/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include "config/aom_dsp_rtcd.h" #include "aom/aom_integer.h" #include "aom_dsp/x86/bitdepth_conversion_avx2.h" #include "aom_ports/mem.h" static INLINE void sign_extend_16bit_to_32bit_avx2(__m256i in, __m256i zero, __m256i *out_lo, __m256i *out_hi) { const __m256i sign_bits = _mm256_cmpgt_epi16(zero, in); *out_lo = _mm256_unpacklo_epi16(in, sign_bits); *out_hi = _mm256_unpackhi_epi16(in, sign_bits); } static void hadamard_col8x2_avx2(__m256i *in, int iter) { __m256i a0 = in[0]; __m256i a1 = in[1]; __m256i a2 = in[2]; __m256i a3 = in[3]; __m256i a4 = in[4]; __m256i a5 = in[5]; __m256i a6 = in[6]; __m256i a7 = in[7]; __m256i b0 = _mm256_add_epi16(a0, a1); __m256i b1 = _mm256_sub_epi16(a0, a1); __m256i b2 = _mm256_add_epi16(a2, a3); __m256i b3 = _mm256_sub_epi16(a2, a3); __m256i b4 = _mm256_add_epi16(a4, a5); __m256i b5 = _mm256_sub_epi16(a4, a5); __m256i b6 = _mm256_add_epi16(a6, a7); __m256i b7 = _mm256_sub_epi16(a6, a7); a0 = _mm256_add_epi16(b0, b2); a1 = _mm256_add_epi16(b1, b3); a2 = _mm256_sub_epi16(b0, b2); a3 = _mm256_sub_epi16(b1, b3); a4 = _mm256_add_epi16(b4, b6); a5 = _mm256_add_epi16(b5, b7); a6 = _mm256_sub_epi16(b4, b6); a7 = _mm256_sub_epi16(b5, b7); if (iter == 0) { b0 = _mm256_add_epi16(a0, a4); b7 = _mm256_add_epi16(a1, a5); b3 = _mm256_add_epi16(a2, a6); b4 = _mm256_add_epi16(a3, a7); b2 = _mm256_sub_epi16(a0, a4); b6 = _mm256_sub_epi16(a1, a5); b1 = _mm256_sub_epi16(a2, a6); b5 = _mm256_sub_epi16(a3, a7); a0 = _mm256_unpacklo_epi16(b0, b1); a1 = _mm256_unpacklo_epi16(b2, b3); a2 = _mm256_unpackhi_epi16(b0, b1); a3 = _mm256_unpackhi_epi16(b2, b3); a4 = _mm256_unpacklo_epi16(b4, b5); a5 = _mm256_unpacklo_epi16(b6, b7); a6 = _mm256_unpackhi_epi16(b4, b5); a7 = _mm256_unpackhi_epi16(b6, b7); b0 = _mm256_unpacklo_epi32(a0, a1); b1 = _mm256_unpacklo_epi32(a4, a5); b2 = _mm256_unpackhi_epi32(a0, a1); b3 = _mm256_unpackhi_epi32(a4, a5); b4 = _mm256_unpacklo_epi32(a2, a3); b5 = _mm256_unpacklo_epi32(a6, a7); b6 = _mm256_unpackhi_epi32(a2, a3); b7 = _mm256_unpackhi_epi32(a6, a7); in[0] = _mm256_unpacklo_epi64(b0, b1); in[1] = _mm256_unpackhi_epi64(b0, b1); in[2] = _mm256_unpacklo_epi64(b2, b3); in[3] = _mm256_unpackhi_epi64(b2, b3); in[4] = _mm256_unpacklo_epi64(b4, b5); in[5] = _mm256_unpackhi_epi64(b4, b5); in[6] = _mm256_unpacklo_epi64(b6, b7); in[7] = _mm256_unpackhi_epi64(b6, b7); } else { in[0] = _mm256_add_epi16(a0, a4); in[7] = _mm256_add_epi16(a1, a5); in[3] = _mm256_add_epi16(a2, a6); in[4] = _mm256_add_epi16(a3, a7); in[2] = _mm256_sub_epi16(a0, a4); in[6] = _mm256_sub_epi16(a1, a5); in[1] = _mm256_sub_epi16(a2, a6); in[5] = _mm256_sub_epi16(a3, a7); } } void aom_hadamard_lp_8x8_dual_avx2(const int16_t *src_diff, ptrdiff_t src_stride, int16_t *coeff) { __m256i src[8]; src[0] = _mm256_loadu_si256((const __m256i *)src_diff); src[1] = _mm256_loadu_si256((const __m256i *)(src_diff += src_stride)); src[2] = _mm256_loadu_si256((const __m256i *)(src_diff += src_stride)); src[3] = _mm256_loadu_si256((const __m256i *)(src_diff += src_stride)); src[4] = _mm256_loadu_si256((const __m256i *)(src_diff += src_stride)); src[5] = _mm256_loadu_si256((const __m256i *)(src_diff += src_stride)); src[6] = _mm256_loadu_si256((const __m256i *)(src_diff += src_stride)); src[7] = _mm256_loadu_si256((const __m256i *)(src_diff + src_stride)); hadamard_col8x2_avx2(src, 0); hadamard_col8x2_avx2(src, 1); _mm256_storeu_si256((__m256i *)coeff, _mm256_permute2x128_si256(src[0], src[1], 0x20)); coeff += 16; _mm256_storeu_si256((__m256i *)coeff, _mm256_permute2x128_si256(src[2], src[3], 0x20)); coeff += 16; _mm256_storeu_si256((__m256i *)coeff, _mm256_permute2x128_si256(src[4], src[5], 0x20)); coeff += 16; _mm256_storeu_si256((__m256i *)coeff, _mm256_permute2x128_si256(src[6], src[7], 0x20)); coeff += 16; _mm256_storeu_si256((__m256i *)coeff, _mm256_permute2x128_si256(src[0], src[1], 0x31)); coeff += 16; _mm256_storeu_si256((__m256i *)coeff, _mm256_permute2x128_si256(src[2], src[3], 0x31)); coeff += 