/* * Copyright (c) 2018, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include // SSE2 #include "config/aom_dsp_rtcd.h" #include "aom_dsp/x86/convolve.h" #include "aom_ports/mem.h" void aom_filter_block1d16_h4_sse2(const uint8_t *src_ptr, ptrdiff_t src_pixels_per_line, uint8_t *output_ptr, ptrdiff_t output_pitch, uint32_t output_height, const int16_t *filter) { __m128i filtersReg; __m128i addFilterReg32; __m128i secondFilters, thirdFilters; __m128i srcRegFilt32b1_1, srcRegFilt32b1_2, srcRegFilt32b2_1, srcRegFilt32b2_2; __m128i srcReg32b1, srcReg32b2; unsigned int i; src_ptr -= 3; addFilterReg32 = _mm_set1_epi16(32); filtersReg = _mm_loadu_si128((const __m128i *)filter); filtersReg = _mm_srai_epi16(filtersReg, 1); // coeffs 0 1 0 1 2 3 2 3 const __m128i tmp_0 = _mm_unpacklo_epi32(filtersReg, filtersReg); // coeffs 4 5 4 5 6 7 6 7 const __m128i tmp_1 = _mm_unpackhi_epi32(filtersReg, filtersReg); secondFilters = _mm_unpackhi_epi64(tmp_0, tmp_0); // coeffs 2 3 2 3 2 3 2 3 thirdFilters = _mm_unpacklo_epi64(tmp_1, tmp_1); // coeffs 4 5 4 5 4 5 4 5 for (i = output_height; i > 0; i -= 1) { srcReg32b1 = _mm_loadu_si128((const __m128i *)src_ptr); __m128i ss_2 = _mm_srli_si128(srcReg32b1, 2); __m128i ss_4 = _mm_srli_si128(srcReg32b1, 4); __m128i ss_1_1 = _mm_unpacklo_epi8(ss_2, _mm_setzero_si128()); __m128i ss_2_1 = _mm_unpacklo_epi8(ss_4, _mm_setzero_si128()); __m128i d1 = _mm_madd_epi16(ss_1_1, secondFilters); __m128i d2 = _mm_madd_epi16(ss_2_1, thirdFilters); srcRegFilt32b1_1 = _mm_add_epi32(d1, d2); __m128i ss_1 = _mm_srli_si128(srcReg32b1, 3); __m128i ss_3 = _mm_srli_si128(srcReg32b1, 5); __m128i ss_1_2 = _mm_unpacklo_epi8(ss_1, _mm_setzero_si128()); __m128i ss_2_2 = _mm_unpacklo_epi8(ss_3, _mm_setzero_si128()); d1 = _mm_madd_epi16(ss_1_2, secondFilters); d2 = _mm_madd_epi16(ss_2_2, thirdFilters); srcRegFilt32b1_2 = _mm_add_epi32(d1, d2); __m128i res_lo = _mm_unpacklo_epi32(srcRegFilt32b1_1, srcRegFilt32b1_2); __m128i res_hi = _mm_unpackhi_epi32(srcRegFilt32b1_1, srcRegFilt32b1_2); srcRegFilt32b1_1 = _mm_packs_epi32(res_lo, res_hi); // reading stride of the next 16 bytes // (part of it was being read by earlier read) srcReg32b2 = _mm_loadu_si128((const __m128i *)(src_ptr + 8)); ss_2 = _mm_srli_si128(srcReg32b2, 2); ss_4 = _mm_srli_si128(srcReg32b2, 4); ss_1_1 = _mm_unpacklo_epi8(ss_2, _mm_setzero_si128()); ss_2_1 = _mm_unpacklo_epi8(ss_4, _mm_setzero_si128()); d1 = _mm_madd_epi16(ss_1_1, secondFilters); d2 = _mm_madd_epi16(ss_2_1, thirdFilters); srcRegFilt32b2_1 = _mm_add_epi32(d1, d2); ss_1 = _mm_srli_si128(srcReg32b2, 3); ss_3 = _mm_srli_si128(srcReg32b2, 5); ss_1_2 = _mm_unpacklo_epi8(ss_1, _mm_setzero_si128()); ss_2_2 = _mm_unpacklo_epi8(ss_3, _mm_setzero_si128()); d1 = _mm_madd_epi16(ss_1_2, secondFilters); d2 = _mm_madd_epi16(ss_2_2, thirdFilters); srcRegFilt32b2_2 = _mm_add_epi32(d1, d2); res_lo = _mm_unpacklo_epi32(srcRegFilt32b2_1, srcRegFilt32b2_2); res_hi = _mm_unpackhi_epi32(srcRegFilt32b2_1, srcRegFilt32b2_2); srcRegFilt32b2_1 = _mm_packs_epi32(res_lo, res_hi); // shift by 6 bit each 16 bit srcRegFilt32b1_1 = _mm_adds_epi16(srcRegFilt32b1_1, addFilterReg32); srcRegFilt32b2_1 = _mm_adds_epi16(srcRegFilt32b2_1, addFilterReg32); srcRegFilt32b1_1 = _mm_srai_epi16(srcRegFilt32b1_1, 6); srcRegFilt32b2_1 = _mm_srai_epi16(srcRegFilt32b2_1, 6); // shrink to 8 bit each 16 bits, the first lane contain the first // convolve result and the second lane contain the second convolve result srcRegFilt32b1_1 = _mm_packus_epi16(srcRegFilt32b1_1, srcRegFilt32b2_1); src_ptr += src_pixels_per_line; _mm_store_si128((__m128i *)output_ptr, srcRegFilt32b1_1); output_ptr += output_pitch; } } void aom_filter_block1d16_v4_sse2(const uint8_t *src_ptr, ptrdiff_t src_pitch, uint8_t *output_ptr, ptrdiff_t out_pitch, uint32_t output_height, const int16_t *filter) { __m128i filtersReg; __m128i srcReg2, srcReg3, srcReg4, srcReg5, srcReg6; __m128i srcReg23_lo, srcReg23_hi, srcReg34_lo, srcReg34_hi; __m128i srcReg45_lo, srcReg45_hi, srcReg56_lo, srcReg56_hi; __m128i resReg23_lo, resReg34_lo, resReg45_lo, resReg56_lo; __m128i resReg23_hi, resReg34_hi, resReg45_hi, resReg56_hi; __m128i resReg23_45_lo, resReg34_56_lo, resReg23_45_hi, resReg34_56_hi; __m128i resReg23_45, resReg34_56; __m128i addFilterReg32, secondFilters, thirdFilters; __m128i tmp_0, tmp_1; unsigned int i; ptrdiff_t src_stride, dst_stride; addFilterReg32 = _mm_set1_epi16(32); filtersReg = _mm_loadu_si128((const __m128i *)filter); filtersReg = _mm_srai_epi16(filtersReg, 1); // coeffs 0 1 0 1 2 3 2 3 const __m128i tmp0 = _mm_unpacklo_epi32(filtersReg, filtersReg); // coeffs 4 5 4 5 6 7 6 7 const __m128i tmp1 = _mm_unpackhi_epi32(filtersReg, filtersReg); secondFilters = _mm_unpackhi_epi64(tmp0, tmp0); // coeffs 2 3 2 3 2 3 2 3 thirdFilters = _mm_unpacklo_epi64(tmp1, tmp1); // coeffs 4 5 4 5 4 5 4 5 // multiply the size of the source and destination stride by two src_stride = src_pitch << 1; dst_stride = out_pitch << 1; srcReg2 = _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 2)); srcReg3 = _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 3)); srcReg23_lo = _mm_unpacklo_epi8(srcReg2, srcReg3); srcReg23_hi = _mm_unpackhi_epi8(srcReg2, srcReg3); __m128i resReg23_lo_1 = _mm_unpacklo_epi8(srcReg23_lo, _mm_setzero_si128()); __m128i resReg23_lo_2 = _mm_unpackhi_epi8(srcReg23_lo, _mm_setzero_si128()); __m128i resReg23_hi_1 = _mm_unpacklo_epi8(srcReg23_hi, _mm_setzero_si128()); __m128i resReg23_hi_2 = _mm_unpackhi_epi8(srcReg23_hi, _mm_setzero_si128()); srcReg4 = _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 4)); srcReg34_lo = _mm_unpacklo_epi8(srcReg3, srcReg4); srcReg34_hi = _mm_unpackhi_epi8(srcReg3, srcReg4); __m128i resReg34_lo_1 = _mm_unpacklo_epi8(srcReg34_lo, _mm_setzero_si128()); __m128i resReg34_lo_2 = _mm_unpackhi_epi8(srcReg34_lo, _mm_setzero_si128()); __m128i resReg34_hi_1 = _mm_unpacklo_epi8(srcReg34_hi, _mm_setzero_si128()); __m128i resReg34_hi_2 = _mm_unpackhi_epi8(srcReg34_hi, _mm_setzero_si128()); for (i = output_height; i > 1; i -= 2) { srcReg5 = _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 5)); srcReg45_lo = _mm_unpacklo_epi8(srcReg4, srcReg5); srcReg45_hi = _mm_unpackhi_epi8(srcReg4, srcReg5); srcReg6 = _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 6)); srcReg56_lo = _mm_unpacklo_epi8(srcReg5, srcReg6); srcReg56_hi = _mm_unpackhi_epi8(srcReg5, srcReg6); // multiply 2 adjacent elements with the filter and add the result tmp_0 = _mm_madd_epi16(resReg23_lo_1, secondFilters); tmp_1 = _mm_madd_epi16(resReg23_lo_2, secondFilters); resReg23_lo = _mm_packs_epi32(tmp_0, tmp_1); tmp_0 = _mm_madd_epi16(resReg34_lo_1, secondFilters); tmp_1 = _mm_madd_epi16(resReg34_lo_2, secondFilters); resReg34_lo = _mm_packs_epi32(tmp_0, tmp_1); __m128i resReg45_lo_1 = _mm_unpacklo_epi8(srcReg45_lo, _mm_setzero_si128()); __m128i resReg45_lo_2 = _mm_unpackhi_epi8(srcReg45_lo, _mm_setzero_si128()); tmp_0 = _mm_madd_epi16(resReg45_lo_1, thirdFilters); tmp_1 = _mm_madd_epi16(resReg45_lo_2, thirdFilters); resReg45_lo = _mm_packs_epi32(tmp_0, tmp_1); __m128i resReg56_lo_1 = _mm_unpacklo_epi8(srcReg56_lo, _mm_setzero_si128()); __m128i resReg56_lo_2 = _mm_unpackhi_epi8(srcReg56_lo, _mm_setzero_si128()); tmp_0 = _mm_madd_epi16(resReg56_lo_1, thirdFilters); tmp_1 = _mm_madd_epi16(resReg56_lo_2, thirdFilters); resReg56_lo = _mm_packs_epi32(tmp_0, tmp_1); // add and saturate the results together resReg23_45_lo = _mm_adds_epi16(resReg23_lo, resReg45_lo); resReg34_56_lo = _mm_adds_epi16(resReg34_lo, resReg56_lo); // multiply 2 adjacent elements with the filter and add the result tmp_0 = _mm_madd_epi16(resReg23_hi_1, secondFilters); tmp_1 = _mm_madd_epi16(resReg23_hi_2, secondFilters); resReg23_hi = _mm_packs_epi32(tmp_0, tmp_1); tmp_0 = _mm_madd_epi16(resReg34_hi_1, secondFilters); tmp_1 = _mm_madd_epi16(resReg34_hi_2, secondFilters); resReg34_hi = _mm_packs_epi32(tmp_0, tmp_1); __m128i resReg45_hi_1 = _mm_unpacklo_epi8(srcReg45_hi, _mm_setzero_si128()); __m128i resReg45_hi_2 = _mm_unpackhi_epi8(srcReg45_hi, _mm_setzero_si128()); tmp_0 = _mm_madd_epi16(resReg45_hi_1, thirdFilters); tmp_1 = _mm_madd_epi16(resReg45_hi_2, thirdFilters); resReg45_hi = _mm_packs_epi32(tmp_0, tmp_1); __m128i resReg56_hi_1 = _mm_unpacklo_epi8(srcReg56_hi, _mm_setzero_si128()); __m128i resReg56_hi_2 = _mm_unpackhi_epi8(srcReg56_hi, _mm_setzero_si128()); tmp_0 = _mm_madd_epi16(resReg56_hi_1, thirdFilters); tmp_1 = _mm_madd_epi16(resReg56_hi_2, thirdFilters); resReg56_hi = _mm_packs_epi32(tmp_0, tmp_1); // add and saturate the results together resReg23_45_hi = _mm_adds_epi16(resReg23_hi, resReg45_hi); resReg34_56_hi = _mm_adds_epi16(resReg34_hi, resReg56_hi); // shift by 6 bit each 16 bit resReg23_45_lo = _mm_adds_epi16(resReg23_45_lo, addFilterReg32); resReg34_56_lo = _mm_adds_epi16(resReg34_56_lo, addFilterReg32); resReg23_45_hi = _mm_adds_epi16(resReg23_45_hi, addFilterReg32); resReg34_56_hi = _mm_adds_epi16(resReg34_56_hi, addFilterReg32); resReg23_45_lo = _mm_srai_epi16(resReg23_45_lo, 6); resReg34_56_lo = _mm_srai_epi16(resReg34_56_lo, 6); resReg23_45_hi = _mm_srai_epi16(resReg23_45_hi, 6); resReg34_56_hi = _mm_srai_epi16(resReg34_56_hi, 6); // shrink to 8 bit each 16 bits, the first lane contain the first // convolve result and the second lane contain the second convolve // result resReg23_45 = _mm_packus_epi16(resReg23_45_lo, resReg23_45_hi); resReg34_56 = _mm_packus_epi16(resReg34_56_lo, resReg34_56_hi); src_ptr += src_stride; _mm_store_si128((__m128i *)output_ptr, (resReg23_45)); _mm_store_si128((__m128i *)(output_ptr + out_pitch), (resReg34_56)); output_ptr += dst_stride; // save part of the registers for next strides resReg23_lo_1 = resReg45_lo_1; resReg23_lo_2 = resReg45_lo_2; resReg23_hi_1 = resReg45_hi_1; resReg23_hi_2 = resReg45_hi_2; resReg34_lo_1 = resReg56_lo_1; resReg34_lo_2 = resReg56_lo_2; resReg34_hi_1 = resReg56_hi_1; resReg34_hi_2 = resReg56_hi_2; srcReg4 = srcReg6; } } void aom_filter_block1d8_h4_sse2(const uint8_t *src_ptr, ptrdiff_t src_pixels_per_line, uint8_t *output_ptr, ptrdiff_t output_pitch, uint32_t output_height, const int16_t *filter) { __m128i filtersReg; __m128i addFilterReg32; __m128i secondFilters, thirdFilters; __m128i srcRegFilt32b1_1, srcRegFilt32b1_2; __m128i srcReg32b1; unsigned int i; src_ptr -= 3; addFilterReg32 = _mm_set1_epi16(32); filtersReg = _mm_loadu_si128((const __m128i *)filter); filtersReg = _mm_srai_epi16(filtersReg, 1); // coeffs 0 1 0 1 2 3 2 3 const __m128i tmp_0 = _mm_unpacklo_epi32(filtersReg, filtersReg); // coeffs 4 5 4 5 6 7 6 7 const __m128i tmp_1 = _mm_unpackhi_epi32(filtersReg, filtersReg); secondFilters = _mm_unpackhi_epi64(tmp_0, tmp_0); // coeffs 2 3 2 3 2 3 2 3 thirdFilters = _mm_unpacklo_epi64(tmp_1, tmp_1); // coeffs 4 5 4 5 4 5 4 5 for (i = output_height; i > 0; i -= 1) { srcReg32b1 = _mm_loadu_si128((const __m128i *)src_ptr); __m128i ss_2 = _mm_srli_si128(srcReg32b1, 2); __m128i ss_4 = _mm_srli_si128(srcReg32b1, 4); ss_2 = _mm_unpacklo_epi8(ss_2, _mm_setzero_si128()); ss_4 = _mm_unpacklo_epi8(ss_4, _mm_setzero_si128()); __m128i d1 = _mm_madd_epi16(ss_2, secondFilters); __m128i d2 = _mm_madd_epi16(ss_4, thirdFilters); srcRegFilt32b1_1 = _mm_add_epi32(d1, d2); __m128i ss_3 = _mm_srli_si128(srcReg32b1, 3); __m128i ss_5 = _mm_srli_si128(srcReg32b1, 5); ss_3 = _mm_unpacklo_epi8(ss_3, _mm_setzero_si128()); ss_5 = _mm_unpacklo_epi8(ss_5, _mm_setzero_si128()); d1 = _mm_madd_epi16(ss_3, secondFilters); d2 = _mm_madd_epi16(ss_5, thirdFilters); srcRegFilt32b1_2 = _mm_add_epi32(d1, d2); __m128i res_lo = _mm_unpacklo_epi32(srcRegFilt32b1_1, srcRegFilt32b1_2); __m128i res_hi = _mm_unpackhi_epi32(srcRegFilt32b1_1, srcRegFilt32b1_2); srcRegFilt32b1_1 = _mm_packs_epi32(res_lo, res_hi); // shift by 6 bit each 16 bit srcRegFilt32b1_1 = _mm_adds_epi16(srcRegFilt32b1_1, addFilterReg32); srcRegFilt32b1_1 = _mm_srai_epi16(srcRegFilt32b1_1, 6); // shrink to 8 bit each 16 bits, the first lane contain the first // convolve result and the second lane contain the second convolve result srcRegFilt32b1_1 = _mm_packus_epi16(srcRegFilt32b1_1, _mm_setzero_si128()); src_ptr += src_pixels_per_line; _mm_storel_epi64((__m128i *)output_ptr, srcRegFilt32b1_1); output_ptr += output_pitch; } } void aom_filter_block1d8_v4_sse2(const uint8_t *src_ptr, ptrdiff_t src_pitch, uint8_t *output_ptr, ptrdiff_t out_pitch, uint32_t output_height, const int16_t *filter) { __m128i filtersReg; __m128i srcReg2, srcReg3, srcReg4, srcReg5, srcReg6; __m128i srcReg23_lo, srcReg34_lo; __m128i srcReg45_lo, srcReg56_lo; __m128i resReg23_lo, resReg34_lo, resReg45_lo, resReg56_lo; __m128i resReg23_45_lo, resReg34_56_lo; __m128i resReg23_45, resReg34_56; __m128i addFilterReg32, secondFilters, thirdFilters; __m128i tmp_0, tmp_1; unsigned int i; ptrdiff_t src_stride, dst_stride; addFilterReg32 = _mm_set1_epi16(32); filtersReg = _mm_loadu_si128((const __m128i *)filter); filtersReg = _mm_srai_epi16(filtersReg, 1); // coeffs 0 1 0 1 2 3 2 3 const __m128i tmp0 = _mm_unpacklo_epi32(filtersReg, filtersReg); // coeffs 4 5 4 5 6 7 6 7 const __m128i tmp1 = _mm_unpackhi_epi32(filtersReg, filtersReg); secondFilters = _mm_unpackhi_epi64(tmp0, tmp0); // coeffs 2 3 2 3 2 3 2 3 thirdFilters = _mm_unpacklo_epi64(tmp1, tmp1); // coeffs 4 5 4 5 4 5 4 5 // multiply the size of the source and destination stride by two src_stride = src_pitch << 1; dst_stride = out_pitch << 1; srcReg2 = _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 2)); srcReg3 = _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 3)); srcReg23_lo = _mm_unpacklo_epi8(srcReg2, srcReg3); __m128i resReg23_lo_1 = _mm_unpacklo_epi8(srcReg23_lo, _mm_setzero_si128()); __m128i resReg23_lo_2 = _mm_unpackhi_epi8(srcReg23_lo, _mm_setzero_si128()); srcReg4 = _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 4)); srcReg34_lo = _mm_unpacklo_epi8(srcReg3, srcReg4); __m128i resReg34_lo_1 = _mm_unpacklo_epi8(srcReg34_lo, _mm_setzero_si128()); __m128i resReg34_lo_2 = _mm_unpackhi_epi8(srcReg34_lo, _mm_setzero_si128()); for (i = output_height; i > 1; i -= 2) { srcReg5 = _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 5)); srcReg45_lo = _mm_unpacklo_epi8(srcReg4, srcReg5); srcReg6 = _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 6)); srcReg56_lo = _mm_unpacklo_epi8(srcReg5, srcReg6); // multiply 2 adjacent elements with the filter and add the result tmp_0 = _mm_madd_epi16(resReg23_lo_1, secondFilters); tmp_1 = _mm_madd_epi16(resReg23_lo_2, secondFilters); resReg23_lo = _mm_packs_epi32(tmp_0, tmp_1); tmp_0 = _mm_madd_epi16(resReg34_lo_1, secondFilters); tmp_1 = _mm_madd_epi16(resReg34_lo_2, secondFilters); resReg34_lo = _mm_packs_epi32(tmp_0, tmp_1); __m128i resReg45_lo_1 = _mm_unpacklo_epi8(srcReg45_lo, _mm_setzero_si128()); __m128i resReg45_lo_2 = _mm_unpackhi_epi8(srcReg45_lo, _mm_setzero_si128()); tmp_0 = _mm_madd_epi16(resReg45_lo_1, thirdFilters); tmp_1 = _mm_madd_epi16(resReg45_lo_2, thirdFilters); resReg45_lo = _mm_packs_epi32(tmp_0, tmp_1); __m128i resReg56_lo_1 = _mm_unpacklo_epi8(srcReg56_lo, _mm_setzero_si128()); __m128i resReg56_lo_2 = _mm_unpackhi_epi8(srcReg56_lo, _mm_setzero_si128()); tmp_0 = _mm_madd_epi16(resReg56_lo_1, thirdFilters); tmp_1 = _mm_madd_epi16(resReg56_lo_2, thirdFilters); resReg56_lo = _mm_packs_epi32(tmp_0, tmp_1); // add and saturate the results together resReg23_45_lo = _mm_adds_epi16(resReg23_lo, resReg45_lo); resReg34_56_lo = _mm_adds_epi16(resReg34_lo, resReg56_lo); // shift by 6 bit each 16 bit resReg23_45_lo = _mm_adds_epi16(resReg23_45_lo, addFilterReg32); resReg34_56_lo = _mm_adds_epi16(resReg34_56_lo, addFilterReg32); resReg23_45_lo = _mm_srai_epi16(resReg23_45_lo, 6); resReg34_56_lo = _mm_srai_epi16(resReg34_56_lo, 6); // shrink to 8 bit each 16 bits, the first lane contain the first // convolve result and the second lane contain the second convolve // result resReg23_45 = _mm_packus_epi16(resReg23_45_lo, _mm_setzero_si128()); resReg34_56 = _mm_packus_epi16(resReg34_56_lo, _mm_setzero_si128()); src_ptr += src_stride; _mm_storel_epi64((__m128i *)output_ptr, (resReg23_45)); _mm_storel_epi64((__m128i *)(output_ptr + out_pitch), (resReg34_56)); output_ptr += dst_stride; // save