/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include "config/aom_dsp_rtcd.h" #include "aom_dsp/aom_filter.h" #include "aom_dsp/x86/convolve.h" #include "aom_dsp/x86/convolve_sse2.h" #include "aom_dsp/x86/convolve_ssse3.h" #include "aom_dsp/x86/mem_sse2.h" #include "aom_dsp/x86/transpose_sse2.h" #include "aom_mem/aom_mem.h" #include "aom_ports/mem.h" #include "aom_ports/emmintrin_compat.h" DECLARE_ALIGNED(32, static const uint8_t, filt_h4[]) = { 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14 }; DECLARE_ALIGNED(32, static const uint8_t, filtd4[]) = { 2, 3, 4, 5, 3, 4, 5, 6, 4, 5, 6, 7, 5, 6, 7, 8, 2, 3, 4, 5, 3, 4, 5, 6, 4, 5, 6, 7, 5, 6, 7, 8, }; static void aom_filter_block1d4_h4_ssse3( const uint8_t *src_ptr, ptrdiff_t src_pixels_per_line, uint8_t *output_ptr, ptrdiff_t output_pitch, uint32_t output_height, const int16_t *filter) { __m128i filtersReg; __m128i addFilterReg32, filt1Reg, firstFilters, srcReg32b1, srcRegFilt32b1_1; unsigned int i; src_ptr -= 3; addFilterReg32 = _mm_set1_epi16(32); filtersReg = _mm_loadu_si128((const __m128i *)filter); filtersReg = _mm_srai_epi16(filtersReg, 1); // converting the 16 bit (short) to 8 bit (byte) and have the same data // in both lanes of 128 bit register. filtersReg = _mm_packs_epi16(filtersReg, filtersReg); firstFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi32(0x5040302u)); filt1Reg = _mm_load_si128((__m128i const *)(filtd4)); for (i = output_height; i > 0; i -= 1) { // load the 2 strides of source srcReg32b1 = _mm_loadu_si128((const __m128i *)src_ptr); // filter the source buffer srcRegFilt32b1_1 = _mm_shuffle_epi8(srcReg32b1, filt1Reg); // multiply 4 adjacent elements with the filter and add the result srcRegFilt32b1_1 = _mm_maddubs_epi16(srcRegFilt32b1_1, firstFilters); srcRegFilt32b1_1 = _mm_hadds_epi16(srcRegFilt32b1_1, _mm_setzero_si128()); // shift by 6 bit each 16 bit srcRegFilt32b1_1 = _mm_adds_epi16(srcRegFilt32b1_1, addFilterReg32); srcRegFilt32b1_1 = _mm_srai_epi16(srcRegFilt32b1_1, 6); // shrink to 8 bit each 16 bits, the first lane contain the first // convolve result and the second lane contain the second convolve result srcRegFilt32b1_1 = _mm_packus_epi16(srcRegFilt32b1_1, _mm_setzero_si128()); src_ptr += src_pixels_per_line; *((int *)(output_ptr)) = _mm_cvtsi128_si32(srcRegFilt32b1_1); output_ptr += output_pitch; } } static void aom_filter_block1d4_v4_ssse3( const uint8_t *src_ptr, ptrdiff_t src_pitch, uint8_t *output_ptr, ptrdiff_t out_pitch, uint32_t output_height, const int16_t *filter) { __m128i filtersReg; __m128i addFilterReg32; __m128i srcReg2, srcReg3, srcReg23, srcReg4, srcReg34, srcReg5, srcReg45, srcReg6, srcReg56; __m128i srcReg23_34_lo, srcReg45_56_lo; __m128i srcReg2345_3456_lo, srcReg2345_3456_hi; __m128i resReglo, resReghi; __m128i firstFilters; unsigned int i; ptrdiff_t src_stride, dst_stride; addFilterReg32 = _mm_set1_epi16(32); filtersReg = _mm_loadu_si128((const __m128i *)filter); // converting the 16 bit (short) to 8 bit (byte) and have the // same data in both lanes of 128 bit register. filtersReg = _mm_srai_epi16(filtersReg, 1); filtersReg = _mm_packs_epi16(filtersReg, filtersReg); firstFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi32(0x5040302u)); // multiple the size of the source and destination stride by two src_stride = src_pitch << 1; dst_stride = out_pitch << 1; srcReg2 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 2)); srcReg3 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 3)); srcReg23 = _mm_unpacklo_epi32(srcReg2, srcReg3); srcReg4 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 4)); // have