/* * Copyright (c) 2022, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 3-Clause Clear License * and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear * License was not distributed with this source code in the LICENSE file, you * can obtain it at aomedia.org/license/software-license/bsd-3-c-c/. If the * Alliance for Open Media Patent License 1.0 was not distributed with this * source code in the PATENTS file, you can obtain it at * aomedia.org/license/patent-license/. */ #include #include #include #include "aom_dsp/aom_dsp_common.h" #include "aom_dsp/flow_estimation/disflow.h" #include "aom_dsp/x86/synonyms.h" #include "config/aom_dsp_rtcd.h" // Internal cross-check against C code // If you set this to 1 and compile in debug mode, then the outputs of the two // convolution stages will be checked against the plain C version of the code, // and an assertion will be fired if the results differ. #define CHECK_RESULTS 0 // Note: Max sum(+ve coefficients) = 1.125 * scale static INLINE void get_cubic_kernel_dbl(double x, double kernel[4]) { // Check that the fractional position is in range. // // Note: x is calculated from, e.g., `u_frac = u - floor(u)`. // Mathematically, this implies that 0 <= x < 1. However, in practice it is // possible to have x == 1 due to floating point rounding. This is fine, // and we still interpolate correctly if we allow x = 1. assert(0 <= x && x <= 1); double x2 = x * x; double x3 = x2 * x; kernel[0] = -0.5 * x + x2 - 0.5 * x3; kernel[1] = 1.0 - 2.5 * x2 + 1.5 * x3; kernel[2] = 0.5 * x + 2.0 * x2 - 1.5 * x3; kernel[3] = -0.5 * x2 + 0.5 * x3; } static INLINE void get_cubic_kernel_int(double x, int16_t kernel[4]) { double kernel_dbl[4]; get_cubic_kernel_dbl(x, kernel_dbl); kernel[0] = (int16_t)rint(kernel_dbl[0] * (1 << DISFLOW_INTERP_BITS)); kernel[1] = (int16_t)rint(kernel_dbl[1] * (1 << DISFLOW_INTERP_BITS)); kernel[2] = (int16_t)rint(kernel_dbl[2] * (1 << DISFLOW_INTERP_BITS)); kernel[3] = (int16_t)rint(kernel_dbl[3] * (1 << DISFLOW_INTERP_BITS)); } #if CHECK_RESULTS static INLINE int get_cubic_value_int(const int *p, const int16_t kernel[4]) { return kernel[0] * p[0] + kernel[1] * p[1] + kernel[2] * p[2] + kernel[3] * p[3]; } #endif // CHECK_RESULTS // Compare two regions of width x height pixels, one rooted at position // (x, y) in src and the other at (x + u, y + v) in ref. // This function returns the sum of squared pixel differences between // the two regions. // // TODO(rachelbarker): Test speed/quality impact of using bilinear interpolation // instad of bicubic interpolation static INLINE void compute_flow_vector(const uint8_t *src, const uint8_t *ref, int width, int height, int stride, int x, int y, double u, double v, const int16_t *dx, const int16_t *dy, int *b) { // This function is written to do 8x8 convolutions only assert(DISFLOW_PATCH_SIZE == 8); // Accumulate 4 32-bit partial sums for each element of b // These will be flattened at the end. __m128i b0_acc = _mm_setzero_si128(); __m128i b1_acc = _mm_setzero_si128(); #if CHECK_RESULTS // Also keep a running sum using the C algorithm, for cross-checking int c_result[2] = { 0 }; #endif // CHECK_RESULTS // Split offset into integer and fractional parts, and compute cubic // interpolation kernels const int u_int = (int)floor(u); const int v_int = (int)floor(v); const