16; _mm256_storeu_si256((__m256i *)coeff, _mm256_permute2x128_si256(src[4], src[5], 0x31)); coeff += 16; _mm256_storeu_si256((__m256i *)coeff, _mm256_permute2x128_si256(src[6], src[7], 0x31)); } static INLINE void hadamard_16x16_avx2(const int16_t *src_diff, ptrdiff_t src_stride, tran_low_t *coeff, int is_final) { DECLARE_ALIGNED(32, int16_t, temp_coeff[16 * 16]); int16_t *t_coeff = temp_coeff; int16_t *coeff16 = (int16_t *)coeff; int idx; for (idx = 0; idx < 2; ++idx) { const int16_t *src_ptr = src_diff + idx * 8 * src_stride; aom_hadamard_lp_8x8_dual_avx2(src_ptr, src_stride, t_coeff + (idx * 64 * 2)); } for (idx = 0; idx < 64; idx += 16) { const __m256i coeff0 = _mm256_loadu_si256((const __m256i *)t_coeff); const __m256i coeff1 = _mm256_loadu_si256((const __m256i *)(t_coeff + 64)); const __m256i coeff2 = _mm256_loadu_si256((const __m256i *)(t_coeff + 128)); const __m256i coeff3 = _mm256_loadu_si256((const __m256i *)(t_coeff + 192)); __m256i b0 = _mm256_add_epi16(coeff0, coeff1); __m256i b1 = _mm256_sub_epi16(coeff0, coeff1); __m256i b2 = _mm256_add_epi16(coeff2, coeff3); __m256i b3 = _mm256_sub_epi16(coeff2, coeff3); b0 = _mm256_srai_epi16(b0, 1); b1 = _mm256_srai_epi16(b1, 1); b2 = _mm256_srai_epi16(b2, 1); b3 = _mm256_srai_epi16(b3, 1); if (is_final) { store_tran_low(_mm256_add_epi16(b0, b2), coeff); store_tran_low(_mm256_add_epi16(b1, b3), coeff + 64); store_tran_low(_mm256_sub_epi16(b0, b2), coeff + 128); store_tran_low(_mm256_sub_epi16(b1, b3), coeff + 192); coeff += 16; } else { _mm256_storeu_si256((__m256i *)coeff16, _mm256_add_epi16(b0, b2)); _mm256_storeu_si256((__m256i *)(coeff16 + 64), _mm256_add_epi16(b1, b3)); _mm256_storeu_si256((__m256i *)(coeff16 + 128), _mm256_sub_epi16(b0, b2)); _mm256_storeu_si256((__m256i *)(coeff16 + 192), _mm256_sub_epi16(b1, b3)); coeff16 += 16; } t_coeff += 16; } } void aom_hadamard_16x16_avx2(const int16_t *src_diff, ptrdiff_t src_stride, tran_low_t *coeff) { hadamard_16x16_avx2(src_diff, src_stride, coeff, 1); } void aom_hadamard_lp_16x16_avx2(const int16_t *src_diff, ptrdiff_t src_stride, int16_t *coeff) { int16_t *t_coeff = coeff; for (int idx = 0; idx < 2; ++idx) { const int16_t *src_ptr = src_diff + idx * 8 * src_stride; aom_hadamard_lp_8x8_dual_avx2(src_ptr, src_stride, t_coeff + (idx * 64 * 2)); } for (int idx = 0; idx < 64; idx += 16) { const __m256i coeff0 = _mm256_loadu_si256((const __m256i *)t_coeff); const __m256i coeff1 = _mm256_loadu_si256((const __m256i *)(t_coeff + 64)); const __m256i coeff2 = _mm256_loadu_si256((const __m256i *)(t_coeff + 128)); const __m256i coeff3 = _mm256_loadu_si256((const __m256i *)(t_coeff + 192)); __m256i b0 = _mm256_add_epi16(coeff0, coeff1); __m256i b1 = _mm256_sub_epi16(coeff0, coeff1); __m256i b2 = _mm256_add_epi16(coeff2, coeff3); __m256i b3 = _mm256_sub_epi16(coeff2, coeff3); b0 = _mm256_srai_epi16(b0, 1); b1 = _mm256_srai_epi16(b1, 1); b2 = _mm256_srai_epi16(b2, 1); b3 = _mm256_srai_epi16(b3, 1); _mm256_storeu_si256((__m256i *)coeff, _mm256_add_epi16(b0, b2)); _mm256_storeu_si256((__m256i *)(coeff + 64), _mm256_add_epi16(b1, b3)); _mm256_storeu_si256((__m256i *)(coeff + 128), _mm256_sub_epi16(b0, b2)); _mm256_storeu_si256((__m256i *)(coeff + 192), _mm256_sub_epi16(b1, b3)); coeff += 16; t_coeff += 16; } } void aom_hadamard_32x32_avx2(const int16_t *src_diff, ptrdiff_t src_stride, tran_low_t *coeff) { // For high bitdepths, it is unnecessary to store_tran_low // (mult/unpack/store), then load_tran_low (load/pack) the same memory in the // next stage. Output to an intermediate buffer first, then store_tran_low() // in the final stage. DECLARE_ALIGNED(32, int16_t, temp_coeff[32 * 32]); int16_t *t_coeff = temp_coeff; int idx; __m256i coeff0_lo, coeff1_lo, coeff2_lo, coeff3_lo, b0_lo, b1_lo, b2_lo, b3_lo; __m256i coeff0_hi, coeff1_hi, coeff2_hi, coeff3_hi, b0_hi, b1_hi, b2_hi, b3_hi; __m256i b0, b1, b2, b3; const __m256i zero = _mm256_setzero_si256(); for (idx = 0; idx < 4; ++idx) { // src_diff: 9 bit, dynamic range [-255, 255] const int16_t *src_ptr = src_diff + (idx >> 1) * 16 * src_stride + (idx & 0x01) * 16; hadamard_16x16_avx2(src_ptr, src_stride, (tran_low_t *)(t_coeff + idx * 256), 0); } for (idx = 0; idx < 256; idx += 16) { const __m256i coeff0 = _mm256_loadu_si256((const __m256i *)t_coeff); const __m256i coeff1 = _mm256_loadu_si256((const __m256i *)(t_coeff + 256)); const __m256i coeff2 = _mm256_loadu_si256((const __m256i *)(t_coeff + 512)); const __m256i coeff3 = _mm256_loadu_si256((const __m256i *)(t_coeff + 768)); // Sign extend 16 bit to 32 bit. sign_extend_16bit_to_32bit_avx2(coeff0, zero, &coeff0_lo, &coeff0_hi); sign_extend_16bit_to_32bit_avx2(coeff1, zero, &coeff1_lo, &coeff1_hi); sign_extend_16bit_to_32bit_avx2(coeff2, zero, &coeff2_lo, &coeff2_hi); sign_extend_16bit_to_32bit_avx2(coeff3, zero, &coeff3_lo, &coeff3_hi); b0_lo = _mm256_add_epi32(coeff0_lo, coeff1_lo); b0_hi = _mm256_add_epi32(coeff0_hi, coeff1_hi); b1_lo = _mm256_sub_epi32(coeff0_lo, coeff1_lo); b1_hi = _mm256_sub_epi32(coeff0_hi, coeff1_hi); b2_lo = _mm256_add_epi32(coeff2_lo, coeff3_lo); b2_hi = _mm256_add_epi32(coeff2_hi, coeff3_hi); b3_lo = _mm256_sub_epi32(coeff2_lo, coeff3_lo); b3_hi = _mm256_sub_epi32(coeff2_hi, coeff3_hi); b0_lo = _mm256_srai_epi32(b0_lo, 2); b1_lo = _mm256_srai_epi32(b1_lo, 2); b2_lo = _mm256_srai_epi32(b2_lo, 2); b3_lo = _mm256_srai_epi32(b3_lo, 2); b0_hi = _mm256_srai_epi32(b0_hi, 2); b1_hi = _mm256_srai_epi32(b1_hi, 2); b2_hi = _mm256_srai_epi32(b2_hi, 2); b3_hi = _mm256_srai_epi32(b3_hi, 2); b0 = _mm256_packs_epi32(b0_lo, b0_hi); b1 = _mm256_packs_epi32(b1_lo, b1_hi); b2 = _mm256_packs_epi32(b2_lo, b2_hi); b3 = _mm256_packs_epi32(b3_lo, b3_hi); store_tran_low(_mm256_add_epi16(b0, b2), coeff); store_tran_low(_mm256_add_epi16(b1, b3), coeff + 256); store_tran_low(_mm256_sub_epi16(b0, b2), coeff + 512); store_tran_low(_mm256_sub_epi16(b1, b3), coeff + 768); coeff += 16; t_coeff += 16; } } #if CONFIG_AV1_HIGHBITDEPTH static void highbd_hadamard_col8_avx2(__m256i *in, int iter) { __m256i a0 = in[0]; __m256i a1 = in[1]; __m256i a2 = in[2]; __m256i a3 = in[3]; __m256i a4 = in[4]; __m256i a5 = in[5]; __m256i a6 = in[6]; __m256i a7 = in[7]; __m256i b0 = _mm256_add_epi32(a0, a1); __m256i b1 = _mm256_sub_epi32(a0, a1); __m256i b2 = _mm256_add_epi32(a2, a3); __m256i b3 = _mm256_sub_epi32(a2, a3); __m256i b4 = _mm256_add_epi32(a4, a5); __m256i b5 = _mm256_sub_epi32(a4, a5); __m256i b6 = _mm256_add_epi32(a6, a7); __m256i b7 = _mm256_sub_epi32(a6, a7); a0 = _mm256_add_epi32(b0, b2); a1 = _mm256_add_epi32(b1, b3); a2 = _mm256_sub_epi32(b0, b2); a3 = _mm256_sub_epi32(b1, b3); a4 = _mm256_add_epi32(b4, b6); a5 = _mm256_add_epi32(b5, b7); a6 = _mm256_sub_epi32(b4, b6); a7 = _mm256_sub_epi32(b5, b7); if (iter == 0) { b0 = _mm256_add_epi32(a0, a4); b7 = _mm256_add_epi32(a1, a5); b3 = _mm256_add_epi32(a2, a6); b4 = _mm256_add_epi32(a3, a7); b2 = _mm256_sub_epi32(a0, a4); b6 = _mm256_sub_epi32(a1, a5); b1 = _mm256_sub_epi32(a2, a6); b5 = _mm256_sub_epi32(a3, a7); a0 = _mm256_unpacklo_epi32(b0, b1); a1 = _mm256_unpacklo_epi32(b2, b3); a2 = _mm256_unpackhi_epi32(b0, b1); a3 = _mm256_unpackhi_epi32(b2, b3); a4 = _mm256_unpacklo_epi32(b4, b5); a5 = _mm256_unpacklo_epi32(b6, b7); a6 = _mm256_unpackhi_epi32(b4, b5); a7 = _mm256_unpackhi_epi32(b6, b7); b0 = _mm256_unpacklo_epi64(a0, a1); b1 = _mm256_unpacklo_epi64(a4, a5); b2 = _mm256_unpackhi_epi64(a0, a1); b3 = _mm256_unpackhi_epi64(a4, a5); b4 = _mm256_unpacklo_epi64(a2, a3); b5 = _mm256_unpacklo_epi64(a6, a7); b6 = _mm256_unpackhi_epi64(a2, a3); b7 = _mm256_unpackhi_epi64(a6, a7); in[0] = _mm256_permute2x128_si256(b0, b1, 0x20); in[1] = _mm256_permute2x128_si256(b0, b1, 0x31); in[2] = _mm256_permute2x128_si256(b2, b3, 0x20); in[3] = _mm256_permute2x128_si256(b2, b3, 0x31); in[4] = _mm256_permute2x128_si256(b4, b5, 0x20); in[5] = _mm256_permute2x128_si256(b4, b5, 0x31); in[6] = _mm256_permute2x128_si256(b6, b7, 0x20); in[7] = _mm256_permute2x128_si256(b6, b7, 0x31); } else { in[0] = _mm256_add_epi32(a0, a4); in[7] = _mm256_add_epi32(a1, a5); in[3] = _mm256_add_epi32(a2, a6); in[4] = _mm256_add_epi32(a3, a7); in[2] = _mm256_sub_epi32(a0, a4); in[6] = _mm256_sub_epi32(a1, a5); in[1] = _mm256_sub_epi32(a2, a6); in[5] = _mm256_sub_epi32(a3, a7); } } void aom_highbd_hadamard_8x8_avx2(const int16_t *src_diff, ptrdiff_t src_stride, tran_low_t *coeff) { __m128i src16[8]; __m256i src32[8]; src16[0] = _mm_loadu_si128((const __m128i *)src_diff); src16[1] = _mm_loadu_si128((const __m128i *)(src_diff += src_stride)); src16[2] = _mm_loadu_si128((const __m128i *)(src_diff += src_stride)); src16[3] = _mm_loadu_si128((const __m128i *)(src_diff += src_stride)); src16[4] = _mm_loadu_si128((const __m128i *)(src_diff += src_stride)); src16[5] = _mm_loadu_si128((const __m128i *)(src_diff += src_stride)); src16[6] = _mm_loadu_si128((const __m128i *)(src_diff += src_stride)); src16[7] = _mm_loadu_si128((const __m128i *)(src_diff + src_stride)); src32[0] = _mm256_cvtepi16_epi32(src16[0]); src32[1] = _mm256_cvtepi16_epi32(src16[1]); src32[2] = _mm256_cvtepi16_epi32(src16[2]); src32[3] = _mm256_cvtepi16_epi32(src16[3]); src32[4] = _mm256_cvtepi16_epi32(src16[4]); src32[5] = _mm256_cvtepi16_epi32(src16[5]); src32[6] = _mm256_cvtepi16_epi32(src16[6]); src32[7] = _mm256_cvtepi16_epi32(src16[7]); highbd_hadamard_col8_avx2(src32, 0); highbd_hadamard_col8_avx2(src32, 1); _mm256_storeu_si256((__m256i *)coeff, src32[0]); coeff += 8; _mm256_storeu_si256((__m256i *)coeff, src32[1]); coeff += 8; _mm256_storeu_si256((__m256i *)coeff, src32[2]); coeff += 8; _mm256_storeu_si256((__m256i *)coeff, src32[3]); coeff += 8; _mm256_storeu_si256((__m256i *)coeff, src32[4]); coeff += 8; _mm256_storeu_si256((__m256i *)coeff, src32[5]); coeff += 8; _mm256_storeu_si256((__m256i *)coeff, src32[6]); coeff += 8; _mm256_storeu_si256((__m256i *)coeff, src32[7]); } void aom_highbd_hadamard_16x16_avx2(const int16_t *src_diff, ptrdiff_t src_stride, tran_low_t *coeff) { int idx; tran_low_t *t_coeff = coeff; for (idx = 0; idx < 4; ++idx) { const int16_t *src_ptr = src_diff + (idx >> 1) * 8 * src_stride + (idx & 0x01) * 8; aom_highbd_hadamard_8x8_avx2(src_ptr, src_stride, t_coeff + idx * 64); } for (idx = 0; idx < 64; idx += 8) { __m256i coeff0 = _mm256_loadu_si256((const __m256i *)t_coeff); __m256i coeff1 = _mm256_loadu_si256((const __m256i *)(t_coeff + 64)); __m256i coeff2 = _mm256_loadu_si256((const __m256i *)(t_coeff + 128)); __m256i coeff3 = _mm256_loadu_si256((const __m256i *)(t_coeff + 192)); __m256i b0 = _mm256_add_epi32(coeff0, coeff1); __m256i b1 = _mm256_sub_epi32(coeff0, coeff1); __m256i b2 = _mm256_add_epi32(coeff2, coeff3); __m256i b3 = _mm256_sub_epi32(coeff2, coeff3); b0 = _mm256_srai_epi32(b0, 1); b1 = _mm256_srai_epi32(b1, 1); b2 = _mm256_srai_epi32(b2, 1); b3 = _mm256_srai_epi32(b3, 1); coeff0 = _mm256_add_epi32(b0, b2); coeff1 = _mm256_add_epi32(b1, b3); coeff2 = _mm256_sub_epi32(b0, b2); coeff3 = _mm256_sub_epi32(b1, b3); _mm256_storeu_si256((__m256i *)coeff, coeff0); _mm256_storeu_si256((__m256i *)(coeff + 64), coeff1); _mm256_storeu_si256((__m256i *)(coeff + 128), coeff2); _mm256_storeu_si256((__m256i *)(coeff + 192), coeff3); coeff += 8; t_coeff += 8; } } void aom_highbd_hadamard_32x32_avx2(const int16_t *src_diff, ptrdiff_t src_stride, tran_low_t *coeff) { int idx; tran_low_t *t_coeff = coeff; for (idx = 0; idx < 4; ++idx) { const int16_t *src_ptr = src_diff + (idx >> 1) * 16 * src_stride + (idx & 0x01) * 16; aom_highbd_hadamard_16x16_avx2(src_ptr, src_stride, t_coeff + idx * 256); } for (idx = 0; idx < 256; idx += 8) { __m256i coeff0 = _mm256_loadu_si256((const __m256i *)t_coeff); __m256i coeff1 = _mm256_loadu_si256((const __m256i *)(t_coeff + 256)); __m256i coeff2 = _mm256_loadu_si256((const __m256i *)(t_coeff + 512)); __m256i coeff3 = _mm256_loadu_si256((const __m256i *)(t_coeff + 768)); __m256i b0 = _mm256_add_epi32(coeff0, coeff1); __m256i b1 = _mm256_sub_epi32(coeff0, coeff1); __m256i b2 = _mm256_add_epi32(coeff2, coeff3); __m256i b3 = _mm256_sub_epi32(coeff2, coeff3); b0 = _mm256_srai_epi32(b0, 2); b1 = _mm256_srai_epi32(b1, 2); b2 = _mm256_srai_epi32(b2, 2); b3 = _mm256_srai_epi32(b3, 2); coeff0 = _mm256_add_epi32(b0, b2); coeff1 = _mm256_add_epi32(b1, b3); coeff2 = _mm256_sub_epi32(b0, b2); coeff3 = _mm256_sub_epi32(b1, b3); _mm256_storeu_si256((__m256i *)coeff, coeff0); _mm256_storeu_si256((__m256i *)(coeff + 256), coeff1); _mm256_storeu_si256((__m256i *)(coeff + 512), coeff2); _mm256_storeu_si256((__m256i *)(coeff + 768), coeff3); coeff += 8; t_coeff += 8; } } #endif // CONFIG_AV1_HIGHBITDEPTH int aom_satd_avx2(const tran_low_t *coeff, int length) { __m256i accum = _mm256_setzero_si256(); int i; for (i = 0; i < length; i += 8, coeff += 8) { const __m256i src_line = _mm256_loadu_si256((const __m256i *)coeff); const __m256i abs = _mm256_abs_epi32(src_line); accum = _mm256_add_epi32(accum, abs); } { // 32 bit horizontal add const __m256i a = _mm256_srli_si256(accum, 8); const __m256i b = _mm256_add_epi32(accum, a); const __m256i c = _mm256_srli_epi64(b, 32); const __m256i d = _mm256_add_epi32(b, c); const __m128i accum_128 = _mm_add_epi32(_mm256_castsi256_si128(d), _mm256_extractf128_si256(d, 1)); return _mm_cvtsi128_si32(accum_128); } } int aom_satd_lp_avx2(const int16_t *coeff, int length) { const __m256i one = _mm256_set1_epi16(1); __m256i accum = _mm256_setzero_si256(); for (int i = 0; i < length; i += 16) { const __m256i src_line = _mm256_loadu_si256((const __m256i *)coeff); const __m256i abs = _mm256_abs_epi16(src_line); const __m256i sum = _mm256_madd_epi16(abs, one); accum = _mm256_add_epi32(accum, sum); coeff += 16; } { // 32 bit horizontal add const __m256i a = _mm256_srli_si256(accum, 8); const __m256i b = _mm256_add_epi32(accum, a); const __m256i c = _mm256_srli_epi64(b, 32); const __m256i d = _mm256_add_epi32(b, c); const __m128i accum_128 = _mm_add_epi32(_mm256_castsi256_si128(d), _mm256_extractf128_si256(d, 1)); return _mm_cvtsi128_si32(accum_128); } } static INLINE __m256i xx_loadu2_mi128(const void *hi, const void *lo) { __m256i a = _mm256_castsi128_si256(_mm_loadu_si128((const __m128i *)(lo))); a = _mm256_inserti128_si256(a, _mm_loadu_si128((const __m128i *)(hi)), 1); return a; } void aom_avg_8x8_quad_avx2(const uint8_t *s, int p, int x16_idx, int y16_idx, int *avg) { const uint8_t *s_y0 = s + y16_idx * p + x16_idx; const uint8_t *s_y1 = s_y0 + 8 * p; __m256i sum0, sum1, s0, s1, s2, s3, u0; u0 = _mm256_setzero_si256(); s0 = _mm256_sad_epu8(xx_loadu2_mi128(s_y1, s_y0), u0); s1 = _mm256_sad_epu8(xx_loadu2_mi128(s_y1 + p, s_y0 + p), u0); s2 = _mm256_sad_epu8(xx_loadu2_mi128(s_y1 + 2 * p, s_y0 + 2 * p), u0); s3 = _mm256_sad_epu8(xx_loadu2_mi128(s_y1 + 3 * p, s_y0 + 3 * p), u0); sum0 = _mm256_add_epi16(s0, s1); sum1 = _mm256_add_epi16(s2, s3); s0 = _mm256_sad_epu8(xx_loadu2_mi128(s_y1 + 4 * p, s_y0 + 4 * p), u0); s1 = _mm256_sad_epu8(xx_loadu2_mi128(s_y1 + 5 * p, s_y0 + 5 * p), u0); s2 = _mm256_sad_epu8(xx_loadu2_mi128(s_y1 + 6 * p, s_y0 + 6 * p), u0); s3 = _mm256_sad_epu8(xx_loadu2_mi128(s_y1 + 7 * p, s_y0 + 7 * p), u0); sum0 = _mm256_add_epi16(sum0, _mm256_add_epi16(s0, s1)); sum1 = _mm256_add_epi16(sum1, _mm256_add_epi16(s2, s3)); sum0 = _mm256_add_epi16(sum0, sum1); // (avg + 32) >> 6 __m256i rounding = _mm256_set1_epi32(32); sum0 = _mm256_add_epi32(sum0, rounding); sum0 = _mm256_srli_epi32(sum0, 6); __m128i lo = _mm256_castsi256_si128(sum0); __m128i hi = _mm256_extracti128_si256(sum0, 1); avg[0] = _mm_cvtsi128_si32(lo); avg[1] = _mm_extract_epi32(lo, 2); avg[2] = _mm_cvtsi128_si32(hi); avg[3] = _mm_extract_epi32(hi, 2); } void aom_int_pro_row_avx2(int16_t *hbuf, const uint8_t *ref, const int ref_stride, const int width, const int height, int norm_factor) { // SIMD implementation assumes width and height to be multiple of 16 and 2 // respectively. For any odd width or height, SIMD support needs to be added. assert(width % 16 == 0 && height % 2 == 0); if (width % 32 == 0) { const __m256i zero = _mm256_setzero_si256(); for (int wd = 0; wd < width; wd += 32) { const uint8_t *ref_tmp = ref + wd; int16_t *hbuf_tmp = hbuf + wd; __m256i