consecutive loads on the same 256 register srcReg34 = _mm_unpacklo_epi32(srcReg3, srcReg4); srcReg23_34_lo = _mm_unpacklo_epi8(srcReg23, srcReg34); for (i = output_height; i > 1; i -= 2) { srcReg5 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 5)); srcReg45 = _mm_unpacklo_epi32(srcReg4, srcReg5); srcReg6 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 6)); srcReg56 = _mm_unpacklo_epi32(srcReg5, srcReg6); // merge every two consecutive registers srcReg45_56_lo = _mm_unpacklo_epi8(srcReg45, srcReg56); srcReg2345_3456_lo = _mm_unpacklo_epi16(srcReg23_34_lo, srcReg45_56_lo); srcReg2345_3456_hi = _mm_unpackhi_epi16(srcReg23_34_lo, srcReg45_56_lo); // multiply 2 adjacent elements with the filter and add the result resReglo = _mm_maddubs_epi16(srcReg2345_3456_lo, firstFilters); resReghi = _mm_maddubs_epi16(srcReg2345_3456_hi, firstFilters); resReglo = _mm_hadds_epi16(resReglo, _mm_setzero_si128()); resReghi = _mm_hadds_epi16(resReghi, _mm_setzero_si128()); // shift by 6 bit each 16 bit resReglo = _mm_adds_epi16(resReglo, addFilterReg32); resReghi = _mm_adds_epi16(resReghi, addFilterReg32); resReglo = _mm_srai_epi16(resReglo, 6); resReghi = _mm_srai_epi16(resReghi, 6); // shrink to 8 bit each 16 bits, the first lane contain the first // convolve result and the second lane contain the second convolve // result resReglo = _mm_packus_epi16(resReglo, resReglo); resReghi = _mm_packus_epi16(resReghi, resReghi); src_ptr += src_stride; *((int *)(output_ptr)) = _mm_cvtsi128_si32(resReglo); *((int *)(output_ptr + out_pitch)) = _mm_cvtsi128_si32(resReghi); output_ptr += dst_stride; // save part of the registers for next strides srcReg23_34_lo = srcReg45_56_lo; srcReg4 = srcReg6; } } static void aom_filter_block1d8_h4_ssse3( const uint8_t *src_ptr, ptrdiff_t src_pixels_per_line, uint8_t *output_ptr, ptrdiff_t output_pitch, uint32_t output_height, const int16_t *filter) { __m128i filtersReg; __m128i addFilterReg32, filt2Reg, filt3Reg; __m128i secondFilters, thirdFilters; __m128i srcRegFilt32b1_1, srcRegFilt32b2, srcRegFilt32b3; __m128i srcReg32b1; unsigned int i; src_ptr -= 3; addFilterReg32 = _mm_set1_epi16(32); filtersReg = _mm_loadu_si128((const __m128i *)filter); filtersReg = _mm_srai_epi16(filtersReg, 1); // converting the 16 bit (short) to 8 bit (byte) and have the same data // in both lanes of 128 bit register. filtersReg = _mm_packs_epi16(filtersReg, filtersReg); // duplicate only the second 16 bits (third and forth byte) // across 256 bit register secondFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x302u)); // duplicate only the third 16 bits (fifth and sixth byte) // across 256 bit register thirdFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x504u)); filt2Reg = _mm_load_si128((__m128i const *)(filt_h4 + 32)); filt3Reg = _mm_load_si128((__m128i const *)(filt_h4 + 32 * 2)); for (i = output_height; i > 0; i -= 1) { srcReg32b1 = _mm_loadu_si128((const __m128i *)src_ptr); // filter the source buffer srcRegFilt32b3 = _mm_shuffle_epi8(srcReg32b1, filt2Reg); srcRegFilt32b2 = _mm_shuffle_epi8(srcReg32b1, filt3Reg); // multiply 2 adjacent elements with the filter and add the result srcRegFilt32b3 = _mm_maddubs_epi16(srcRegFilt32b3, secondFilters); srcRegFilt32b2 = _mm_maddubs_epi16(srcRegFilt32b2, thirdFilters); srcRegFilt32b1_1 = _mm_adds_epi16(srcRegFilt32b3, srcRegFilt32b2); // shift by 6 bit each 16 bit srcRegFilt32b1_1 = _mm_adds_epi16(srcRegFilt32b1_1, addFilterReg32); srcRegFilt32b1_1 = _mm_srai_epi16(srcRegFilt32b1_1, 6); // shrink to 8 bit each 16 bits srcRegFilt32b1_1 = _mm_packus_epi16(srcRegFilt32b1_1, _mm_setzero_si128()); src_ptr += src_pixels_per_line; _mm_storel_epi64((__m128i *)output_ptr, srcRegFilt32b1_1); output_ptr += output_pitch; } } static void aom_filter_block1d8_v4_ssse3( const uint8_t *src_ptr, ptrdiff_t src_pitch, uint8_t *output_ptr, ptrdiff_t out_pitch, uint32_t output_height, const int16_t *filter) { __m128i filtersReg; __m128i srcReg2, srcReg3, srcReg4, srcReg5, srcReg6; __m128i srcReg23, srcReg34, srcReg45, srcReg56; __m128i resReg23, resReg34, resReg45, resReg56; __m128i resReg23_45, resReg34_56; __m128i addFilterReg32, secondFilters, thirdFilters; unsigned int i; ptrdiff_t src_stride, dst_stride; addFilterReg32 = _mm_set1_epi16(32); filtersReg = _mm_loadu_si128((const __m128i *)filter); // converting the 16 bit (short) to 8 bit (byte) and have the // same data in both lanes of 128 bit register. filtersReg = _mm_srai_epi16(filtersReg, 1); filtersReg = _mm_packs_epi16(filtersReg, filtersReg); // duplicate only the second 16 bits (third and forth byte) // across 128 bit register secondFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x302u)); // duplicate only the third 16 bits (fifth and sixth byte) // across 128 bit register thirdFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x504u)); // multiple the size of the source and destination stride by two src_stride = src_pitch << 1; dst_stride = out_pitch << 1; srcReg2 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 2)); srcReg3 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 3)); srcReg23 = _mm_unpacklo_epi8(srcReg2, srcReg3); srcReg4 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 4)); // have consecutive loads on the same 256 register srcReg34 = _mm_unpacklo_epi8(srcReg3, srcReg4); for (i = output_height; i > 1; i -= 2) { srcReg5 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 5)); srcReg45 = _mm_unpacklo_epi8(srcReg4, srcReg5); srcReg6 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 6)); srcReg56 = _mm_unpacklo_epi8(srcReg5, srcReg6); // multiply 2 adjacent elements with the filter and add the result resReg23 = _mm_maddubs_epi16(srcReg23, secondFilters); resReg34 = _mm_maddubs_epi16(srcReg34, secondFilters); resReg45 = _mm_maddubs_epi16(srcReg45, thirdFilters); resReg56 = _mm_maddubs_epi16(srcReg56, thirdFilters); // add and saturate the results together resReg23_45 = _mm_adds_epi16(resReg23, resReg45); resReg34_56 = _mm_adds_epi16(resReg34, resReg56); // shift by 6 bit each 16 bit resReg23_45 = _mm_adds_epi16(resReg23_45, addFilterReg32); resReg34_56 = _mm_adds_epi16(resReg34_56, addFilterReg32); resReg23_45 = _mm_srai_epi16(resReg23_45, 6); resReg34_56 = _mm_srai_epi16(resReg34_56, 6); // shrink to 8 bit each 16 bits, the first lane contain the first // convolve result and the second lane contain the second convolve // result resReg23_45 = _mm_packus_epi16(resReg23_45, _mm_setzero_si128()); resReg34_56 = _mm_packus_epi16(resReg34_56, _mm_setzero_si128()); src_ptr += src_stride; _mm_storel_epi64((__m128i *)output_ptr, (resReg23_45)); _mm_storel_epi64((__m128i *)(output_ptr + out_pitch), (resReg34_56)); output_ptr += dst_stride; // save part of the registers for next strides srcReg23 = srcReg45; srcReg34 = srcReg56; srcReg4 = srcReg6; } } static void aom_filter_block1d16_h4_ssse3( const uint8_t *src_ptr, ptrdiff_t src_pixels_per_line, uint8_t *output_ptr, ptrdiff_t output_pitch, uint32_t output_height, const int16_t *filter) { __m128i filtersReg; __m128i addFilterReg32, filt2Reg, filt3Reg; __m128i secondFilters, thirdFilters; __m128i srcRegFilt32b1_1, srcRegFilt32b2_1, srcRegFilt32b2, srcRegFilt32b3; __m128i srcReg32b1, srcReg32b2; unsigned int i; src_ptr -= 