double u_frac = u - floor(u); const double v_frac = v - floor(v); int16_t h_kernel[4]; int16_t v_kernel[4]; get_cubic_kernel_int(u_frac, h_kernel); get_cubic_kernel_int(v_frac, v_kernel); // Storage for intermediate values between the two convolution directions int16_t tmp_[DISFLOW_PATCH_SIZE * (DISFLOW_PATCH_SIZE + 3)]; int16_t *tmp = tmp_ + DISFLOW_PATCH_SIZE; // Offset by one row // Clamp coordinates so that all pixels we fetch will remain within the // allocated border region, but allow them to go far enough out that // the border pixels' values do not change. // Since we are calculating an 8x8 block, the bottom-right pixel // in the block has coordinates (x0 + 7, y0 + 7). Then, the cubic // interpolation has 4 taps, meaning that the output of pixel // (x_w, y_w) depends on the pixels in the range // ([x_w - 1, x_w + 2], [y_w - 1, y_w + 2]). // // Thus the most extreme coordinates which will be fetched are // (x0 - 1, y0 - 1) and (x0 + 9, y0 + 9). const int x0 = clamp(x + u_int, -9, width); const int y0 = clamp(y + v_int, -9, height); // Horizontal convolution // Prepare the kernel vectors // We split the kernel into two vectors with kernel indices: // 0, 1, 0, 1, 0, 1, 0, 1, and // 2, 3, 2, 3, 2, 3, 2, 3 __m128i h_kernel_01 = xx_set2_epi16(h_kernel[0], h_kernel[1]); __m128i h_kernel_23 = xx_set2_epi16(h_kernel[2], h_kernel[3]); __m128i round_const_h = _mm_set1_epi32(1 << (DISFLOW_INTERP_BITS - 6 - 1)); for (int i = -1; i < DISFLOW_PATCH_SIZE + 2; ++i) { const int y_w = y0 + i; const uint8_t *ref_row = &ref[y_w * stride + (x0 - 1)]; int16_t *tmp_row = &tmp[i * DISFLOW_PATCH_SIZE]; // Load this row of pixels. // For an 8x8 patch, we need to load the 8 image pixels + 3 extras, // for a total of 11 pixels. Here we load 16 pixels, but only use // the first 11. __m128i row = _mm_loadu_si128((__m128i *)ref_row); // Expand pixels to int16s __m128i px_0to7_i16 = _mm_cvtepu8_epi16(row); __m128i px_4to10_i16 = _mm_cvtepu8_epi16(_mm_srli_si128(row, 4)); // Relevant multiply instruction // This multiplies pointwise, then sums in pairs. //_mm_madd_epi16(); // Compute first four outputs // input pixels 0, 1, 1, 2, 2, 3, 3, 4 // * kernel 0, 1, 0, 1, 0, 1, 0, 1 __m128i px0 = _mm_unpacklo_epi16(px_0to7_i16, _mm_srli_si128(px_0to7_i16, 2)); // input pixels 2, 3, 3, 4, 4, 5, 5, 6 // * kernel 2, 3, 2, 3, 2, 3, 2, 3 __m128i px1 = _mm_unpacklo_epi16(_mm_srli_si128(px_0to7_i16, 4), _mm_srli_si128(px_0to7_i16, 6)); // Convolve with kernel and sum 2x2 boxes to form first 4 outputs __m128i sum0 = _mm_add_epi32(_mm_madd_epi16(px0, h_kernel_01), _mm_madd_epi16(px1, h_kernel_23)); __m128i out0 = _mm_srai_epi32(_mm_add_epi32(sum0, round_const_h), DISFLOW_INTERP_BITS - 6); // Compute second four outputs __m128i px2 = _mm_unpacklo_epi16(px_4to10_i16, _mm_srli_si128(px_4to10_i16, 2)); __m128i px3 = _mm_unpacklo_epi16(_mm_srli_si128(px_4to10_i16, 4), _mm_srli_si128(px_4to10_i16, 6)); __m128i sum1 = _mm_add_epi32(_mm_madd_epi16(px2, h_kernel_01), _mm_madd_epi16(px3, h_kernel_23)); // Round by just enough bits that the result is // guaranteed to fit into an i16. Then the next stage can use 16 x 16 -> 32 // bit multiplies, which should be a fair bit faster than 32 x 32 -> 32 // as it does now // This means shifting down so we have 6 extra bits, for a maximum value // of +18360, which can occur