi32(sum1, round_const_h), DISFLOW_INTERP_BITS - 6); _mm_storeu_si128((__m128i *)tmp_row, _mm_packs_epi32(out0, out1)); } // Vertical convolution const int round_bits = DISFLOW_INTERP_BITS + 6 - DISFLOW_DERIV_SCALE_LOG2; __m128i round_const_v = _mm_set1_epi32(1 << (round_bits - 1)); __m128i v_kernel_01 = _mm_set1_epi32(_mm_extract_epi32(kernels, 1)); __m128i v_kernel_23 = _mm_set1_epi32(_mm_extract_epi32(kernels, 3)); for (int i = 0; i < DISFLOW_PATCH_SIZE; ++i) { int16_t *tmp_row = &tmp[i * DISFLOW_PATCH_SIZE]; // Load 4 rows of 8 x 16-bit values __m128i px0 = _mm_loadu_si128((__m128i *)(tmp_row - DISFLOW_PATCH_SIZE)); __m128i px1 = _mm_loadu_si128((__m128i *)tmp_row); __m128i px2 = _mm_loadu_si128((__m128i *)(tmp_row + DISFLOW_PATCH_SIZE)); __m128i px3 = _mm_loadu_si128((__m128i *)(tmp_row + 2 * DISFLOW_PATCH_SIZE)); // We want to calculate px0 * v_kernel[0] + px1 * v_kernel[1] + ... , // but each multiply expands its output to 32 bits. So we need to be // a little clever about how we do this __m128i sum0 = _mm_add_epi32( _mm_madd_epi16(_mm_unpacklo_epi16(px0, px1), v_kernel_01), _mm_madd_epi16(_mm_unpacklo_epi16(px2, px3), v_kernel_23)); __m128i sum1 = _mm_add_epi32( _mm_madd_epi16(_mm_unpackhi_epi16(px0, px1), v_kernel_01), _mm_madd_epi16(_mm_unpackhi_epi16(px2, px3), v_kernel_23)); __m128i sum0_rounded = _mm_srai_epi32(_mm_add_epi32(sum0, round_const_v), round_bits); __m128i sum1_rounded = _mm_srai_epi32(_mm_add_epi32(sum1, round_const_v), round_bits); __m128i warped = _mm_packs_epi32(sum0_rounded, sum1_rounded); __m128i src_pixels_u8 = _mm_loadl_epi64((__m128i *)&src[(y + i) * stride + x]); __m128i src_pixels = _mm_slli_epi16(_mm_cvtepu8_epi16(src_pixels_u8), 3); // Calculate delta from the target patch __m128i dt = _mm_sub_epi16(warped, src_pixels); // Load 8 elements each of dx and dt, to pair with the 8 elements of dt // that we have just computed. Then compute 8 partial sums of dx * dt // and dy * dt, implicitly sum to give 4 partial sums of each, and // accumulate. __m128i dx_row = _mm_loadu_si128((__m128i *)&dx[i * DISFLOW_PATCH_SIZE]); __m128i dy_row = _mm_loadu_si128((__m128i *)&dy[i * DISFLOW_PATCH_SIZE]); b0_acc = _mm_add_epi32(b0_acc, _mm_madd_epi16(dx_row, dt)); b1_acc = _mm_add_epi32(b1_acc, _mm_madd_epi16(dy_row, dt)); } // Flatten the two sets of partial sums to find the final value of b // We need to set b[0] = sum(b0_acc), b[1] = sum(b1_acc). // We need to do 6 additions in total; a `hadd` instruction can take care // of four of them, leaving two scalar additions. __m128i partial_sum = _mm_hadd_epi32(b0_acc, b1_acc); b[0] = _mm_extract_epi32(partial_sum, 0) + _mm_extract_epi32(partial_sum, 1); b[1] = _mm_extract_epi32(partial_sum, 2) + _mm_extract_epi32(partial_sum, 3); } // Compute the x and y gradients of the source patch in a single pass, // and store into dx and dy respectively. static