3; addFilterReg32 = _mm_set1_epi16(32); filtersReg = _mm_loadu_si128((const __m128i *)filter); filtersReg = _mm_srai_epi16(filtersReg, 1); // converting the 16 bit (short) to 8 bit (byte) and have the same data // in both lanes of 128 bit register. filtersReg = _mm_packs_epi16(filtersReg, filtersReg); // duplicate only the second 16 bits (third and forth byte) // across 256 bit register secondFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x302u)); // duplicate only the third 16 bits (fifth and sixth byte) // across 256 bit register thirdFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x504u)); filt2Reg = _mm_load_si128((__m128i const *)(filt_h4 + 32)); filt3Reg = _mm_load_si128((__m128i const *)(filt_h4 + 32 * 2)); for (i = output_height; i > 0; i -= 1) { srcReg32b1 = _mm_loadu_si128((const __m128i *)src_ptr); // filter the source buffer srcRegFilt32b3 = _mm_shuffle_epi8(srcReg32b1, filt2Reg); srcRegFilt32b2 = _mm_shuffle_epi8(srcReg32b1, filt3Reg); // multiply 2 adjacent elements with the filter and add the result srcRegFilt32b3 = _mm_maddubs_epi16(srcRegFilt32b3, secondFilters); srcRegFilt32b2 = _mm_maddubs_epi16(srcRegFilt32b2, thirdFilters); srcRegFilt32b1_1 = _mm_adds_epi16(srcRegFilt32b3, srcRegFilt32b2); // reading stride of the next 16 bytes // (part of it was being read by earlier read) srcReg32b2 = _mm_loadu_si128((const __m128i *)(src_ptr + 8)); // filter the source buffer srcRegFilt32b3 = _mm_shuffle_epi8(srcReg32b2, filt2Reg); srcRegFilt32b2 = _mm_shuffle_epi8(srcReg32b2, filt3Reg); // multiply 2 adjacent elements with the filter and add the result srcRegFilt32b3 = _mm_maddubs_epi16(srcRegFilt32b3, secondFilters); srcRegFilt32b2 = _mm_maddubs_epi16(srcRegFilt32b2, thirdFilters); // add and saturate the results together srcRegFilt32b2_1 = _mm_adds_epi16(srcRegFilt32b3, srcRegFilt32b2); // shift by 6 bit each 16 bit srcRegFilt32b1_1 = _mm_adds_epi16(srcRegFilt32b1_1, addFilterReg32); srcRegFilt32b2_1 = _mm_adds_epi16(srcRegFilt32b2_1, addFilterReg32); srcRegFilt32b1_1 = _mm_srai_epi16(srcRegFilt32b1_1, 6); srcRegFilt32b2_1 = _mm_srai_epi16(srcRegFilt32b2_1, 6); // shrink to 8 bit each 16 bits, the first lane contain the first // convolve result and the second lane contain the second convolve result srcRegFilt32b1_1 = _mm_packus_epi16(srcRegFilt32b1_1, srcRegFilt32b2_1); src_ptr += src_pixels_per_line; _mm_store_si128((__m128i *)output_ptr, srcRegFilt32b1_1); output_ptr += output_pitch; } } static void aom_filter_block1d16_v4_ssse3( const uint8_t *src_ptr, ptrdiff_t src_pitch, uint8_t *output_ptr, ptrdiff_t out_pitch, uint32_t output_height, const int16_t *filter) { __m128i filtersReg; __m128i srcReg2, srcReg3, srcReg4, srcReg5, srcReg6; __m128i srcReg23_lo, srcReg23_hi, srcReg34_lo, srcReg34_hi; __m128i srcReg45_lo, srcReg45_hi, srcReg56_lo, srcReg56_hi; __m128i resReg23_lo, resReg34_lo, resReg45_lo, resReg56_lo; __m128i resReg23_hi, resReg34_hi, resReg45_hi, resReg56_hi; __m128i resReg23_45_lo, resReg34_56_lo, resReg23_45_hi, resReg34_56_hi; __m128i resReg23_45, resReg34_56; __m128i addFilterReg32, secondFilters, thirdFilters; unsigned int i; ptrdiff_t src_stride, dst_stride; addFilterReg32 = _mm_set1_epi16(32); filtersReg = _mm_loadu_si128((const __m128i *)filter); // converting the 16 bit (short) to 8 bit (byte) and have the // same data in both lanes of 128 bit register. filtersReg = _mm_srai_epi16(filtersReg, 1); filtersReg = _mm_packs_epi16(filtersReg, filtersReg); // duplicate only the second 16 bits (third and forth byte) // across 128 bit register secondFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x302u)); // duplicate