/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include "config/aom_dsp_rtcd.h" #include "aom/aom_integer.h" #include "aom_dsp/x86/bitdepth_conversion_sse2.h" #include "aom_dsp/x86/mem_sse2.h" #include "aom_ports/mem.h" static INLINE void sign_extend_16bit_to_32bit_sse2(__m128i in, __m128i zero, __m128i *out_lo, __m128i *out_hi) { const __m128i sign_bits = _mm_cmplt_epi16(in, zero); *out_lo = _mm_unpacklo_epi16(in, sign_bits); *out_hi = _mm_unpackhi_epi16(in, sign_bits); } static INLINE __m128i invert_sign_32_sse2(__m128i a, __m128i sign) { a = _mm_xor_si128(a, sign); return _mm_sub_epi32(a, sign); } void aom_minmax_8x8_sse2(const uint8_t *s, int p, const uint8_t *d, int dp, int *min, int *max) { __m128i u0, s0, d0, diff, maxabsdiff, minabsdiff, negdiff, absdiff0, absdiff; u0 = _mm_setzero_si128(); // Row 0 s0 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(s)), u0); d0 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(d)), u0); diff = _mm_subs_epi16(s0, d0); negdiff = _mm_subs_epi16(u0, diff); absdiff0 = _mm_max_epi16(diff, negdiff); // Row 1 s0 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(s + p)), u0); d0 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(d + dp)), u0); diff = _mm_subs_epi16(s0, d0); negdiff = _mm_subs_epi16(u0, diff); absdiff = _mm_max_epi16(diff, negdiff); maxabsdiff = _mm_max_epi16(absdiff0, absdiff); minabsdiff = _mm_min_epi16(absdiff0, absdiff); // Row 2 s0 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(s + 2 * p)), u0); d0 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(d + 2 * dp)), u0); diff = _mm_subs_epi16(s0, d0); negdiff = _mm_subs_epi16(u0, diff); absdiff = _mm_max_epi16(diff, negdiff); maxabsdiff = _mm_max_epi16(maxabsdiff, absdiff); minabsdiff = _mm_min_epi16(minabsdiff, absdiff); // Row 3 s0 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(s + 3 * p)), u0); d0 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(d + 3 * dp)), u0); diff = _mm_subs_epi16(s0, d0); negdiff = _mm_subs_epi16(u0, diff); absdiff = _mm_max_epi16(diff, negdiff); maxabsdiff = _mm_max_epi16(maxabsdiff, absdiff); minabsdiff = _mm_min_epi16(minabsdiff, absdiff); // Row 4 s0 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(s + 4 * p)), u0); d0 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(d + 4 * dp)), u0); diff = _mm_subs_epi16(s0, d0); negdiff = _mm_subs_epi16(u0, diff); absdiff = _mm_max_epi16(diff, negdiff); maxabsdiff = _mm_max_epi16(maxabsdiff, absdiff); minabsdiff = _mm_min_epi16(minabsdiff, absdiff); // Row 5 s0 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(s + 5 * p)), u0); d0 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(d + 5 * dp)), u0); diff = _mm_subs_epi16(s0, d0); negdiff = _mm_subs_epi16(u0, diff); absdiff = _mm_max_epi16(diff, negdiff); maxabsdiff = _mm_max_epi16(maxabsdiff, absdiff); minabsdiff = _mm_min_epi16(minabsdiff, absdiff); // Row 6 s0 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(s + 6 * p)), u0); d0 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(d + 6 * dp)), u0); diff = _mm_subs_epi16(s0, d0); negdiff = _mm_subs_epi16(u0, diff); absdiff = _mm_max_epi16(diff, negdiff); maxabsdiff = _mm_max_epi16(maxabsdiff, absdiff); minabsdiff = _mm_min_epi16(minabsdiff, absdiff); // Row 7 s0 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(s + 7 * p)), u0); d0 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(d + 7 * dp)), u0); diff = _mm_subs_epi16(s0, d0); negdiff = _mm_subs_epi16(u0, diff); absdiff = _mm_max_epi16(diff, negdiff); maxabsdiff = _mm_max_epi16(maxabsdiff, absdiff); minabsdiff = _mm_min_epi16(minabsdiff, absdiff); maxabsdiff = _mm_max_epi16(maxabsdiff, _mm_srli_si128(maxabsdiff, 8)); maxabsdiff = _mm_max_epi16(maxabsdiff, _mm_srli_epi64(maxabsdiff, 32)); maxabsdiff = _mm_max_epi16(maxabsdiff, _mm_srli_epi64(maxabsdiff, 16)); *max = _mm_extract_epi16(maxabsdiff, 0); minabsdiff = _mm_min_epi16(minabsdiff, _mm_srli_si128(minabsdiff, 8)); minabsdiff = _mm_min_epi16(minabsdiff, _mm_srli_epi64(minabsdiff, 32)); minabsdiff = _mm_min_epi16(minabsdiff, _mm_srli_epi64(minabsdiff, 16)); *min = _mm_extract_epi16(minabsdiff, 0); } unsigned int aom_avg_8x8_sse2(const uint8_t *s, int p) { __m128i sum0, sum1, s0, s1, s2, s3, u0; unsigned int avg = 0; u0 = _mm_setzero_si128(); s0 = loadh_epi64((const __m128i *)(s + p), _mm_loadl_epi64((const __m128i *)(s))); s1 = loadh_epi64((const __m128i *)(s + 3 * p), _mm_loadl_epi64((const __m128i *)(s + 2 * p))); s2 = loadh_epi64((const __m128i *)(s + 5 * p), _mm_loadl_epi64((const __m128i *)(s + 4 * p))); s3 = loadh_epi64((const __m128i *)(s + 7 * p), _mm_loadl_epi64((const __m128i *)(s + 6 * p))); s0 = _mm_sad_epu8(s0, u0); s1 = _mm_sad_epu8(s1, u0); s2 = _mm_sad_epu8(s2, u0); s3 = _mm_sad_epu8(s3, u0); sum0 = _mm_add_epi16(s0, s1); sum1 = _mm_add_epi16(s2, s3); sum0 = _mm_add_epi16(sum0, sum1); sum0 = _mm_add_epi16(sum0, _mm_srli_si128(sum0, 8)); avg = _mm_cvtsi128_si32(sum0); return (avg + 32) >> 6; } void calc_avg_8x8_dual_sse2(const uint8_t *s, int p, int *avg) { __m128i sum0, sum1, s0, s1, s2, s3, u0; u0 = _mm_setzero_si128(); s0 = _mm_sad_epu8(_mm_loadu_si128((const __m128i *)(s)), u0); s1 = _mm_sad_epu8(_mm_loadu_si128((const __m128i *)(s + p)), u0); s2 = _mm_sad_epu8(_mm_loadu_si128((const __m128i *)(s + 2 * p)), u0); s3 = _mm_sad_epu8(_mm_loadu_si128((const __m128i *)(s + 3 * p)), u0); sum0 = _mm_add_epi16(s0, s1); sum1 = _mm_add_epi16(s2, s3); s0 = _mm_sad_epu8(_mm_loadu_si128((const __m128i *)(s + 4 * p)), u0); s1 = _mm_sad_epu8(_mm_loadu_si128((const __m128i *)(s + 5 * p)), u0); s2 = _mm_sad_epu8(_mm_loadu_si128((const __m128i *)(s + 6 * p)), u0); s3 = _mm_sad_epu8(_mm_loadu_si128((const __m128i *)(s + 7 * p)), u0); sum0 = _mm_add_epi16(sum0, _mm_add_epi16(s0, s1)); sum1 = _mm_add_epi16(sum1, _mm_add_epi16(s2, s3)); sum0 = _mm_add_epi16(sum0, sum1); // (avg + 32) >> 6 __m128i rounding = _mm_set1_epi32(32); sum0 = _mm_add_epi32(sum0, rounding); sum0 = _mm_srli_epi32(sum0, 6); avg[0] = _mm_cvtsi128_si32(sum0); avg[1] = _mm_extract_epi16(sum0, 4); } void aom_avg_8x8_quad_sse2(const uint8_t *s, int p, int x16_idx, int y16_idx, int *avg) { const uint8_t *s_ptr = s + y16_idx * p + x16_idx; for (int k = 0; k < 