s0 = zero; __m256i s1 = zero; int idx = 0; do { __m256i src_line = _mm256_loadu_si256((const __m256i *)ref_tmp); __m256i t0 = _mm256_unpacklo_epi8(src_line, zero); __m256i t1 = _mm256_unpackhi_epi8(src_line, zero); s0 = _mm256_add_epi16(s0, t0); s1 = _mm256_add_epi16(s1, t1); ref_tmp += ref_stride; src_line = _mm256_loadu_si256((const __m256i *)ref_tmp); t0 = _mm256_unpacklo_epi8(src_line, zero); t1 = _mm256_unpackhi_epi8(src_line, zero); s0 = _mm256_add_epi16(s0, t0); s1 = _mm256_add_epi16(s1, t1); ref_tmp += ref_stride; idx += 2; } while (idx < height); s0 = _mm256_srai_epi16(s0, norm_factor); s1 = _mm256_srai_epi16(s1, norm_factor); _mm_storeu_si128((__m128i *)(hbuf_tmp), _mm256_castsi256_si128(s0)); _mm_storeu_si128((__m128i *)(hbuf_tmp + 8), _mm256_castsi256_si128(s1)); _mm_storeu_si128((__m128i *)(hbuf_tmp + 16), _mm256_extractf128_si256(s0, 1)); _mm_storeu_si128((__m128i *)(hbuf_tmp + 24), _mm256_extractf128_si256(s1, 1)); } } else if (width % 16 == 0) { aom_int_pro_row_sse2(hbuf, ref, ref_stride, width, height, norm_factor); } } static INLINE void load_from_src_buf(const uint8_t *ref1, __m256i *src, const int stride) { src[0] = _mm256_loadu_si256((const __m256i *)ref1); src[1] = _mm256_loadu_si256((const __m256i *)(ref1 + stride)); src[2] = _mm256_loadu_si256((const __m256i *)(ref1 + (2 * stride))); src[3] = _mm256_loadu_si256((const __m256i *)(ref1 + (3 * stride))); } #define CALC_TOT_SAD_AND_STORE \ /* r00 r10 x x r01 r11 x x | r02 r12 x x r03 r13 x x */ \ const __m256i r01 = _mm256_add_epi16(_mm256_slli_si256(r1, 2), r0); \ /* r00 r10 r20 x r01 r11 r21 x | r02 r12 r22 x r03 r13 r23 x */ \ const __m256i r012 = _mm256_add_epi16(_mm256_slli_si256(r2, 4), r01); \ /* r00 r10 r20 r30 r01 r11 r21 r31 | r02 r12 r22 r32 r03 r13 r23 r33 */ \ const __m256i result0 = _mm256_add_epi16(_mm256_slli_si256(r3, 6), r012); \ \ const __m128i results0 = _mm_add_epi16( \ _mm256_castsi256_si128(result0), _mm256_extractf128_si256(result0, 1)); \ const __m128i results1 = \ _mm_add_epi16(results0, _mm_srli_si128(results0, 8)); \ _mm_storel_epi64((__m128i *)vbuf, _mm_srli_epi16(results1, norm_factor)); static INLINE void aom_int_pro_col_16wd_avx2(int16_t *vbuf, const uint8_t *ref, const int ref_stride, const int height, int norm_factor) { const __m256i zero = _mm256_setzero_si256(); int ht = 0; // Post sad operation, the data is present in lower 16-bit of each 64-bit lane // and higher 16-bits are Zero. Here, we are processing 8 rows at a time to // utilize the higher 16-bits efficiently. do { __m256i src_00 = _mm256_castsi128_si256(_mm_loadu_si128((const __m128i *)(ref))); src_00 = _mm256_inserti128_si256( src_00, _mm_loadu_si128((const __m128i *)(ref + ref_stride * 4)), 1); __m256i src_01 = _mm256_castsi128_si256( _mm_loadu_si128((const __m128i *)(ref + ref_stride * 1))); src_01 = _mm256_inserti128_si256( src_01, _mm_loadu_si128((const __m128i *)(ref + ref_stride * 5)), 1); __m256i src_10 = _mm256_castsi128_si256( _mm_loadu_si128((const __m128i *)(ref + ref_stride * 2))); src_10 = _mm256_inserti128_si256( src_10, _mm_loadu_si128((const __m128i *)(ref + ref_stride * 6)), 1); __m256i src_11 = _mm256_castsi128_si256( _mm_loadu_si128((const __m128i *)(ref + ref_stride * 3))); src_11 = _mm256_inserti128_si256( src_11, _mm_loadu_si128((const __m128i *)(ref + ref_stride * 7)), 1); // s00 x x x s01 x x x | s40 x x x s41 x x x const __m256i s0 = _mm256_sad_epu8(src_00, zero); // s10 x x x s11 x x x | s50 x x x s51 x x x const __m256i s1 = _mm256_sad_epu8(src_01, zero); // s20 x x x s21 x x x | s60 x x x s61 x x x const __m256i s2 = _mm256_sad_epu8(src_10, zero); // s30 x x x s31 x x x | s70 x x x s71 x x x const __m256i s3 = _mm256_sad_epu8(src_11, zero); // s00 s10 x x x x x x | s40 s50 x x x x x x const __m256i s0_lo = _mm256_unpacklo_epi16(s0, s1); // s01 s11 x x x x x x | s41 s51 x x x x x x const __m256i s0_hi = _mm256_unpackhi_epi16(s0, s1); // s20 s30 x x x x x x | s60 s70 x x x x x x const __m256i s1_lo = _mm256_unpacklo_epi16(s2, s3); // s21 s31 