INLINE void sobel_filter(const uint8_t *src, int src_stride, int16_t *dx, int16_t *dy) { // Loop setup: Load the first two rows (of 10 input rows) and apply // the horizontal parts of the two filters __m128i row_m1 = _mm_loadu_si128((__m128i *)(src - src_stride - 1)); __m128i row_m1_a = _mm_cvtepu8_epi16(row_m1); __m128i row_m1_b = _mm_cvtepu8_epi16(_mm_srli_si128(row_m1, 1)); __m128i row_m1_c = _mm_cvtepu8_epi16(_mm_srli_si128(row_m1, 2)); __m128i row_m1_hsmooth = _mm_add_epi16(_mm_add_epi16(row_m1_a, row_m1_c), _mm_slli_epi16(row_m1_b, 1)); __m128i row_m1_hdiff = _mm_sub_epi16(row_m1_a, row_m1_c); __m128i row = _mm_loadu_si128((__m128i *)(src - 1)); __m128i row_a = _mm_cvtepu8_epi16(row); __m128i row_b = _mm_cvtepu8_epi16(_mm_srli_si128(row, 1)); __m128i row_c = _mm_cvtepu8_epi16(_mm_srli_si128(row, 2)); __m128i row_hsmooth = _mm_add_epi16(_mm_add_epi16(row_a, row_c), _mm_slli_epi16(row_b, 1)); __m128i row_hdiff = _mm_sub_epi16(row_a, row_c); // Main loop: For each of the 8 output rows: // * Load row i+1 and apply both horizontal filters // * Apply vertical filters and store results // * Shift rows for next iteration for (int i = 0; i < DISFLOW_PATCH_SIZE; i++) { // Load row i+1 and apply both horizontal filters const __m128i row_p1 = _mm_loadu_si128((__m128i *)(src + (i + 1) * src_stride - 1)); const __m128i row_p1_a = _mm_cvtepu8_epi16(row_p1); const __m128i row_p1_b = _mm_cvtepu8_epi16(_mm_srli_si128(row_p1, 1)); const __m128i row_p1_c = _mm_cvtepu8_epi16(_mm_srli_si128(row_p1, 2)); const __m128i row_p1_hsmooth = _mm_add_epi16( _mm_add_epi16(row_p1_a, row_p1_c), _mm_slli_epi16(row_p1_b, 1)); const __m128i row_p1_hdiff = _mm_sub_epi16(row_p1_a, row_p1_c); // Apply vertical filters and store results // dx = vertical smooth(horizontal diff(input)) // dy = vertical diff(horizontal smooth(input)) const __m128i dx_row = _mm_add_epi16(_mm_add_epi16(row_m1_hdiff, row_p1_hdiff), _mm_slli_epi16(row_hdiff, 1)); const __m128i dy_row = _mm_sub_epi16(row_m1_hsmooth, row_p1_hsmooth); _mm_storeu_si128((__m128i *)(dx + i * DISFLOW_PATCH_SIZE), dx_row); _mm_storeu_si128((__m128i *)(dy + i * DISFLOW_PATCH_SIZE), dy_row); // Shift rows for next iteration // This allows a lot of work to be reused, reducing the number of // horizontal filtering operations from 2*3*8 = 48 to 2*10 = 20 row_m1_hsmooth = row_hsmooth; row_m1_hdiff = row_hdiff; row_hsmooth = row_p1_hsmooth; row_hdiff = row_p1_hdiff; } } static INLINE void compute_flow_matrix(const int16_t *dx, int dx_stride, const int16_t *dy, int dy_stride, double *M) { __m128i acc[4] = { 0 }; for (int i = 0; i < DISFLOW_PATCH_SIZE; i++) { __m128i dx_row = _mm_loadu_si128((__m128i *)&dx[i * dx_stride]); __m128i dy_row = _mm_loadu_si128((__m128i *)&dy[i * dy_stride]); acc[0] = _mm_add_epi32(acc[0], _mm_madd_epi16(dx_row, dx_row)); acc[1] = _mm_add_epi32(acc[1], _mm_madd_epi16(dx_row, dy_row)); // Don't