if u_frac == 0.5 and the input pixels are // {0, 255, 255, 0}. __m128i out1 = _mm_srai_epi32(_mm_add_epi32(sum1, round_const_h), DISFLOW_INTERP_BITS - 6); _mm_storeu_si128((__m128i *)tmp_row, _mm_packs_epi32(out0, out1)); #if CHECK_RESULTS && !defined(NDEBUG) // Cross-check for (int j = 0; j < DISFLOW_PATCH_SIZE; ++j) { const int x_w = x0 + j; int arr[4]; arr[0] = (int)ref[y_w * stride + (x_w - 1)]; arr[1] = (int)ref[y_w * stride + (x_w + 0)]; arr[2] = (int)ref[y_w * stride + (x_w + 1)]; arr[3] = (int)ref[y_w * stride + (x_w + 2)]; // Apply kernel and round, keeping 6 extra bits of precision. // // 6 is the maximum allowable number of extra bits which will avoid // the intermediate values overflowing an int16_t. The most extreme // intermediate value occurs when: // * The input pixels are [0, 255, 255, 0] // * u_frac = 0.5 // In this case, the un-scaled output is 255 * 1.125 = 286.875. // As an integer with 6 fractional bits, that is 18360, which fits // in an int16_t. But with 7 fractional bits it would be 36720, // which is too large. const int c_value = ROUND_POWER_OF_TWO(get_cubic_value_int(arr, h_kernel), DISFLOW_INTERP_BITS - 6); (void)c_value; // Suppress warnings assert(tmp_row[j] == c_value); } #endif // CHECK_RESULTS } // Vertical convolution const int round_bits = DISFLOW_INTERP_BITS + 6 - DISFLOW_DERIV_SCALE_LOG2; __m128i round_const_v = _mm_set1_epi32(1 << (round_bits - 1)); __m128i v_kernel_01 = xx_set2_epi16(v_kernel[0], v_kernel[1]); __m128i v_kernel_23 = xx_set2_epi16(v_kernel[2], v_kernel[3]); for (int i = 0; i < DISFLOW_PATCH_SIZE; ++i) { int16_t *tmp_row = &tmp[i * DISFLOW_PATCH_SIZE]; // Load 4 rows of 8 x 16-bit values __m128i px0 = _mm_loadu_si128((__m128i *)(tmp_row - DISFLOW_PATCH_SIZE)); __m128i px1 = _mm_loadu_si128((__m128i *)tmp_row); __m128i px2 = _mm_loadu_si128((__m128i *)(tmp_row + DISFLOW_PATCH_SIZE)); __m128i px3 = _mm_loadu_si128((__m128i *)(tmp_row + 2 * DISFLOW_PATCH_SIZE)); // We want to calculate px0 * v_kernel[0] + px1 * v_kernel[1] + ... , // but each multiply expands its output to 32 bits. So we need to be // a little clever about how we do this __m128i sum0 = _mm_add_epi32( _mm_madd_epi16(_mm_unpacklo_epi16(px0, px1), v_kernel_01), _mm_madd_epi16(_mm_unpacklo_epi16(px2, px3), v_kernel_23)); __m128i sum1 = _mm_add_epi32( _mm_madd_epi16(_mm_unpackhi_epi16(px0, px1), v_kernel_01), _mm_madd_epi16(_mm_unpackhi_epi16(px2, px3), v_kernel_23)); __m128i sum0_rounded = _mm_srai_epi32(_mm_add_epi32(sum0, round_const_v), round_bits); __m128i sum1_rounded = _mm_srai_epi32(_mm_add_epi32(sum1, round_const_v), round_bits); __m128i warped = _mm_packs_epi32(sum0_rounded, sum1_rounded); __m128i src_pixels_u8 = _mm_loadl_epi64((__m128i *)&src[(y + i) * stride + x]); __m128i src_pixels = _mm_slli_epi16(_mm_cvtepu8_epi16(src_pixels_u8), 3); // Calculate delta from the target patch __m128i dt = _mm_sub_epi16(warped, src_pixels); // Load 8 elements each of dx and dt, to pair with the 8 elements of dt // that we have just computed. Then compute 8 partial sums of dx * dt // and dy * dt, implicitly sum to give 4 partial sums of each, and // accumulate. __m128i dx_row = _mm_loadu_si128((__m128i *)&dx[i * DISFLOW_PATCH_SIZE]); __m128i dy_row = _mm_loadu_si128((__m128i *)&dy[i * DISFLOW_PATCH_SIZE]); b0_acc = _mm_add_epi32(b0_acc, _mm_madd_epi16(dx_row, dt)); b1_acc = _mm_add_epi32(b1_acc, _mm_madd_epi16(dy_row, dt)); #if CHECK_RESULTS int16_t dt_arr[8]; memcpy(dt_arr, &dt, 8 * sizeof(*dt_arr)); for (int j = 0; j < DISFLOW_PATCH_SIZE; ++j) { int16_t *p = &tmp[i * DISFLOW_PATCH_SIZE + j]; int arr[4] = { p[-DISFLOW_PATCH_SIZE], p[0], p[DISFLOW_PATCH_SIZE], p[2 * DISFLOW_PATCH_SIZE] }; const int result = get_cubic_value_int(arr, v_kernel); // Apply kernel and round. // This time, we have to round off the 6 extra bits which were kept // earlier, but we also want to keep DISFLOW_DERIV_SCALE_LOG2 extra bits // of precision to match the scale of the dx and dy arrays. const int c_warped = ROUND_POWER_OF_TWO(result, round_bits); const int c_src_px = src[(x + j) + (y + i) * stride] << 3; const int c_dt = c_warped - c_src_px; assert(dt_arr[j] == c_dt); c_result[0] += dx[i * DISFLOW_PATCH_SIZE + j] * c_dt; c_result[1] += dy[i * DISFLOW_PATCH_SIZE + j] * c_dt; } #endif // CHECK_RESULTS } // Flatten the two sets of partial sums to find the final value of b // We need to set b[0] = sum(b0_acc), b[1] = sum(b1_acc). // We need to do 6 additions in total; a `hadd` instruction can take care // of four of them, leaving two scalar additions. __m128i partial_sum = _mm_hadd_epi32(b0_acc, b1_acc); b[0] = _mm_extract_epi32(partial_sum, 0) + _mm_extract_epi32(partial_sum, 1); b[1] = _mm_extract_epi32(partial_sum, 2) + _mm_extract_epi32(partial_sum, 3); #if CHECK_RESULTS assert(b[0] == c_result[0]); assert(b[1] == c_result[1]); #endif // CHECK_RESULTS } static INLINE void sobel_filter_x(const uint8_t *src, int src_stride, int16_t *dst, int dst_stride) { int16_t tmp_[DISFLOW_PATCH_SIZE * (DISFLOW_PATCH_SIZE + 2)]; int16_t *tmp = tmp_ + DISFLOW_PATCH_SIZE; #if CHECK_RESULTS const int taps = 3; #endif // CHECK_RESULTS // Horizontal filter // As the kernel is simply {1, 0, -1}, we implement this as simply // out[x] = image[x-1] - image[x+1] // rather than doing a "proper" convolution operation for (int y = -1; y < DISFLOW_PATCH_SIZE + 1; ++y) { const uint8_t *src_row = src + y * src_stride; int16_t *tmp_row = tmp + y * DISFLOW_PATCH_SIZE; // Load pixels and expand to 16 bits __m128i row = _mm_loadu_si128((__m128i *)(src_row - 1)); __m128i px0 = _mm_cvtepu8_epi16(row); __m128i px2 = _mm_cvtepu8_epi16(_mm_srli_si128(row, 2)); __m128i out = _mm_sub_epi16(px0, px2); // Store to intermediate array _mm_storeu_si128((__m128i *)tmp_row, out); #if CHECK_RESULTS // Cross-check static const int16_t h_kernel[3] = { 1, 0, -1 }; for (int x = 0; x < DISFLOW_PATCH_SIZE; ++x) { int sum = 0; for (int k = 0; k < taps; ++k) { sum += h_kernel[k] * src_row[x + k - 1]; } (void)sum; assert(tmp_row[x] == sum); } #endif // CHECK_RESULTS } // Vertical filter // Here the kernel is {1, 2, 1}, which can be implemented // with simple sums rather than multiplies and adds. // In order to minimize dependency chains, we evaluate in the order // (image[y - 1] + image[y + 1]) + (image[y] << 1) // This way, the first addition and the shift can happen in parallel for (int y = 0; y < DISFLOW_PATCH_SIZE; ++y) { const int16_t *tmp_row = tmp + y * DISFLOW_PATCH_SIZE; int16_t *dst_row = dst + y * dst_stride; __m128i px0 = _mm_loadu_si128((__m128i *)(tmp_row - DISFLOW_PATCH_SIZE)); __m128i px1 = _mm_loadu_si128((__m128i *)tmp_row); __m128i px2 = _mm_loadu_si128((__m128i *)(tmp_row + DISFLOW_PATCH_SIZE)); __m128i out = _mm_add_epi16(_mm_add_epi16(px0, px2), _mm_slli_epi16(px1, 1)); _mm_storeu_si128((__m128i *)dst_row, out); #if CHECK_RESULTS static const int16_t v_kernel[3] = { 1, 2, 1 }; for (int x = 0; x < DISFLOW_PATCH_SIZE; ++x) { int sum = 0; for (int k = 0; k < taps; ++k) { sum += v_kernel[k] * tmp[(y + k - 1) * DISFLOW_PATCH_SIZE + x]; } (void)sum; assert(dst_row[x] == sum); } #endif // CHECK_RESULTS } } static INLINE void sobel_filter_y(const uint8_t *src, int src_stride, int16_t *dst, int dst_stride) { int16_t tmp_[DISFLOW_PATCH_SIZE * (DISFLOW_PATCH_SIZE + 2)]; int16_t *tmp = tmp_ + DISFLOW_PATCH_SIZE; #if CHECK_RESULTS const int taps = 3; #endif // CHECK_RESULTS // Horizontal filter // Here the kernel is {1, 2, 1}, which can be implemented // with simple sums rather than multiplies and adds. // In order to minimize dependency chains, we evaluate in the order // (image[y - 1] + image[y + 1]) + (image[y] << 1) // This way, the first addition and the shift can happen in parallel for (int y = -1; y < DISFLOW_PATCH_SIZE + 1; ++y) { const uint8_t *src_row = src + y * src_stride; int16_t *tmp_row = tmp + y * DISFLOW_PATCH_SIZE; // Load pixels and expand to 16 bits __m128i row = _mm_loadu_si128((__m128i *)(src_row - 1)); __m128i px0 = _mm_cvtepu8_epi16(row); __m128i px1 = _mm_cvtepu8_epi16(_mm_srli_si128(row, 1)); __m128i px2 = _mm_cvtepu8_epi16(_mm_srli_si128(row, 2)); __m128i out = _mm_add_epi16(_mm_add_epi16(px0, px2), _mm_slli_epi16(px1, 1)); // Store to intermediate array _mm_storeu_si128((__m128i *)tmp_row, out); #if CHECK_RESULTS // Cross-check static const int16_t h_kernel[3] = { 1, 2, 1 }; for (int x = 0; x < DISFLOW_PATCH_SIZE; ++x) { int sum = 0; for (int k = 0; k < taps; ++k) { sum += h_kernel[k] * src_row[x + k - 1]; } (void)sum; assert(tmp_row[x] == sum); } #endif // CHECK_RESULTS } // Vertical filter // As the kernel is simply {1, 0, -1}, we implement this as simply // out[x] = image[x-1] - image[x+1] // rather than doing a "proper" convolution operation for (int y = 0; y < DISFLOW_PATCH_SIZE; ++y) { const int16_t *tmp_row = tmp + y * DISFLOW_PATCH_SIZE; int16_t *dst_row = dst + y * dst_stride; __m128i px0 = _mm_loadu_si128((__m128i *)(tmp_row - DISFLOW_PATCH_SIZE)); __m128i px2 = _mm_loadu_si128((__m128i *)(tmp_row + DISFLOW_PATCH_SIZE)); __m128i out = _mm_sub_epi16(px0, px2); _mm_storeu_si128((__m128i *)dst_row, out); #if CHECK_RESULTS static const int16_t v_kernel[3] = { 1, 0, -1 }; for (int x = 0; x < DISFLOW_PATCH_SIZE; ++x) { int sum = 0; for (int k = 0; k < taps; ++k) { sum += v_kernel[k] * tmp[(y + k - 1) * DISFLOW_PATCH_SIZE + x]; } (void)sum; assert(dst_row[x] == sum); } #endif // CHECK_RESULTS } } static INLINE void compute_flow_matrix(const int16_t *dx, int dx_stride, const int16_t *dy, int dy_stride, double *M) { __m128i acc[4] = { 0 }; for (int i = 0; i < DISFLOW_PATCH_SIZE; i++) { __m128i dx_row = _mm_loadu_si128((__m128i *)&dx[i * dx_stride]); __m128i dy_row = _mm_loadu_si128((__m128i *)&dy[i * dy_stride]); acc[0] = _mm_add_epi32(acc[0], _mm_madd_epi16(dx_row, dx_row)); acc[1] = _mm_add_epi32(acc[1], _mm_madd_epi16(dx_row, dy_row)); // Don't compute acc[2], as it should be equal to acc[1] acc[3] = _mm_add_epi32(acc[3], _mm_madd_epi16(dy_row, dy_row)); } // Condense sums __m128i partial_sum_0 = _mm_hadd_epi32(acc[0], acc[1]); __m128i partial_sum_1 = _mm_hadd_epi32(acc[1], acc[3]); __m128i result = _mm_hadd_epi32(partial_sum_0, partial_sum_1); // Apply regularization // We follow the standard regularization method of adding `k * I` before // inverting. This ensures that the matrix will be invertible. // // Setting the regularization strength k to 1 seems to work well here, as // typical values coming from the other equations are very large (1e5 to // 1e6, with an upper limit of around 6e7, at the time of writing). // It also preserves the property that all matrix values are whole numbers, // which is convenient for integerized SIMD implementation. result = _mm_add_epi32(result, _mm_set_epi32(1, 0, 0, 1)); #if CHECK_RESULTS int tmp[4] = { 0 }; for (int i = 0; i < DISFLOW_PATCH_SIZE; i++) { for (int j = 0; j < DISFLOW_PATCH_SIZE; j++) { tmp[0] += dx[i * dx_stride + j] * dx[i * dx_stride + j]; tmp[1] += dx[i * dx_stride + j] * dy[i * dy_stride + j]; // Don't compute tmp[2], as it should be equal to tmp[1] tmp[3] += dy[i * dy_stride + j] * dy[i * dy_stride + j]; } } // Apply regularization tmp[0] += 1; tmp[3] += 1; tmp[2] = tmp[1]; assert(tmp[0] == _mm_extract_epi32(result, 0)); assert(tmp[1] == _mm_extract_epi32(result, 1)); assert(tmp[2] == _mm_extract_epi32(result, 2)); assert(tmp[3] == _mm_extract_epi32(result, 3)); #endif // CHECK_RESULTS // Convert results to doubles and store _mm_storeu_pd(M, _mm_cvtepi32_pd(result)); _mm_storeu_pd(M + 2, _mm_cvtepi32_pd(_mm_srli_si128(result, 8))); } // Try to invert the matrix M // Note: Due to the nature of how a least-squares matrix is constructed, all of // the eigenvalues will be >= 0, and therefore det M >= 0 as well. // The regularization term `+ k * I` further ensures that det M >= k^2. // As mentioned in compute_flow_matrix(), here we use k = 1, so det M >= 1. // So we don't have to worry about non-invertible matrices here. static INLINE void invert_2x2(const double *M, double *M_inv) { double det = (M[0] * M[3]) - (M[1] * M[2]); assert(det >= 1); const double det_inv = 1 / det; M_inv[0] = M[3] * det_inv; M_inv[1] = -M[1] * det_inv; M_inv[2] = -M[2] * det_inv; M_inv[3] = M[0] * det_inv; } void aom_compute_flow_at_point_sse4_1(const uint8_t *src, const uint8_t *ref, int x, int y, int width, int height, int stride, double *u, double *v) { double M[4]; double M_inv[4]; int b[2]; int16_t dx[DISFLOW_PATCH_SIZE * DISFLOW_PATCH_SIZE]; int16_t dy[DISFLOW_PATCH_SIZE * DISFLOW_PATCH_SIZE]; // Compute gradients within this patch const uint8_t *src_patch = &src[y * stride + x]; sobel_filter_x(src_patch, stride, dx, DISFLOW_PATCH_SIZE); sobel_filter_y(src_patch, stride, dy, DISFLOW_PATCH_SIZE); compute_flow_matrix(dx, DISFLOW_PATCH_SIZE, dy, DISFLOW_PATCH_SIZE, M); invert_2x2(M, M_inv); for (int itr = 0; itr < DISFLOW_MAX_ITR; itr++) { compute_flow_vector(src, ref, width, height, stride, x, y, *u, *v, dx, dy, b); // Solve flow equations to find a better estimate for the flow vector // at this point const double step_u = M_inv[0] * b[0] + M_inv[1] * b[1]; const double step_v = M_inv[2] * b[0] + M_inv[3] * b[1]; *u += fclamp(step_u * DISFLOW_STEP_SIZE, -2, 2); *v += fclamp(step_v * DISFLOW_STEP_SIZE, -2, 2); if (fabs(step_u) + fabs(step_v) < DISFLOW_STEP_SIZE_THRESOLD) { // Stop iteration when we're close to convergence break; } } }