only the third 16 bits (fifth and sixth byte) // across 128 bit register thirdFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x504u)); // multiple the size of the source and destination stride by two src_stride = src_pitch << 1; dst_stride = out_pitch << 1; srcReg2 = _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 2)); srcReg3 = _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 3)); srcReg23_lo = _mm_unpacklo_epi8(srcReg2, srcReg3); srcReg23_hi = _mm_unpackhi_epi8(srcReg2, srcReg3); srcReg4 = _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 4)); // have consecutive loads on the same 256 register srcReg34_lo = _mm_unpacklo_epi8(srcReg3, srcReg4); srcReg34_hi = _mm_unpackhi_epi8(srcReg3, srcReg4); for (i = output_height; i > 1; i -= 2) { srcReg5 = _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 5)); srcReg45_lo = _mm_unpacklo_epi8(srcReg4, srcReg5); srcReg45_hi = _mm_unpackhi_epi8(srcReg4, srcReg5); srcReg6 = _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 6)); srcReg56_lo = _mm_unpacklo_epi8(srcReg5, srcReg6); srcReg56_hi = _mm_unpackhi_epi8(srcReg5, srcReg6); // multiply 2 adjacent elements with the filter and add the result resReg23_lo = _mm_maddubs_epi16(srcReg23_lo, secondFilters); resReg34_lo = _mm_maddubs_epi16(srcReg34_lo, secondFilters); resReg45_lo = _mm_maddubs_epi16(srcReg45_lo, thirdFilters); resReg56_lo = _mm_maddubs_epi16(srcReg56_lo, thirdFilters); // add and saturate the results together resReg23_45_lo = _mm_adds_epi16(resReg23_lo, resReg45_lo); resReg34_56_lo = _mm_adds_epi16(resReg34_lo, resReg56_lo); // multiply 2 adjacent elements with the filter and add the result resReg23_hi = _mm_maddubs_epi16(srcReg23_hi, secondFilters); resReg34_hi = _mm_maddubs_epi16(srcReg34_hi, secondFilters); resReg45_hi = _mm_maddubs_epi16(srcReg45_hi, thirdFilters); resReg56_hi = _mm_maddubs_epi16(srcReg56_hi, thirdFilters); // add and saturate the results together resReg23_45_hi = _mm_adds_epi16(resReg23_hi, resReg45_hi); resReg34_56_hi = _mm_adds_epi16(resReg34_hi, resReg56_hi); // shift by 6 bit each 16 bit resReg23_45_lo = _mm_adds_epi16(resReg23_45_lo, addFilterReg32); resReg34_56_lo = _mm_adds_epi16(resReg34_56_lo, addFilterReg32); resReg23_45_hi = _mm_adds_epi16(resReg23_45_hi, addFilterReg32); resReg34_56_hi = _mm_adds_epi16(resReg34_56_hi, addFilterReg32); resReg23_45_lo = _mm_srai_epi16(resReg23_45_lo, 6); resReg34_56_lo = _mm_srai_epi16(resReg34_56_lo, 6); resReg23_45_hi = _mm_srai_epi16(resReg23_45_hi, 6); resReg34_56_hi = _mm_srai_epi16(resReg34_56_hi, 6); // shrink to 8 bit each 16 bits, the first lane contain the first // convolve result and the second lane contain the second convolve // result resReg23_45 = _mm_packus_epi16(resReg23_45_lo, resReg23_45_hi); resReg34_56 = _mm_packus_epi16(resReg34_56_lo, resReg34_56_hi); src_ptr += src_stride; _mm_store_si128((__m128i *)output_ptr, (resReg23_45)); _mm_store_si128((__m128i *)(output_ptr + out_pitch), (resReg34_56)); output_ptr += dst_stride; // save part of the registers for next strides srcReg23_lo = srcReg45_lo; srcReg34_lo = srcReg56_lo; srcReg23_hi = srcReg45_hi; srcReg34_hi = srcReg56_hi; srcReg4 = srcReg6; } } static INLINE __m128i shuffle_filter_convolve8_8_ssse3( const __m128i *const s, const int16_t *const filter) { __m128i f[4]; shuffle_filter_ssse3(filter, f); return convolve8_8_ssse3(s, f); } static void filter_horiz_w8_ssse3(const uint8_t *const src, const ptrdiff_t src_stride, uint8_t *const dst, const int16_t *const x_filter) { __m128i s[8], ss[4], temp; load_8bit_8x8(src, src_stride, s); // 00 01 10 11 20 21 30 31 40 