x x x x x x | s61 s71 x x x x x x const __m256i s1_hi = _mm256_unpackhi_epi16(s2, s3); // s0 s1 x x x x x x | s4 s5 x x x x x x const __m256i s0_add = _mm256_add_epi16(s0_lo, s0_hi); // s2 s3 x x x x x x | s6 s7 x x x x x x const __m256i s1_add = _mm256_add_epi16(s1_lo, s1_hi); // s1 s1 s2 s3 s4 s5 s6 s7 const __m128i results = _mm256_castsi256_si128( _mm256_permute4x64_epi64(_mm256_unpacklo_epi32(s0_add, s1_add), 0x08)); _mm_storeu_si128((__m128i *)vbuf, _mm_srli_epi16(results, norm_factor)); vbuf += 8; ref += (ref_stride << 3); ht += 8; } while (ht < height); } void aom_int_pro_col_avx2(int16_t *vbuf, const uint8_t *ref, const int ref_stride, const int width, const int height, int norm_factor) { assert(width % 16 == 0); if (width == 128) { const __m256i zero = _mm256_setzero_si256(); for (int ht = 0; ht < height; ht += 4) { __m256i src[16]; // Load source data. load_from_src_buf(ref, &src[0], ref_stride); load_from_src_buf(ref + 32, &src[4], ref_stride); load_from_src_buf(ref + 64, &src[8], ref_stride); load_from_src_buf(ref + 96, &src[12], ref_stride); // Row0 output: r00 x x x r01 x x x | r02 x x x r03 x x x const __m256i s0 = _mm256_add_epi16(_mm256_sad_epu8(src[0], zero), _mm256_sad_epu8(src[4], zero)); const __m256i s1 = _mm256_add_epi16(_mm256_sad_epu8(src[8], zero), _mm256_sad_epu8(src[12], zero)); const __m256i r0 = _mm256_add_epi16(s0, s1); // Row1 output: r10 x x x r11 x x x | r12 x x x r13 x x x const __m256i s2 = _mm256_add_epi16(_mm256_sad_epu8(src[1], zero), _mm256_sad_epu8(src[5], zero)); const __m256i s3 = _mm256_add_epi16(_mm256_sad_epu8(src[9], zero), _mm256_sad_epu8(src[13], zero)); const __m256i r1 = _mm256_add_epi16(s2, s3); // Row2 output: r20 x x x r21 x x x | r22 x x x r23 x x x const __m256i s4 = _mm256_add_epi16(_mm256_sad_epu8(src[2], zero), _mm256_sad_epu8(src[6], zero)); const __m256i s5 = _mm256_add_epi16(_mm256_sad_epu8(src[10], zero), _mm256_sad_epu8(src[14], zero)); const __m256i r2 = _mm256_add_epi16(s4, s5); // Row3 output: r30 x x x r31 x x x | r32 x x x r33 x x x const __m256i s6 = _mm256_add_epi16(_mm256_sad_epu8(src[3], zero), _mm256_sad_epu8(src[7], zero)); const __m256i s7 = _mm256_add_epi16(_mm256_sad_epu8(src[11], zero), _mm256_sad_epu8(src[15], zero)); const __m256i r3 = _mm256_add_epi16(s6, s7); CALC_TOT_SAD_AND_STORE vbuf += 4; ref += ref_stride << 2; } } else if (width == 64) { const __m256i zero = _mm256_setzero_si256(); for (int ht = 0; ht < height; ht += 4) { __m256i src[8]; // Load source data. load_from_src_buf(ref, &src[0], ref_stride); load_from_src_buf(ref + 32, &src[4], ref_stride); // Row0 output: r00 x x x r01 x x x | r02 x x x r03 x x x const __m256i s0 = _mm256_sad_epu8(src[0], zero); const __m256i s1 = _mm256_sad_epu8(src[4], zero); const __m256i r0 = _mm256_add_epi16(s0, s1); // Row1 output: r10 x x x r11 x x x | r12 x x x r13 x x x const __m256i s2 = _mm256_sad_epu8(src[1], zero); const __m256i s3 = _mm256_sad_epu8(src[5], zero); const __m256i r1 = _mm256_add_epi16(s2, s3); // Row2 output: r20 x x x r21 x x x | r22 x x x r23 x x x const __m256i s4 = _mm256_sad_epu8(src[2], zero); const __m256i s5 = _mm256_sad_epu8(src[6], zero); const __m256i r2 = _mm256_add_epi16(s4, s5); // Row3 output: r30 x x x r31 x x x | r32 x x x r33 x x x const __m256i s6 = _mm256_sad_epu8(src[3], zero); const __m256i s7 = _mm256_sad_epu8(src[7], zero); const __m256i r3 = _mm256_add_epi16(s6, s7); CALC_TOT_SAD_AND_STORE vbuf += 4; ref += ref_stride << 2; } } else if (width == 32) { assert(height % 2 == 0); const __m256i zero = _mm256_setzero_si256(); for (int ht = 0; ht < height; ht += 4) { __m256i src[4]; // Load source data. load_from_src_buf(ref, &src[0], ref_stride); // s00 x x x s01 x x x s02 x x x s03 x x x const __m256i r0 = _mm256_sad_epu8(src[0], zero); // s10 x x x s11 x x x s12 x x x s13 x x x const __m256i r1 = _mm256_sad_epu8(src[1], zero); // s20 x x x s21 x x x s22 x x x s23 x x x const __m256i r2 = _mm256_sad_epu8(src[2], zero); // s30 x x x s31 x x x s32 x x x s33 x x x const __m256i