/* * Copyright (c) 2019, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include #include "config/aom_dsp_rtcd.h" #include "aom/aom_integer.h" #include "aom_dsp/quantize.h" #include "aom_dsp/x86/quantize_x86.h" void aom_quantize_b_adaptive_sse2( const tran_low_t *coeff_ptr, intptr_t n_coeffs, const int16_t *zbin_ptr, const int16_t *round_ptr, const int16_t *quant_ptr, const int16_t *quant_shift_ptr, tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, uint16_t *eob_ptr, const int16_t *scan, const int16_t *iscan) { int index = 16; int non_zero_count = 0; int non_zero_count_prescan_add_zero = 0; int is_found0 = 0, is_found1 = 0; int eob = -1; const __m128i zero = _mm_setzero_si128(); __m128i zbin, round, quant, dequant, shift; __m128i coeff0, coeff1, coeff0_sign, coeff1_sign; __m128i qcoeff0, qcoeff1; __m128i cmp_mask0, cmp_mask1; __m128i all_zero; __m128i mask0 = zero, mask1 = zero; int prescan_add[2]; int thresh[4]; const qm_val_t wt = (1 << AOM_QM_BITS); for (int i = 0; i < 2; ++i) { prescan_add[i] = ROUND_POWER_OF_TWO(dequant_ptr[i] * EOB_FACTOR, 7); thresh[i] = (zbin_ptr[i] * wt + prescan_add[i]) - 1; } thresh[2] = thresh[3] = thresh[1]; __m128i threshold[2]; threshold[0] = _mm_loadu_si128((__m128i *)&thresh[0]); threshold[1] = _mm_unpackhi_epi64(threshold[0], threshold[0]); #if SKIP_EOB_FACTOR_ADJUST int first = -1; #endif // Setup global values. load_b_values(zbin_ptr, &zbin, round_ptr, &round, quant_ptr, &quant, dequant_ptr, &dequant, quant_shift_ptr, &shift); // Do DC and first 15 AC. coeff0 = load_coefficients(coeff_ptr); coeff1 = load_coefficients(coeff_ptr + 8); // Poor man's abs(). coeff0_sign = _mm_srai_epi16(coeff0, 15); coeff1_sign = _mm_srai_epi16(coeff1, 15); qcoeff0 = invert_sign_sse2(coeff0, coeff0_sign); qcoeff1 = invert_sign_sse2(coeff1, coeff1_sign); update_mask0(&qcoeff0, &qcoeff1, threshold, iscan, &is_found0, &mask0); cmp_mask0 = _mm_cmpgt_epi16(qcoeff0, zbin); zbin = _mm_unpackhi_epi64(zbin, zbin); // Switch DC to AC cmp_mask1 = _mm_cmpgt_epi16(qcoeff1, zbin); update_mask1(&cmp_mask0, &cmp_mask1, iscan, &is_found1, &mask1); threshold[0] = threshold[1]; all_zero = _mm_or_si128(cmp_mask0, cmp_mask1); if (_mm_movemask_epi8(all_zero) == 0) { _mm_store_si128((__m128i *)(qcoeff_ptr), zero); _mm_store_si128((__m128i *)(qcoeff_ptr + 4), zero); _mm_store_si128((__m128i *)(qcoeff_ptr + 8), zero); _mm_store_si128((__m128i *)(qcoeff_ptr + 12), zero); _mm_store_si128((__m128i *)(dqcoeff_ptr), zero); _mm_store_si128((__m128i *)(dqcoeff_ptr + 4), zero); _mm_store_si128((__m128i *)(dqcoeff_ptr + 8), zero); _mm_store_si128((__m128i *)(dqcoeff_ptr + 12), zero); round = _mm_unpackhi_epi64(round, round); quant = _mm_unpackhi_epi64(quant, quant); shift = _mm_unpackhi_epi64(shift, shift); dequant = _mm_unpackhi_epi64(dequant, dequant); } else { calculate_qcoeff(&qcoeff0, round, quant, shift); round = _mm_unpackhi_epi64(round, round); quant = _mm_unpackhi_epi64(quant, quant); shift = _mm_unpackhi_epi64(shift, shift); calculate_qcoeff(&qcoeff1, round, quant, shift); // Reinsert signs qcoeff0 = invert_sign_sse2(qcoeff0, coeff0_sign); qcoeff1 = invert_sign_sse2(qcoeff1, coeff1_sign); // Mask out zbin threshold coeffs qcoeff0 = _mm_and_si128(qcoeff0, cmp_mask0); qcoeff1 = _mm_and_si128(qcoeff1, cmp_mask1); store_coefficients(qcoeff0, qcoeff_ptr); store_coefficients(qcoeff1, qcoeff_ptr + 8); coeff0 = calculate_dqcoeff(qcoeff0, dequant); dequant = _mm_unpackhi_epi64(dequant, dequant); coeff1 = calculate_dqcoeff(qcoeff1, dequant); store_coefficients(coeff0, dqcoeff_ptr); store_coefficients(coeff1, dqcoeff_ptr + 8); } // AC only loop. while (index < n_coeffs) { coeff0 = load_coefficients(coeff_ptr + index); coeff1 = load_coefficients(coeff_ptr + index + 8); coeff0_sign = _mm_srai_epi16(coeff0, 15); coeff1_sign = _mm_srai_epi16(coeff1, 15); qcoeff0 = invert_sign_sse2(coeff0, coeff0_sign); qcoeff1 = invert_sign_sse2(coeff1, coeff1_sign); update_mask0(&qcoeff0, &qcoeff1, threshold, iscan + index, &is_found0, &mask0); cmp_mask0 = _mm_cmpgt_epi16(qcoeff0, zbin); cmp_mask1 = _mm_cmpgt_epi16(qcoeff1, zbin); update_mask1(&cmp_mask0, &cmp_mask1, iscan + index, &is_found1, &mask1); all_zero = _mm_or_si128(cmp_mask0, cmp_mask1); if (_mm_movemask_epi8(all_zero) == 0) { _mm_store_si128((__m128i *)(qcoeff_ptr + index), zero); _mm_store_si128((__m128i *)(qcoeff_ptr + index + 4), zero); _mm_store_si128((__m128i *)(qcoeff_ptr + index + 8), zero); _mm_store_si128((__m128i *)(qcoeff_ptr + index + 12), zero); _mm_store_si128((__m128i *)(dqcoeff_ptr + index), zero); _mm_store_si128((__m128i *)(dqcoeff_ptr + index + 4), zero); _mm_store_si128((__m128i *)(dqcoeff_ptr + index + 8), zero); _mm_store_si128((__m128i *)(dqcoeff_ptr + index + 12), zero); index += 16; continue; } calculate_qcoeff(&qcoeff0, round, quant, shift); calculate_qcoeff(&qcoeff1, round, quant, shift); qcoeff0 = invert_sign_sse2(qcoeff0, coeff0_sign); qcoeff1 = invert_sign_sse2(qcoeff1, coeff1_sign); qcoeff0 = _mm_and_si128(qcoeff0, cmp_mask0); qcoeff1 = _mm_and_si128(qcoeff1, cmp_mask1); store_coefficients(qcoeff0, qcoeff_ptr + index); store_coefficients(qcoeff1, qcoeff_ptr + index + 8); coeff0 = calculate_dqcoeff(qcoeff0, dequant); coeff1 = calculate_dqcoeff(qcoeff1, dequant); store_coefficients(coeff0, dqcoeff_ptr + index); store_coefficients(coeff1, dqcoeff_ptr + index + 8); index += 16; } if (is_found0) non_zero_count = calculate_non_zero_count(mask0); if (is_found1) non_zero_count_prescan_add_zero = calculate_non_zero_count(mask1); for (int i = non_zero_count_prescan_add_zero - 1; i >= non_zero_count; i--) { const int rc = scan[i]; qcoeff_ptr[rc] = 0; dqcoeff_ptr[rc] = 0; } for (int i = non_zero_count - 1; i >= 0; i--) { const int rc = scan[i]; if (qcoeff_ptr[rc]) { eob = i; break; } } *eob_ptr = eob + 1; #if SKIP_EOB_FACTOR_ADJUST // TODO(Aniket): Experiment the following loop with intrinsic by combining // with the quantization loop above for (int i = 0; i < non_zero_count; i++) { const int rc = scan[i]; const int qcoeff = qcoeff_ptr[rc]; if (qcoeff) { first = i; break; } } if ((*eob_ptr - 1) >= 0 && first == (*eob_ptr - 1)) { const int rc = scan[(*eob_ptr - 1)]; if (qcoeff_ptr[rc] == 1 || qcoeff_ptr[rc] == -1) { const int coeff = coeff_ptr[rc] * wt; const int coeff_sign = AOMSIGN(coeff); const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign; const int factor = EOB_FACTOR + SKIP_EOB_FACTOR_ADJUST; const int prescan_add_val = ROUND_POWER_OF_TWO(dequant_ptr[rc != 0] * factor, 7); if (abs_coeff < (zbin_ptr[rc != 0] * (1 << AOM_QM_BITS) + prescan_add_val)) { qcoeff_ptr[rc] = 0; dqcoeff_ptr[rc] = 0; *eob_ptr = 0; } } } #endif } void aom_quantize_b_32x32_adaptive_sse2( const tran_low_t *coeff_ptr, intptr_t n_coeffs, const int16_t *zbin_ptr, const int16_t *round_ptr, const int16_t *quant_ptr, const int16_t *quant_shift_ptr, tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, uint16_t *eob_ptr, const int16_t *scan, const int16_t *iscan) { int index = 16; const int log_scale = 1; int non_zero_count = 0; int non_zero_count_prescan_add_zero = 0; int is_found0 = 0, is_found1 = 0; int eob = -1; const __m128i zero = _mm_setzero_si128(); const __m128i one = _mm_set1_epi16(1); const __m128i log_scale_vec = _mm_set1_epi16(log_scale); __m128i zbin, round, quant, dequant, shift; __m128i coeff0, coeff1, coeff0_sign, coeff1_sign; __m128i qcoeff0, qcoeff1; __m128i cmp_mask0, cmp_mask1; __m128i all_zero; __m128i mask0 = zero, mask1 = zero; const int zbins[2] = { ROUND_POWER_OF_TWO(zbin_ptr[0], log_scale), ROUND_POWER_OF_TWO(zbin_ptr[1], log_scale) }; int prescan_add[2]; int thresh[4]; const qm_val_t wt = (1 << AOM_QM_BITS); for (int i = 0; i < 2; ++i) { prescan_add[i] = ROUND_POWER_OF_TWO(dequant_ptr[i] * EOB_FACTOR, 7); thresh[i] = (zbins[i] * wt + prescan_add[i]) - 1; } thresh[2] = thresh[3] = thresh[1]; __m128i threshold[2]; threshold[0] = _mm_loadu_si128((__m128i *)&thresh[0]); threshold[1] = _mm_unpackhi_epi64(threshold[0], threshold[0]); #if SKIP_EOB_FACTOR_ADJUST int first = -1; #endif // Setup global values. zbin = _mm_load_si128((const __m128i *)zbin_ptr); round = _mm_load_si128((const __m128i *)round_ptr); quant = _mm_load_si128((const __m128i *)quant_ptr); dequant = _mm_load_si128((const __m128i *)dequant_ptr); shift = _mm_load_si128((const __m128i *)quant_shift_ptr); // Shift with rounding. zbin = _mm_add_epi16(zbin, log_scale_vec); round = _mm_add_epi16(round, log_scale_vec); zbin = _mm_srli_epi16(zbin, log_scale); round = _mm_srli_epi16(round, log_scale); zbin = _mm_sub_epi16(zbin, one); // Do DC and first 15 AC. coeff0 = load_coefficients(coeff_ptr); coeff1 = load_coefficients(coeff_ptr + 8); coeff0_sign = _mm_srai_epi16(coeff0, 15); coeff1_sign = _mm_srai_epi16(coeff1, 15); qcoeff0 = invert_sign_sse2(coeff0, coeff0_sign); qcoeff1 = invert_sign_sse2(coeff1, coeff1_sign); update_mask0(&qcoeff0, &qcoeff1, threshold, iscan, &is_found0, &mask0); cmp_mask0 = _mm_cmpgt_epi16(qcoeff0, zbin); zbin = _mm_unpackhi_epi64(zbin, zbin); // Switch DC to AC cmp_mask1 = _mm_cmpgt_epi16(qcoeff1, zbin); update_mask1(&cmp_mask0, &cmp_mask1, iscan, &is_found1, &mask1); threshold[0] = threshold[1]; all_zero = _mm_or_si128(cmp_mask0, cmp_mask1); if (_mm_movemask_epi8(all_zero) == 0) { _mm_store_si128((__m128i *)(qcoeff_ptr), zero); _mm_store_si128((__m128i *)(qcoeff_ptr + 4), zero); _mm_store_si128((__m128i *)(qcoeff_ptr + 8), zero); _mm_store_si128((__m128i *)(qcoeff_ptr + 12), zero); _mm_store_si128((__m128i *)(dqcoeff_ptr), zero); _mm_store_si128((__m128i *)(dqcoeff_ptr + 4), zero); _mm_store_si128((__m128i *)(dqcoeff_ptr + 8), zero); _mm_store_si128((__m128i *)(dqcoeff_ptr + 12), zero); round = _mm_unpackhi_epi64(round, round); quant = _mm_unpackhi_epi64(quant, quant); shift = _mm_unpackhi_epi64(shift, shift); dequant = _mm_unpackhi_epi64(dequant, dequant); } else { calculate_qcoeff_log_scale(&qcoeff0, round, quant, &shift, &log_scale); round = _mm_unpackhi_epi64(round, round); quant = _mm_unpackhi_epi64(quant, quant); shift = _mm_unpackhi_epi64(shift, shift); calculate_qcoeff_log_scale(&qcoeff1, round, quant, &shift, &log_scale); // Reinsert signs qcoeff0 = invert_sign_sse2(qcoeff0, coeff0_sign); qcoeff1 = invert_sign_sse2(qcoeff1, coeff1_sign); // Mask out zbin threshold coeffs qcoeff0 = _mm_and_si128(qcoeff0, cmp_mask0); qcoeff1 = _mm_and_si128(qcoeff1, cmp_mask1); store_coefficients(qcoeff0, qcoeff_ptr); store_coefficients(qcoeff1, qcoeff_ptr + 8); calculate_dqcoeff_and_store_log_scale(qcoeff0, dequant, zero, dqcoeff_ptr, &log_scale); dequant = _mm_unpackhi_epi64(dequant, dequant); calculate_dqcoeff_and_store_log_scale(qcoeff1, dequant, zero, dqcoeff_ptr + 8, &log_scale); } // AC only loop. while (index < n_coeffs) { coeff0 = load_coefficients(coeff_ptr + index); coeff1 = load_coefficients(coeff_ptr + index + 8); coeff0_sign = _mm_srai_epi16(coeff0, 15); coeff1_sign = _mm_srai_epi16(coeff1, 15); qcoeff0 = invert_sign_sse2(coeff0, coeff0_sign); qcoeff1 = invert_sign_sse2(coeff1, coeff1_sign); update_mask0(&qcoeff0, &qcoeff1, threshold, iscan + index, &is_found0, &mask0); cmp_mask0 = _mm_cmpgt_epi16(qcoeff0, zbin); cmp_mask1 = _mm_cmpgt_epi16(qcoeff1, zbin); update_mask1(&cmp_mask0, &cmp_mask1, iscan + index, &is_found1, &mask1); all_zero = _mm_or_si128(cmp_mask0, cmp_mask1); if (_mm_movemask_epi8(all_zero) == 0) { _mm_store_si128((__m128i *)(qcoeff_ptr + index), zero); _mm_store_si128((__m128i *)(qcoeff_ptr + index + 4), zero); _mm_store_si128((__m128i *)(qcoeff_ptr + index + 8), zero); _mm_store_si128((__m128i *)(qcoeff_ptr + index + 12), zero); _mm_store_si128((__m128i *)(dqcoeff_ptr + index), zero); _mm_store_si128((__m128i *)(dqcoeff_ptr + index + 4), zero); _mm_store_si128((__m128i *)(dqcoeff_ptr + index + 8), zero); _mm_store_si128((__m128i *)(dqcoeff_ptr + index + 12), zero); index += 16; continue; } calculate_qcoeff_log_scale(&qcoeff0, round, quant, &shift, &log_scale); calculate_qcoeff_log_scale(&qcoeff1, round, quant, &shift, &log_scale); qcoeff0 = invert_sign_sse2(qcoeff0, coeff0_sign); qcoeff1 = invert_sign_sse2(qcoeff1, coeff1_sign); qcoeff0 = _mm_and_si128(qcoeff0, cmp_mask0); qcoeff1 = _mm_and_si128(qcoeff1, cmp_mask1); store_coefficients(qcoeff0, qcoeff_ptr + index); store_coefficients(qcoeff1, qcoeff_ptr + index + 8); calculate_dqcoeff_and_store_log_scale(qcoeff0, dequant, zero, dqcoeff_ptr + index, &log_scale); calculate_dqcoeff_and_store_log_scale(qcoeff1, dequant, zero, dqcoeff_ptr + index + 8, &log_scale); index += 16; } if (is_found0) non_zero_count = calculate_non_zero_count(mask0); if (is_found1) non_zero_count_prescan_add_zero = calculate_non_zero_count(mask1); for (int i = non_zero_count_prescan_add_zero - 1; i >= non_zero_count; i--) { const int rc = scan[i]; qcoeff_ptr[rc] = 0; dqcoeff_ptr[rc] = 0; } for (int i = non_zero_count - 1; i >= 0; i--) { const int rc = scan[i]; if (qcoeff_ptr[rc]) { eob = i; break; } } *eob_ptr = eob + 1; #if SKIP_EOB_FACTOR_ADJUST // TODO(Aniket): Experiment the following loop with intrinsic by combining // with the quantization loop above for (int i = 0; i < non_zero_count; i++) { const int rc = scan[i]; const int qcoeff = qcoeff_ptr[rc]; if (qcoeff) { first = i; break; } } if ((*eob_ptr - 1) >= 0 && first == (*eob_ptr - 1)) { const int rc = scan[(*eob_ptr - 1)]; if (qcoeff_ptr[rc] == 1 || qcoeff_ptr[rc] == -1) { const int coeff = coeff_ptr[rc] * wt; const int coeff_sign = AOMSIGN(coeff); const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign; const int factor = EOB_FACTOR + SKIP_EOB_FACTOR_ADJUST; const int prescan_add_val = ROUND_POWER_OF_TWO(dequant_ptr[rc != 0] * factor, 7); if (abs_coeff < (zbins[rc != 0] * (1 << AOM_QM_BITS) + prescan_add_val)) { qcoeff_ptr[rc] = 0; dqcoeff_ptr[rc] = 0; *eob_ptr = 0; } } } #endif } void aom_quantize_b_64x64_adaptive_sse2( const tran_low_t *coeff_ptr, intptr_t n_coeffs, const int16_t *zbin_ptr, const int16_t *round_ptr, const int16_t *quant_ptr, const int16_t *quant_shift_ptr, tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, uint16_t *eob_ptr, const int16_t *scan, const int16_t *iscan) { int index = 16; const int log_scale = 2; int non_zero_count = 0; int non_zero_count_prescan_add_zero = 0; int is_found0 = 0, is_found1 = 0; int eob = -1; const __m128i zero = _mm_setzero_si128(); const __m128i one = _mm_set1_epi16(1); const __m128i log_scale_vec = _mm_set1_epi16(log_scale); __m128i zbin, round, quant, dequant, shift; __m128i coeff0, coeff1, coeff0_sign, coeff1_sign; __m128i qcoeff0, qcoeff1; __m128i cmp_mask0, cmp_mask1; __m128i all_zero; __m128i mask0 = zero, mask1 = zero; const int zbins[2] = { ROUND_POWER_OF_TWO(zbin_ptr[0], log_scale), ROUND_POWER_OF_TWO(zbin_ptr[1], log_scale) }; int prescan_add[2]; int thresh[4]; const qm_val_t wt = (1 << AOM_QM_BITS); for (int i = 0; i < 2; ++i) { prescan_add[i] = ROUND_POWER_OF_TWO(dequant_ptr[i] * EOB_FACTOR, 7); thresh[i] = (zbins[i] * wt + prescan_add[i]) - 