41 50 51 60 61 70 71 // 02 03 12 13 22 23 32 33 42 43 52 53 62 63 72 73 // 04 05 14 15 24 25 34 35 44 45 54 55 64 65 74 75 // 06 07 16 17 26 27 36 37 46 47 56 57 66 67 76 77 transpose_16bit_4x8(s, ss); temp = shuffle_filter_convolve8_8_ssse3(ss, x_filter); // shrink to 8 bit each 16 bits temp = _mm_packus_epi16(temp, temp); // save only 8 bytes convolve result _mm_storel_epi64((__m128i *)dst, temp); } static void transpose8x8_to_dst(const uint8_t *const src, const ptrdiff_t src_stride, uint8_t *const dst, const ptrdiff_t dst_stride) { __m128i s[8]; load_8bit_8x8(src, src_stride, s); transpose_8bit_8x8(s, s); store_8bit_8x8(s, dst, dst_stride); } static void scaledconvolve_horiz_w8(const uint8_t *src, const ptrdiff_t src_stride, uint8_t *dst, const ptrdiff_t dst_stride, const InterpKernel *const x_filters, const int x0_q4, const int x_step_q4, const int w, const int h) { DECLARE_ALIGNED(16, uint8_t, temp[8 * 8]); int x, y, z; src -= SUBPEL_TAPS / 2 - 1; // This function processes 8x8 areas. The intermediate height is not always // a multiple of 8, so force it to be a multiple of 8 here. y = h + (8 - (h & 0x7)); do { int x_q4 = x0_q4; for (x = 0; x < w; x += 8) { // process 8 src_x steps for (z = 0; z < 8; ++z) { const uint8_t *const src_x = &src[x_q4 >> SUBPEL_BITS]; const int16_t *const x_filter = x_filters[x_q4 & SUBPEL_MASK]; if (x_q4 & SUBPEL_MASK) { filter_horiz_w8_ssse3(src_x, src_stride, temp + (z * 8), x_filter); } else { int i; for (i = 0; i < 8; ++i) { temp[z * 8 + i] = src_x[i * src_stride + 3]; } } x_q4 += x_step_q4; } // transpose the 8x8 filters values back to dst transpose8x8_to_dst(temp, 8, dst + x, dst_stride); } src += src_stride * 8; dst += dst_stride * 8; } while (y -= 8); } static void filter_horiz_w4_ssse3(const uint8_t *const src, const ptrdiff_t src_stride, uint8_t *const dst, const int16_t *const filter) { __m128i s[4]; __m128i temp; load_8bit_8x4(src, src_stride, s); transpose_16bit_4x4(s, s); temp = shuffle_filter_convolve8_8_ssse3(s, filter); // shrink to 8 bit each 16 bits temp = _mm_packus_epi16(temp, temp); // save only 4 bytes *(int *)dst = _mm_cvtsi128_si32(temp); } static void transpose4x4_to_dst(const uint8_t *const src, const ptrdiff_t src_stride, uint8_t *const dst, const ptrdiff_t dst_stride) { __m128i s[4]; load_8bit_4x4(src, src_stride, s); s[0] = transpose_8bit_4x4(s); s[1] = _mm_srli_si128(s[0], 4); s[2] = _mm_srli_si128(s[0], 8); s[3] = _mm_srli_si128(s[0], 12); store_8bit_4x4(s, dst, dst_stride); } static void scaledconvolve_horiz_w4(const uint8_t *src, const ptrdiff_t src_stride, uint8_t *dst, const ptrdiff_t dst_stride, const InterpKernel *const x_filters, const int x0_q4, const int x_step_q4, const int w, const int h) { DECLARE_ALIGNED(16, uint8_t, temp[4 * 4]); int x, y, z; src -= SUBPEL_TAPS / 2 - 1; for (y = 0; y < h; y += 4) { int x_q4 = x0_q4; for (x = 0; x < w; x += 4) { // process 4 src_x steps for (z = 0; z < 4; ++z) { const uint8_t *const src_x = &src[x_q4 >> SUBPEL_BITS]; const int16_t *const x_filter = x_filters[x_q4 & SUBPEL_MASK]; if (x_q4 & SUBPEL_MASK) { filter_horiz_w4_ssse3(src_x, src_stride, temp + (z * 4), x_filter); } else { int i; for (i = 0; i < 4; ++i) { temp[z * 4 + i] = src_x[i * src_stride + 3]; } } x_q4 += x_step_q4; } // transpose the 4x4 filters values back to dst transpose4x4_to_dst(temp, 4, dst + x, dst_stride); } src += src_stride * 4; dst += dst_stride * 4; } } static __m128i filter_vert_kernel(const __m128i *const s, const int16_t *const filter) { __m128i ss[4]; __m128i temp; // 00 10 01 11 02 12 03 13 ss[0] = _mm_unpacklo_epi8(s[0], s[1]); // 20 30 21 31 22 32 23 