part of the registers for next strides resReg23_lo_1 = resReg45_lo_1; resReg23_lo_2 = resReg45_lo_2; resReg34_lo_1 = resReg56_lo_1; resReg34_lo_2 = resReg56_lo_2; srcReg4 = srcReg6; } } void aom_filter_block1d4_h4_sse2(const uint8_t *src_ptr, ptrdiff_t src_pixels_per_line, uint8_t *output_ptr, ptrdiff_t output_pitch, uint32_t output_height, const int16_t *filter) { __m128i filtersReg; __m128i addFilterReg32; __m128i secondFilters, thirdFilters; __m128i srcRegFilt32b1_1; __m128i srcReg32b1; unsigned int i; src_ptr -= 3; addFilterReg32 = _mm_set1_epi16(32); filtersReg = _mm_loadu_si128((const __m128i *)filter); filtersReg = _mm_srai_epi16(filtersReg, 1); // coeffs 0 1 0 1 2 3 2 3 const __m128i tmp_0 = _mm_unpacklo_epi32(filtersReg, filtersReg); // coeffs 4 5 4 5 6 7 6 7 const __m128i tmp_1 = _mm_unpackhi_epi32(filtersReg, filtersReg); secondFilters = _mm_unpackhi_epi64(tmp_0, tmp_0); // coeffs 2 3 2 3 2 3 2 3 thirdFilters = _mm_unpacklo_epi64(tmp_1, tmp_1); // coeffs 4 5 4 5 4 5 4 5 for (i = output_height; i > 0; i -= 1) { srcReg32b1 = _mm_loadu_si128((const __m128i *)src_ptr); __m128i ss_2 = _mm_srli_si128(srcReg32b1, 2); __m128i ss_3 = _mm_srli_si128(srcReg32b1, 3); __m128i ss_4 = _mm_srli_si128(srcReg32b1, 4); __m128i ss_5 = _mm_srli_si128(srcReg32b1, 5); ss_2 = _mm_unpacklo_epi8(ss_2, _mm_setzero_si128()); ss_3 = _mm_unpacklo_epi8(ss_3, _mm_setzero_si128()); ss_4 = _mm_unpacklo_epi8(ss_4, _mm_setzero_si128()); ss_5 = _mm_unpacklo_epi8(ss_5, _mm_setzero_si128()); __m128i ss_1_1 = _mm_unpacklo_epi32(ss_2, ss_3); __m128i ss_1_2 = _mm_unpacklo_epi32(ss_4, ss_5); __m128i d1 = _mm_madd_epi16(ss_1_1, secondFilters); __m128i d2 = _mm_madd_epi16(ss_1_2, thirdFilters); srcRegFilt32b1_1 = _mm_add_epi32(d1, d2); srcRegFilt32b1_1 = _mm_packs_epi32(srcRegFilt32b1_1, _mm_setzero_si128()); // shift by 6 bit each 16 bit srcRegFilt32b1_1 = _mm_adds_epi16(srcRegFilt32b1_1, addFilterReg32); srcRegFilt32b1_1 = _mm_srai_epi16(srcRegFilt32b1_1, 6); // shrink to 8 bit each 16 bits, the first lane contain the first // convolve result and the second lane contain the second convolve result srcRegFilt32b1_1 = _mm_packus_epi16(srcRegFilt32b1_1, _mm_setzero_si128()); src_ptr += src_pixels_per_line; *((int *)(output_ptr)) = _mm_cvtsi128_si32(srcRegFilt32b1_1); output_ptr += output_pitch; } } void aom_filter_block1d4_v4_sse2(const uint8_t *src_ptr, ptrdiff_t src_pitch, uint8_t *output_ptr, ptrdiff_t out_pitch, uint32_t output_height, const int16_t *filter) { __m128i filtersReg; __m128i srcReg2, srcReg3, srcReg4, srcReg5, srcReg6; __m128i srcReg23, srcReg34, srcReg45, srcReg56; __m128i resReg23_34, resReg45_56; __m128i resReg23_34_45_56; __m128i