1; } thresh[2] = thresh[3] = thresh[1]; __m128i threshold[2]; threshold[0] = _mm_loadu_si128((__m128i *)&thresh[0]); threshold[1] = _mm_unpackhi_epi64(threshold[0], threshold[0]); #if SKIP_EOB_FACTOR_ADJUST int first = -1; #endif // Setup global values. zbin = _mm_load_si128((const __m128i *)zbin_ptr); round = _mm_load_si128((const __m128i *)round_ptr); quant = _mm_load_si128((const __m128i *)quant_ptr); dequant = _mm_load_si128((const __m128i *)dequant_ptr); shift = _mm_load_si128((const __m128i *)quant_shift_ptr); // Shift with rounding. zbin = _mm_add_epi16(zbin, log_scale_vec); round = _mm_add_epi16(round, log_scale_vec); zbin = _mm_srli_epi16(zbin, log_scale); round = _mm_srli_epi16(round, log_scale); zbin = _mm_sub_epi16(zbin, one); // Do DC and first 15 AC. coeff0 = load_coefficients(coeff_ptr); coeff1 = load_coefficients(coeff_ptr + 8); coeff0_sign = _mm_srai_epi16(coeff0, 15); coeff1_sign = _mm_srai_epi16(coeff1, 15); qcoeff0 = invert_sign_sse2(coeff0, coeff0_sign); qcoeff1 = invert_sign_sse2(coeff1, coeff1_sign); update_mask0(&qcoeff0, &qcoeff1, threshold, iscan, &is_found0, &mask0); cmp_mask0 = _mm_cmpgt_epi16(qcoeff0, zbin); zbin = _mm_unpackhi_epi64(zbin, zbin); // Switch DC to AC cmp_mask1 = _mm_cmpgt_epi16(qcoeff1, zbin); update_mask1(&cmp_mask0, &cmp_mask1, iscan, &is_found1, &mask1); threshold[0] = threshold[1]; all_zero = _mm_or_si128(cmp_mask0, cmp_mask1); if (_mm_movemask_epi8(all_zero) == 0) { _mm_store_si128((__m128i *)(qcoeff_ptr), zero); _mm_store_si128((__m128i *)(qcoeff_ptr + 4), zero); _mm_store_si128((__m128i *)(qcoeff_ptr + 8), zero); _mm_store_si128((__m128i *)(qcoeff_ptr + 12), zero); _mm_store_si128((__m128i *)(dqcoeff_ptr), zero); _mm_store_si128((__m128i *)(dqcoeff_ptr + 4), zero); _mm_store_si128((__m128i *)(dqcoeff_ptr + 8), zero); _mm_store_si128((__m128i *)(dqcoeff_ptr + 12), zero); round = _mm_unpackhi_epi64(round, round); quant = _mm_unpackhi_epi64(quant, quant); shift = _mm_unpackhi_epi64(shift, shift); dequant = _mm_unpackhi_epi64(dequant, dequant); } else { calculate_qcoeff_log_scale(&qcoeff0, round, quant, &shift, &log_scale); round = _mm_unpackhi_epi64(round, round); quant = _mm_unpackhi_epi64(quant, quant); shift = _mm_unpackhi_epi64(shift, shift); calculate_qcoeff_log_scale(&qcoeff1, round, quant, &shift, &log_scale); // Reinsert signs qcoeff0 = invert_sign_sse2(qcoeff0, coeff0_sign); qcoeff1 = invert_sign_sse2(qcoeff1, coeff1_sign); // Mask out zbin threshold coeffs qcoeff0 = _mm_and_si128(qcoeff0, cmp_mask0); qcoeff1 = _mm_and_si128(qcoeff1, cmp_mask1); store_coefficients(qcoeff0, qcoeff_ptr); store_coefficients(qcoeff1, qcoeff_ptr + 8); calculate_dqcoeff_and_store_log_scale(qcoeff0, dequant, zero, dqcoeff_ptr, &log_scale); dequant = _mm_unpackhi_epi64(dequant, dequant); calculate_dqcoeff_and_store_log_scale(qcoeff1, dequant, zero, dqcoeff_ptr + 8, &log_scale); } // AC only loop. while (index < n_coeffs) { coeff0 = load_coefficients(coeff_ptr + index); coeff1 = load_coefficients(coeff_ptr + index + 8); coeff0_sign = _mm_srai_epi16(coeff0, 15); coeff1_sign = _mm_srai_epi16(coeff1, 15); qcoeff0 = invert_sign_sse2(coeff0, coeff0_sign); qcoeff1 = invert_sign_sse2(coeff1, coeff1_sign); update_mask0(&qcoeff0, &qcoeff1, threshold, iscan + index, &is_found0, &mask0); cmp_mask0 = _mm_cmpgt_epi16(qcoeff0, zbin); cmp_mask1 = _mm_cmpgt_epi16(qcoeff1, zbin); update_mask1(&cmp_mask0, &cmp_mask1, iscan + index, &is_found1, &mask1); all_zero = _mm_or_si128(cmp_mask0, cmp_mask1); if (_mm_movemask_epi8(all_zero) == 0) { _mm_store_si128((__m128i *)(qcoeff_ptr + index), zero); _mm_store_si128((__m128i *)(qcoeff_ptr + index + 4), zero); _mm_store_si128((__m128i *)(qcoeff_ptr + index + 8), zero); _mm_store_si128((__m128i *)(qcoeff_ptr + index + 12), zero); _mm_store_si128((__m128i *)(dqcoeff_ptr + index), zero); _mm_store_si128((__m128i *)(dqcoeff_ptr + index + 4), zero); _mm_store_si128((__m128i *)(dqcoeff_ptr + index + 8), zero); _mm_store_si128((__m128i *)(dqcoeff_ptr + index + 12), zero); index += 16; continue; } calculate_qcoeff_log_scale(&qcoeff0, round, quant, &shift, &log_scale); calculate_qcoeff_log_scale(&qcoeff1, round, quant, &shift, &log_scale); qcoeff0 = invert_sign_sse2(qcoeff0, coeff0_sign); qcoeff1 = invert_sign_sse2(qcoeff1, coeff1_sign); qcoeff0 = _mm_and_si128(qcoeff0, cmp_mask0); qcoeff1 = _mm_and_si128(qcoeff1, cmp_mask1); store_coefficients(qcoeff0, qcoeff_ptr + index); store_coefficients(qcoeff1, qcoeff_ptr + index + 8); calculate_dqcoeff_and_store_log_scale(qcoeff0, dequant, zero, dqcoeff_ptr + index, &log_scale); calculate_dqcoeff_and_store_log_scale(qcoeff1, dequant, zero, dqcoeff_ptr + index + 8, &log_scale); index += 16; } if (is_found0) non_zero_count = calculate_non_zero_count(mask0); if (is_found1) non_zero_count_prescan_add_zero = calculate_non_zero_count(mask1); for (int i = non_zero_count_prescan_add_zero - 1; i >= non_zero_count; i--) { const int rc = scan[i]; qcoeff_ptr[rc] = 0; dqcoeff_ptr[rc] = 0; } for (int i = non_zero_count - 1; i >= 0; i--) { const int rc = scan[i]; if (qcoeff_ptr[rc]) { eob = i; break; } } *eob_ptr = eob + 1; #if SKIP_EOB_FACTOR_ADJUST // TODO(Aniket): Experiment the following loop with intrinsic by combining // with the quantization loop above for (int i = 0; i < non_zero_count; i++) { const int rc = scan[i]; const int qcoeff = qcoeff_ptr[rc]; if (qcoeff) { first = i; break; } } if ((*eob_ptr - 1) >= 0 && first == (*eob_ptr - 1)) { const int rc = scan[(*eob_ptr - 1)]; if (qcoeff_ptr[rc] == 1 || qcoeff_ptr[rc] == -1) { const int coeff = coeff_ptr[rc] * wt; const int coeff_sign = AOMSIGN(coeff); const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign; const int factor = EOB_FACTOR + SKIP_EOB_FACTOR_ADJUST; const int prescan_add_val = ROUND_POWER_OF_TWO(dequant_ptr[rc != 0] * factor, 7); if (abs_coeff < (zbins[rc != 0] * (1 << AOM_QM_BITS) + prescan_add_val)) { qcoeff_ptr[rc] = 0; dqcoeff_ptr[rc] = 0; *eob_ptr = 0; } } } #endif }