33 ss[1] = _mm_unpacklo_epi8(s[2], s[3]); // 40 50 41 51 42 52 43 53 ss[2] = _mm_unpacklo_epi8(s[4], s[5]); // 60 70 61 71 62 72 63 73 ss[3] = _mm_unpacklo_epi8(s[6], s[7]); temp = shuffle_filter_convolve8_8_ssse3(ss, filter); // shrink to 8 bit each 16 bits return _mm_packus_epi16(temp, temp); } static void filter_vert_w4_ssse3(const uint8_t *const src, const ptrdiff_t src_stride, uint8_t *const dst, const int16_t *const filter) { __m128i s[8]; __m128i temp; load_8bit_4x8(src, src_stride, s); temp = filter_vert_kernel(s, filter); // save only 4 bytes *(int *)dst = _mm_cvtsi128_si32(temp); } static void scaledconvolve_vert_w4( const uint8_t *src, const ptrdiff_t src_stride, uint8_t *const dst, const ptrdiff_t dst_stride, const InterpKernel *const y_filters, const int y0_q4, const int y_step_q4, const int w, const int h) { int y; int y_q4 = y0_q4; src -= src_stride * (SUBPEL_TAPS / 2 - 1); for (y = 0; y < h; ++y) { const unsigned char *src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride]; const int16_t *const y_filter = y_filters[y_q4 & SUBPEL_MASK]; if (y_q4 & SUBPEL_MASK) { filter_vert_w4_ssse3(src_y, src_stride, &dst[y * dst_stride], y_filter); } else { memcpy(&dst[y * dst_stride], &src_y[3 * src_stride], w); } y_q4 += y_step_q4; } } static void filter_vert_w8_ssse3(const uint8_t *const src, const ptrdiff_t src_stride, uint8_t *const dst, const int16_t *const filter) { __m128i s[8], temp; load_8bit_8x8(src, src_stride, s); temp = filter_vert_kernel(s, filter); // save only 8 bytes convolve result _mm_storel_epi64((__m128i *)dst, temp); } static void scaledconvolve_vert_w8( const uint8_t *src, const ptrdiff_t src_stride, uint8_t *const dst, const ptrdiff_t dst_stride, const InterpKernel *const y_filters, const int y0_q4, const int y_step_q4, const int w, const int h) { int y; int y_q4 = y0_q4; src -= src_stride * (SUBPEL_TAPS / 2 - 1); for (y = 0; y < h; ++y) { const unsigned char *src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride]; const int16_t *const y_filter = y_filters[y_q4 & SUBPEL_MASK]; if (y_q4 & SUBPEL_MASK) { filter_vert_w8_ssse3(src_y, src_stride, &dst[y * dst_stride], y_filter); } else { memcpy(&dst[y * dst_stride], &src_y[3 * src_stride], w); } y_q4 += y_step_q4; } } static void filter_vert_w16_ssse3(const uint8_t *src, const ptrdiff_t src_stride, uint8_t *const dst, const int16_t *const filter, const int w) { int i; __m128i f[4]; shuffle_filter_ssse3(filter, f); for (i = 0; i < w; i += 16) { __m128i s[8], s_lo[4], s_hi[4], temp_lo, temp_hi; loadu_8bit_16x8(src, src_stride, s); // merge the result together s_lo[0] = _mm_unpacklo_epi8(s[0], s[1]); s_hi[0] = _mm_unpackhi_epi8(s[0], s[1]); s_lo[1] = _mm_unpacklo_epi8(s[2], s[3]); s_hi[1] = _mm_unpackhi_epi8(s[2], s[3]); s_lo[2] = _mm_unpacklo_epi8(s[4], s[5]); s_hi[2] = _mm_unpackhi_epi8(s[4], s[5]); s_lo[3] = _mm_unpacklo_epi8(s[6], s[7]); s_hi[3] = _mm_unpackhi_epi8(s[6], s[7]); temp_lo = convolve8_8_ssse3(s_lo, f); temp_hi = convolve8_8_ssse3(s_hi, f); // shrink to 8 bit each 16 bits, the first lane contain the first convolve // result and the second lane contain the second convolve result temp_hi = _mm_packus_epi16(temp_lo, temp_hi); src += 16; // save 16 bytes convolve result _mm_store_si128((__m128i *)&dst[i], temp_hi); } } static void scaledconvolve_vert_w16( const uint8_t *src, const ptrdiff_t src_stride, uint8_t *const dst, const ptrdiff_t dst_stride, const InterpKernel *const y_filters, const int y0_q4, const int y_step_q4, const int w, const int h) { int y; int y_q4 = y0_q4; src -= src_stride * (SUBPEL_TAPS / 2 - 1); for (y = 0; y < h; ++y) { const