addFilterReg32, secondFilters, thirdFilters; __m128i tmp_0, tmp_1; unsigned int i; ptrdiff_t src_stride, dst_stride; addFilterReg32 = _mm_set1_epi16(32); filtersReg = _mm_loadu_si128((const __m128i *)filter); filtersReg = _mm_srai_epi16(filtersReg, 1); // coeffs 0 1 0 1 2 3 2 3 const __m128i tmp0 = _mm_unpacklo_epi32(filtersReg, filtersReg); // coeffs 4 5 4 5 6 7 6 7 const __m128i tmp1 = _mm_unpackhi_epi32(filtersReg, filtersReg); secondFilters = _mm_unpackhi_epi64(tmp0, tmp0); // coeffs 2 3 2 3 2 3 2 3 thirdFilters = _mm_unpacklo_epi64(tmp1, tmp1); // coeffs 4 5 4 5 4 5 4 5 // multiply the size of the source and destination stride by two src_stride = src_pitch << 1; dst_stride = out_pitch << 1; srcReg2 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 2)); srcReg3 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 3)); srcReg23 = _mm_unpacklo_epi8(srcReg2, srcReg3); __m128i resReg23 = _mm_unpacklo_epi8(srcReg23, _mm_setzero_si128()); srcReg4 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 4)); srcReg34 = _mm_unpacklo_epi8(srcReg3, srcReg4); __m128i resReg34 = _mm_unpacklo_epi8(srcReg34, _mm_setzero_si128()); for (i = output_height; i > 1; i -= 2) { srcReg5 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 5)); srcReg45 = _mm_unpacklo_epi8(srcReg4, srcReg5); srcReg6 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 6)); srcReg56 = _mm_unpacklo_epi8(srcReg5, srcReg6); // multiply 2 adjacent elements with the filter and add the result tmp_0 = _mm_madd_epi16(resReg23, secondFilters); tmp_1 = _mm_madd_epi16(resReg34, secondFilters); resReg23_34 = _mm_packs_epi32(tmp_0, tmp_1); __m128i resReg45 = _mm_unpacklo_epi8(srcReg45, _mm_setzero_si128()); __m128i resReg56 = _mm_unpacklo_epi8(srcReg56, _mm_setzero_si128()); tmp_0 = _mm_madd_epi16(resReg45, thirdFilters); tmp_1 = _mm_madd_epi16(resReg56, thirdFilters); resReg45_56 = _mm_packs_epi32(tmp_0, tmp_1); // add and saturate the results together resReg23_34_45_56 = _mm_adds_epi16(resReg23_34, resReg45_56); // shift by 6 bit each 16 bit resReg23_34_45_56 = _mm_adds_epi16(resReg23_34_45_56, addFilterReg32); resReg23_34_45_56 = _mm_srai_epi16(resReg23_34_45_56, 6); // shrink to 8 bit each 16 bits, the first lane contain the first // convolve result and the second lane contain the second convolve // result resReg23_34_45_56 = _mm_packus_epi16(resReg23_34_45_56, _mm_setzero_si128()); src_ptr += src_stride; *((int *)(output_ptr)) = _mm_cvtsi128_si32(resReg23_34_45_56); *((int *)(output_ptr + out_pitch)) = _mm_cvtsi128_si32(_mm_srli_si128(resReg23_34_45_56, 4)); output_ptr += dst_stride; // save part of the registers for next strides resReg23 = resReg45; resReg34 = resReg56; srcReg4 = srcReg6; } }