r3 = _mm256_sad_epu8(src[3], zero); CALC_TOT_SAD_AND_STORE vbuf += 4; ref += ref_stride << 2; } } else if (width == 16) { aom_int_pro_col_16wd_avx2(vbuf, ref, ref_stride, height, norm_factor); } } static inline void calc_vector_mean_sse_64wd(const int16_t *ref, const int16_t *src, __m256i *mean, __m256i *sse) { const __m256i src_line0 = _mm256_loadu_si256((const __m256i *)src); const __m256i src_line1 = _mm256_loadu_si256((const __m256i *)(src + 16)); const __m256i src_line2 = _mm256_loadu_si256((const __m256i *)(src + 32)); const __m256i src_line3 = _mm256_loadu_si256((const __m256i *)(src + 48)); const __m256i ref_line0 = _mm256_loadu_si256((const __m256i *)ref); const __m256i ref_line1 = _mm256_loadu_si256((const __m256i *)(ref + 16)); const __m256i ref_line2 = _mm256_loadu_si256((const __m256i *)(ref + 32)); const __m256i ref_line3 = _mm256_loadu_si256((const __m256i *)(ref + 48)); const __m256i diff0 = _mm256_sub_epi16(ref_line0, src_line0); const __m256i diff1 = _mm256_sub_epi16(ref_line1, src_line1); const __m256i diff2 = _mm256_sub_epi16(ref_line2, src_line2); const __m256i diff3 = _mm256_sub_epi16(ref_line3, src_line3); const __m256i diff_sqr0 = _mm256_madd_epi16(diff0, diff0); const __m256i diff_sqr1 = _mm256_madd_epi16(diff1, diff1); const __m256i diff_sqr2 = _mm256_madd_epi16(diff2, diff2); const __m256i diff_sqr3 = _mm256_madd_epi16(diff3, diff3); *mean = _mm256_add_epi16(*mean, _mm256_add_epi16(diff0, diff1)); *mean = _mm256_add_epi16(*mean, diff2); *mean = _mm256_add_epi16(*mean, diff3); *sse = _mm256_add_epi32(*sse, _mm256_add_epi32(diff_sqr0, diff_sqr1)); *sse = _mm256_add_epi32(*sse, diff_sqr2); *sse = _mm256_add_epi32(*sse, diff_sqr3); } #define CALC_VAR_FROM_MEAN_SSE(mean, sse) \ { \ mean = _mm256_madd_epi16(mean, _mm256_set1_epi16(1)); \ mean = _mm256_hadd_epi32(mean, sse); \ mean = _mm256_add_epi32(mean, _mm256_bsrli_epi128(mean, 4)); \ const __m128i result = _mm_add_epi32(_mm256_castsi256_si128(mean), \ _mm256_extractf128_si256(mean, 1)); \ /*(mean * mean): dynamic range 31 bits.*/ \ const int mean_int = _mm_extract_epi32(result, 0); \ const int sse_int = _mm_extract_epi32(result, 2); \ const unsigned int mean_abs = abs(mean_int); \ var = sse_int - ((mean_abs * mean_abs) >> (bwl + 2)); \ } // ref: [0 - 510] // src: [0 - 510] // bwl: {2, 3, 4, 5} int aom_vector_var_avx2(const int16_t *ref, const int16_t *src, int bwl) { const int width = 4 << bwl; assert(width % 16 == 0 && width <= 128); int var = 0; // Instead of having a loop over width 16, considered loop unrolling to avoid // some addition operations. if (width == 128) { __m256i mean = _mm256_setzero_si256(); __m256i sse = _mm256_setzero_si256(); calc_vector_mean_sse_64wd(src, ref, &mean, &sse); calc_vector_mean_sse_64wd(src + 64, ref + 64, &mean, &sse); CALC_VAR_FROM_MEAN_SSE(mean, sse) } else if (width == 64) { __m256i mean = _mm256_setzero_si256(); __m256i sse = _mm256_setzero_si256(); calc_vector_mean_sse_64wd(src, ref, &mean, &sse); CALC_VAR_FROM_MEAN_SSE(mean, sse) } else if (width == 32) { const __m256i src_line0 = _mm256_loadu_si256((const __m256i *)src); const __m256i ref_line0 = _mm256_loadu_si256((const __m256i *)ref); const __m256i src_line1 = _mm256_loadu_si256((const __m256i *)(src + 16)); const __m256i ref_line1 = _mm256_loadu_si256((const __m256i *)(ref + 16)); const __m256i diff0 = _mm256_sub_epi16(ref_line0, src_line0); const __m256i diff1 = _mm256_sub_epi16(ref_line1, src_line1); const __m256i diff_sqr0 = _mm256_madd_epi16(diff0, diff0); const __m256i diff_sqr1 = _mm256_madd_epi16(diff1, diff1); const __m256i sse = _mm256_add_epi32(diff_sqr0, diff_sqr1); __m256i mean = _mm256_add_epi16(diff0, diff1); CALC_VAR_FROM_MEAN_SSE(mean, sse) } else if (width == 16) { const __m256i src_line = _mm256_loadu_si256((const __m256i *)src); const __m256i ref_line = _mm256_loadu_si256((const __m256i *)ref); __m256i mean = _mm256_sub_epi16(ref_line, src_line); const __m256i sse = _mm256_madd_epi16(mean, mean); CALC_VAR_FROM_MEAN_SSE(mean, sse) } return var; }