unsigned char *src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride]; const int16_t *const y_filter = y_filters[y_q4 & SUBPEL_MASK]; if (y_q4 & SUBPEL_MASK) { filter_vert_w16_ssse3(src_y, src_stride, &dst[y * dst_stride], y_filter, w); } else { memcpy(&dst[y * dst_stride], &src_y[3 * src_stride], w); } y_q4 += y_step_q4; } } void aom_scaled_2d_ssse3(const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst, ptrdiff_t dst_stride, const InterpKernel *filter, int x0_q4, int x_step_q4, int y0_q4, int y_step_q4, int w, int h) { // Note: Fixed size intermediate buffer, temp, places limits on parameters. // 2d filtering proceeds in 2 steps: // (1) Interpolate horizontally into an intermediate buffer, temp. // (2) Interpolate temp vertically to derive the sub-pixel result. // Deriving the maximum number of rows in the temp buffer (135): // --Smallest scaling factor is x1/2 ==> y_step_q4 = 32 (Normative). // --Largest block size is 64x64 pixels. // --64 rows in the downscaled frame span a distance of (64 - 1) * 32 in the // original frame (in 1/16th pixel units). // --Must round-up because block may be located at sub-pixel position. // --Require an additional SUBPEL_TAPS rows for the 8-tap filter tails. // --((64 - 1) * 32 + 15) >> 4 + 8 = 135. // --Require an additional 8 rows for the horiz_w8 transpose tail. // When calling in frame scaling function, the smallest scaling factor is x1/4 // ==> y_step_q4 = 64. Since w and h are at most 16, the temp buffer is still // big enough. DECLARE_ALIGNED(16, uint8_t, temp[(135 + 8) * 64]); const int intermediate_height = (((h - 1) * y_step_q4 + y0_q4) >> SUBPEL_BITS) + SUBPEL_TAPS; assert(w <= 64); assert(h <= 64); assert(y_step_q4 <= 32 || (y_step_q4 <= 64 && h <= 32)); assert(x_step_q4 <= 64); if (w >= 8) { scaledconvolve_horiz_w8(src - src_stride * (SUBPEL_TAPS / 2 - 1), src_stride, temp, 64, filter, x0_q4, x_step_q4, w, intermediate_height); } else { scaledconvolve_horiz_w4(src - src_stride * (SUBPEL_TAPS / 2 - 1), src_stride, temp, 64, filter, x0_q4, x_step_q4, w, intermediate_height); } if (w >= 16) { scaledconvolve_vert_w16(temp + 64 * (SUBPEL_TAPS / 2 - 1), 64, dst, dst_stride, filter, y0_q4, y_step_q4, w, h); } else if (w == 8) { scaledconvolve_vert_w8(temp + 64 * (SUBPEL_TAPS / 2 - 1), 64, dst, dst_stride, filter, y0_q4, y_step_q4, w, h); } else { scaledconvolve_vert_w4(temp + 64 * (SUBPEL_TAPS / 2 - 1), 64, dst, dst_stride, filter, y0_q4, y_step_q4, w, h); } } filter8_1dfunction aom_filter_block1d16_v8_ssse3; filter8_1dfunction aom_filter_block1d16_h8_ssse3; filter8_1dfunction aom_filter_block1d8_v8_ssse3; filter8_1dfunction aom_filter_block1d8_h8_ssse3; filter8_1dfunction aom_filter_block1d4_v8_ssse3; filter8_1dfunction aom_filter_block1d4_h8_ssse3; filter8_1dfunction aom_filter_block1d16_v2_ssse3; filter8_1dfunction aom_filter_block1d16_h2_ssse3; filter8_1dfunction aom_filter_block1d8_v2_ssse3; filter8_1dfunction aom_filter_block1d8_h2_ssse3; filter8_1dfunction aom_filter_block1d4_v2_ssse3; filter8_1dfunction aom_filter_block1d4_h2_ssse3; // void aom_convolve8_horiz_ssse3(const uint8_t *src, ptrdiff_t src_stride, // uint8_t *dst, ptrdiff_t dst_stride, // const int16_t *filter_x, int x_step_q4, // const int16_t *filter_y, int y_step_q4, // int w, int h); // void aom_convolve8_vert_ssse3(const uint8_t *src, ptrdiff_t src_stride, // uint8_t *dst, ptrdiff_t dst_stride, // const int16_t *filter_x, int x_step_q4, // const int16_t *filter_y, int y_step_q4, // int w, int h); FUN_CONV_1D(horiz, x_step_q4, filter_x, h, src, , ssse3) FUN_CONV_1D(vert, y_step_q4, filter_y, v, src - src_stride * 3, , ssse3)