compute acc[2], as it should be equal to acc[1] acc[3] = _mm_add_epi32(acc[3], _mm_madd_epi16(dy_row, dy_row)); } // Condense sums __m128i partial_sum_0 = _mm_hadd_epi32(acc[0], acc[1]); __m128i partial_sum_1 = _mm_hadd_epi32(acc[1], acc[3]); __m128i result = _mm_hadd_epi32(partial_sum_0, partial_sum_1); // Apply regularization // We follow the standard regularization method of adding `k * I` before // inverting. This ensures that the matrix will be invertible. // // Setting the regularization strength k to 1 seems to work well here, as // typical values coming from the other equations are very large (1e5 to // 1e6, with an upper limit of around 6e7, at the time of writing). // It also preserves the property that all matrix values are whole numbers, // which is convenient for integerized SIMD implementation. result = _mm_add_epi32(result, _mm_set_epi32(1, 0, 0, 1)); // Convert results to doubles and store _mm_storeu_pd(M, _mm_cvtepi32_pd(result)); _mm_storeu_pd(M + 2, _mm_cvtepi32_pd(_mm_srli_si128(result, 8))); } // Try to invert the matrix M // Note: Due to the nature of how a least-squares matrix is constructed, all of // the eigenvalues will be >= 0, and therefore det M >= 0 as well. // The regularization term `+ k * I` further ensures that det M >= k^2. // As mentioned in compute_flow_matrix(), here we use k = 1, so det M >= 1. // So we don't have to worry about non-invertible matrices here. static INLINE void invert_2x2(const double *M, double *M_inv) { double det = (M[0] * M[3]) - (M[1] * M[2]); assert(det >= 1); const double det_inv = 1 / det; M_inv[0] = M[3] * det_inv; M_inv[1] = -M[1] * det_inv; M_inv[2] = -M[2] * det_inv; M_inv[3] = M[0] * det_inv; } void aom_compute_flow_at_point_sse4_1(const uint8_t *src, const uint8_t *ref, int x, int y, int width, int height, int stride, double *u, double *v) { DECLARE_ALIGNED(16, double, M[4]); DECLARE_ALIGNED(16, double, M_inv[4]); DECLARE_ALIGNED(16, int16_t, dx[DISFLOW_PATCH_SIZE * DISFLOW_PATCH_SIZE]); DECLARE_ALIGNED(16, int16_t, dy[DISFLOW_PATCH_SIZE * DISFLOW_PATCH_SIZE]); int b[2]; // Compute gradients within this patch const uint8_t *src_patch = &src[y * stride + x]; sobel_filter(src_patch, stride, dx, dy); compute_flow_matrix(dx, DISFLOW_PATCH_SIZE, dy, DISFLOW_PATCH_SIZE, M); invert_2x2(M, M_inv); for (int itr = 0; itr < DISFLOW_MAX_ITR; itr++) { compute_flow_vector(src, ref, width, height, stride, x, y, *u, *v, dx, dy, b); // Solve flow equations to find a better estimate for the flow vector // at this point const double step_u = M_inv[0] * b[0] + M_inv[1] * b[1]; const double step_v = M_inv[2] * b[0] + M_inv[3] * b[1]; *u += fclamp(step_u * DISFLOW_STEP_SIZE, -2, 2); *v += fclamp(step_v * DISFLOW_STEP_SIZE, -2, 2); if (fabs(step_u) + fabs(step_v) < DISFLOW_STEP_SIZE_THRESOLD) { // Stop iteration when we're close to convergence break; } } }