2; k++) { calc_avg_8x8_dual_sse2(s_ptr, p, avg + k * 2); s_ptr += 8 * p; } } unsigned int aom_avg_4x4_sse2(const uint8_t *s, int p) { __m128i s0, s1, u0; unsigned int avg = 0; u0 = _mm_setzero_si128(); s0 = _mm_unpacklo_epi32(_mm_cvtsi32_si128(*(const int *)(s)), _mm_cvtsi32_si128(*(const int *)(s + p))); s1 = _mm_unpacklo_epi32(_mm_cvtsi32_si128(*(const int *)(s + p * 2)), _mm_cvtsi32_si128(*(const int *)(s + p * 3))); s0 = _mm_sad_epu8(s0, u0); s1 = _mm_sad_epu8(s1, u0); s0 = _mm_add_epi16(s0, s1); avg = _mm_cvtsi128_si32(s0); return (avg + 8) >> 4; } static INLINE void hadamard_col4_sse2(__m128i *in, int iter) { const __m128i a0 = in[0]; const __m128i a1 = in[1]; const __m128i a2 = in[2]; const __m128i a3 = in[3]; const __m128i b0 = _mm_srai_epi16(_mm_add_epi16(a0, a1), 1); const __m128i b1 = _mm_srai_epi16(_mm_sub_epi16(a0, a1), 1); const __m128i b2 = _mm_srai_epi16(_mm_add_epi16(a2, a3), 1); const __m128i b3 = _mm_srai_epi16(_mm_sub_epi16(a2, a3), 1); in[0] = _mm_add_epi16(b0, b2); in[1] = _mm_add_epi16(b1, b3); in[2] = _mm_sub_epi16(b0, b2); in[3] = _mm_sub_epi16(b1, b3); if (iter == 0) { const __m128i ba = _mm_unpacklo_epi16(in[0], in[1]); const __m128i dc = _mm_unpacklo_epi16(in[2], in[3]); const __m128i dcba_lo = _mm_unpacklo_epi32(ba, dc); const __m128i dcba_hi = _mm_unpackhi_epi32(ba, dc); in[0] = dcba_lo; in[1] = _mm_srli_si128(dcba_lo, 8); in[2] = dcba_hi; in[3] = _mm_srli_si128(dcba_hi, 8); } } void aom_hadamard_4x4_sse2(const int16_t *src_diff, ptrdiff_t src_stride, tran_low_t *coeff) { __m128i src[4]; src[0] = _mm_loadl_epi64((const __m128i *)src_diff); src[1] = _mm_loadl_epi64((const __m128i *)(src_diff += src_stride)); src[2] = _mm_loadl_epi64((const __m128i *)(src_diff += src_stride)); src[3] = _mm_loadl_epi64((const __m128i *)(src_diff + src_stride)); hadamard_col4_sse2(src, 0); hadamard_col4_sse2(src, 1); store_tran_low(_mm_unpacklo_epi64(src[0], src[1]), coeff); coeff += 8; store_tran_low(_mm_unpacklo_epi64(src[2], src[3]), coeff); } static INLINE void hadamard_col8_sse2(__m128i *in, int iter) { __m128i a0 = in[0]; __m128i a1 = in[1]; __m128i a2 = in[2]; __m128i a3 = in[3]; __m128i a4 = in[4]; __m128i a5 = in[5]; __m128i a6 = in[6]; __m128i a7 = in[7]; __m128i b0 = _mm_add_epi16(a0, a1); __m128i b1 = _mm_sub_epi16(a0, a1); __m128i b2 = _mm_add_epi16(a2, a3); __m128i b3 = _mm_sub_epi16(a2, a3); __m128i b4 = _mm_add_epi16(a4, a5); __m128i b5 = _mm_sub_epi16(a4, a5); __m128i b6 = _mm_add_epi16(a6, a7); __m128i b7 = _mm_sub_epi16(a6, a7); a0 = _mm_add_epi16(b0, b2); a1 = _mm_add_epi16(b1, b3); a2 = _mm_sub_epi16(b0, b2); a3 = _mm_sub_epi16(b1, b3); a4 = _mm_add_epi16(b4, b6); a5 = _mm_add_epi16(b5, b7); a6 = _mm_sub_epi16(b4, b6); a7 = _mm_sub_epi16(b5, b7); if (iter == 0) { b0 = _mm_add_epi16(a0, a4); b7 = _mm_add_epi16(a1, a5); b3 = _mm_add_epi16(a2, a6); b4 = _mm_add_epi16(a3, a7); b2 = _mm_sub_epi16(a0, a4); b6 = _mm_sub_epi16(a1, a5); b1 = _mm_sub_epi16(a2, a6); b5 = _mm_sub_epi16(a3, a7); a0 = _mm_unpacklo_epi16(b0, b1); a1 = _mm_unpacklo_epi16(b2, b3); a2 = _mm_unpackhi_epi16(b0, b1); a3 = _mm_unpackhi_epi16(b2, b3); a4 = _mm_unpacklo_epi16(b4, b5); a5 = _mm_unpacklo_epi16(b6, b7); a6 = _mm_unpackhi_epi16(b4, b5); a7 = _mm_unpackhi_epi16(b6, b7); b0 = _mm_unpacklo_epi32(a0, a1); b1 = _mm_unpacklo_epi32(a4, a5); b2 = _mm_unpackhi_epi32(a0, a1); b3 = _mm_unpackhi_epi32(a4, a5); b4 = _mm_unpacklo_epi32(a2, a3); b5 = _mm_unpacklo_epi32(a6, a7); b6 = _mm_unpackhi_epi32(a2, a3); b7 = _mm_unpackhi_epi32(a6, a7); in[0] = _mm_unpacklo_epi64(b0, b1); in[1] = _mm_unpackhi_epi64(b0, b1); in[2] = _mm_unpacklo_epi64(b2, b3); in[3] = _mm_unpackhi_epi64(b2, b3); in[4] = _mm_unpacklo_epi64(b4, b5); in[5] = _mm_unpackhi_epi64(b4, b5); in[6] = _mm_unpacklo_epi64(b6, b7); in[7] = _mm_unpackhi_epi64(b6, b7); } else { in[0] = _mm_add_epi16(a0, a4); in[7] = _mm_add_epi16(a1, a5); in[3] = _mm_add_epi16(a2, a6); in[4] = _mm_add_epi16(a3, a7); in[2] = _mm_sub_epi16(a0, a4); in[6] = _mm_sub_epi16(a1, a5); in[1] = _mm_sub_epi16(a2, a6); in[5] = _mm_sub_epi16(a3, a7); } } static INLINE void hadamard_8x8_sse2(const int16_t *src_diff, ptrdiff_t src_stride, tran_low_t *coeff, int is_final) { __m128i src[8]; src[0] = _mm_load_si128((const __m128i *)src_diff); src[1] = _mm_load_si128((const __m128i *)(src_diff += src_stride)); src[2] = _mm_load_si128((const __m128i *)(src_diff += src_stride)); src[3] = _mm_load_si128((const __m128i *)(src_diff += src_stride)); src[4] = _mm_load_si128((const __m128i *)(src_diff += src_stride)); src[5] = _mm_load_si128((const __m128i *)(src_diff += src_stride)); src[6] = _mm_load_si128((const __m128i *)(src_diff += src_stride)); src[7] = _mm_load_si128((const __m128i *)(src_diff + src_stride)); hadamard_col8_sse2(src, 0); hadamard_col8_sse2(src, 1); if (is_final) { store_tran_low(src[0], coeff); coeff += 8; store_tran_low(src[1], coeff); coeff += 8; store_tran_low(src[2], coeff); coeff += 8; store_tran_low(src[3], coeff); coeff += 8; store_tran_low(src[4], coeff); coeff += 8; store_tran_low(src[5], coeff); coeff += 8; store_tran_low(src[6], coeff); coeff += 8; store_tran_low(src[7], coeff); } else { int16_t *coeff16 = (int16_t *)coeff; _mm_store_si128((__m128i *)coeff16, src[0]); coeff16 += 8; _mm_store_si128((__m128i *)coeff16, src[1]); coeff16 += 8; _mm_store_si128((__m128i *)coeff16, src[2]); coeff16 += 8; _mm_store_si128((__m128i *)coeff16, src[3]); coeff16 += 8; _mm_store_si128((__m128i *)coeff16, src[4]); coeff16 += 8; _mm_store_si128((__m128i *)coeff16, src[5]); coeff16 += 8; _mm_store_si128((__m128i *)coeff16, src[6]); coeff16 += 8; _mm_store_si128((__m128i *)coeff16, src[7]); } } void aom_hadamard_8x8_sse2(const int16_t *src_diff, ptrdiff_t src_stride, tran_low_t *coeff) { hadamard_8x8_sse2(src_diff, src_stride, coeff, 1); } static INLINE void hadamard_lp_8x8_sse2(const int16_t *src_diff, ptrdiff_t src_stride, int16_t *coeff) { __m128i src[8]; src[0] = _mm_load_si128((const __m128i *)src_diff); src[1] = _mm_load_si128((const __m128i *)(src_diff += src_stride)); src[2] = _mm_load_si128((const __m128i *)(src_diff += src_stride)); src[3] = _mm_load_si128((const __m128i *)(src_diff += src_stride)); src[4] = _mm_load_si128((const __m128i *)(src_diff += src_stride)); src[5] = _mm_load_si128((const __m128i *)(src_diff += src_stride)); src[6] = _mm_load_si128((const __m128i *)(src_diff += src_stride)); src[7] = _mm_load_si128((const __m128i *)(src_diff + src_stride)); hadamard_col8_sse2(src, 0); hadamard_col8_sse2(src, 1); _mm_store_si128((__m128i *)coeff, src[0]); coeff += 8; _mm_store_si128((__m128i *)coeff, src[1]); coeff += 8; _mm_store_si128((__m128i *)coeff, src[2]); coeff += 8; _mm_store_si128((__m128i *)coeff, src[3]); coeff += 8; _mm_store_si128((__m128i *)coeff, src[4]); coeff += 8; _mm_store_si128((__m128i *)coeff, src[5]); coeff += 8; _mm_store_si128((__m128i *)coeff, src[6]); coeff += 8; _mm_store_si128((__m128i *)coeff, src[7]); } void aom_hadamard_lp_8x8_sse2(const int16_t *src_diff, ptrdiff_t src_stride, int16_t *coeff) { hadamard_lp_8x8_sse2(src_diff, src_stride, coeff); } void aom_hadamard_lp_8x8_dual_sse2(const int16_t *src_diff, ptrdiff_t src_stride, int16_t *coeff) { for (int i = 0; i < 2; i++) { hadamard_lp_8x8_sse2(src_diff + (i * 8), src_stride, coeff + (i * 64)); } } void aom_hadamard_lp_16x16_sse2(const int16_t *src_diff, ptrdiff_t src_stride, int16_t *coeff) { for (int idx = 0; idx < 4; ++idx) { const int16_t *src_ptr = src_diff + (idx >> 1) * 8 * src_stride + (idx & 0x01) * 8; hadamard_lp_8x8_sse2(src_ptr, src_stride, coeff + idx * 64); } int16_t *t_coeff = coeff; for (int idx = 0; idx < 64; idx += 8) { __m128i coeff0 = _mm_load_si128((const __m128i *)t_coeff); __m128i coeff1 = _mm_load_si128((const __m128i *)(t_coeff + 64)); __m128i coeff2 = _mm_load_si128((const __m128i *)(t_coeff + 128)); __m128i coeff3 = _mm_load_si128((const __m128i *)(t_coeff + 192)); __m128i b0 = _mm_add_epi16(coeff0, coeff1); __m128i b1 = _mm_sub_epi16(coeff0, coeff1); __m128i b2 = _mm_add_epi16(coeff2, coeff3); __m128i b3 = _mm_sub_epi16(coeff2, coeff3); b0 = _mm_srai_epi16(b0, 1); b1 = _mm_srai_epi16(b1, 1); b2 = _mm_srai_epi16(b2, 1); b3 = _mm_srai_epi16(b3, 1); coeff0 = _mm_add_epi16(b0, b2); coeff1 = _mm_add_epi16(b1, b3); coeff2 = _mm_sub_epi16(b0, b2); coeff3 = _mm_sub_epi16(b1, b3); _mm_store_si128((__m128i *)t_coeff, coeff0); _mm_store_si128((__m128i *)(t_coeff + 64), coeff1); _mm_store_si128((__m128i *)(t_coeff + 128), coeff2); _mm_store_si128((__m128i *)(t_coeff + 192), coeff3); t_coeff += 8; } } static INLINE void hadamard_16x16_sse2(const int16_t *src_diff, ptrdiff_t src_stride, tran_low_t *coeff, int is_final) { // For high bitdepths, it is unnecessary to store_tran_low // (mult/unpack/store), then load_tran_low (load/pack) the same memory in the // next stage. Output to an intermediate buffer first, then store_tran_low() // in the final stage. DECLARE_ALIGNED(32, int16_t, temp_coeff[16 * 16]); int16_t *t_coeff = temp_coeff; int16_t *coeff16 = (int16_t *)coeff; int idx; for (idx = 0; idx < 4; ++idx) { const int16_t *src_ptr = src_diff + (idx >> 1) * 8 * src_stride + (idx & 0x01) * 8; hadamard_8x8_sse2(src_ptr, src_stride, (tran_low_t *)(t_coeff + idx * 64), 0); } for (idx = 0; idx < 64; idx += 8) { __m128i coeff0 = _mm_load_si128((const __m128i *)t_coeff); __m128i coeff1 = _mm_load_si128((const __m128i *)(t_coeff + 64)); __m128i coeff2 = _mm_load_si128((const __m128i *)(t_coeff + 128)); __m128i coeff3 = _mm_load_si128((const __m128i *)(t_coeff + 192)); __m128i b0 = _mm_add_epi16(coeff0, coeff1); __m128i b1 = _mm_sub_epi16(coeff0, coeff1); __m128i b2 = _mm_add_epi16(coeff2, coeff3); __m128i b3 = _mm_sub_epi16(coeff2, coeff3); b0 = _mm_srai_epi16(b0, 1); b1 = _mm_srai_epi16(b1, 1); b2 = _mm_srai_epi16(b2, 1); b3 = _mm_srai_epi16(b3, 1); coeff0 = _mm_add_epi16(b0, b2); coeff1 = _mm_add_epi16(b1, b3); coeff2 = _mm_sub_epi16(b0, b2); coeff3 = _mm_sub_epi16(b1, b3); if (is_final) { store_tran_low_offset_4(coeff0, coeff); store_tran_low_offset_4(coeff1, coeff + 64); store_tran_low_offset_4(coeff2, coeff + 128); store_tran_low_offset_4(coeff3, coeff + 192); coeff += 4; } else { _mm_store_si128((__m128i *)coeff16, coeff0); _mm_store_si128((__m128i *)(coeff16 + 64), coeff1); _mm_store_si128((__m128i *)(coeff16 + 128), coeff2); _mm_store_si128((__m128i *)(coeff16 + 192), coeff3); coeff16 += 8; } t_coeff += 8; // Increment the pointer additionally by 0 and 8 in alternate // iterations(instead of 8) to ensure the coherency with the implementation // of store_tran_low_offset_4() coeff += (((idx >> 3) & 1) << 3); } } void aom_hadamard_16x16_sse2(const int16_t *src_diff, ptrdiff_t src_stride, tran_low_t *coeff) { hadamard_16x16_sse2(src_diff, src_stride, coeff, 1); } void aom_hadamard_32x32_sse2(const int16_t *src_diff, ptrdiff_t src_stride, tran_low_t *coeff) { // For high bitdepths, it is unnecessary to store_tran_low // (mult/unpack/store), then load_tran_low (load/pack) the same memory in the // next stage. Output to an intermediate buffer first, then store_tran_low() // in the final stage. DECLARE_ALIGNED(32, int16_t, temp_coeff[32 * 32]); int16_t *t_coeff = temp_coeff; int idx; __m128i coeff0_lo, coeff1_lo, coeff2_lo, coeff3_lo, b0_lo, b1_lo, b2_lo, b3_lo; __m128i coeff0_hi, coeff1_hi, coeff2_hi, coeff3_hi, b0_hi, b1_hi, b2_hi, b3_hi; __m128i b0, b1, b2, b3; const __m128i zero = _mm_setzero_si128(); for (idx = 0; idx < 4; ++idx) { const int16_t *src_ptr = src_diff + (idx >> 1) * 16 * src_stride + (idx & 0x01) * 16; hadamard_16x16_sse2(src_ptr, src_stride, (tran_low_t *)(t_coeff + idx * 256), 0); } for (idx = 0; idx < 256; idx += 8) { __m128i coeff0 = _mm_load_si128((const __m128i *)t_coeff); __m128i coeff1 = _mm_load_si128((const __m128i *)(t_coeff + 256)); __m128i coeff2 = _mm_load_si128((const __m128i *)(t_coeff + 512)); __m128i coeff3 = _mm_load_si128((const __m128i *)(t_coeff + 768)); // Sign extend 16 bit to 32 bit. sign_extend_16bit_to_32bit_sse2(coeff0, zero, &coeff0_lo, &coeff0_hi); sign_extend_16bit_to_32bit_sse2(coeff1, zero, &coeff1_lo, &coeff1_hi); sign_extend_16bit_to_32bit_sse2(coeff2, zero, &coeff2_lo, &coeff2_hi); sign_extend_16bit_to_32bit_sse2(coeff3, zero, &coeff3_lo, &coeff3_hi); b0_lo = _mm_add_epi32(coeff0_lo, coeff1_lo); b0_hi = _mm_add_epi32(coeff0_hi, coeff1_hi); b1_lo = _mm_sub_epi32(coeff0_lo, coeff1_lo); b1_hi = _mm_sub_epi32(coeff0_hi, coeff1_hi); b2_lo = _mm_add_epi32(coeff2_lo, coeff3_lo); b2_hi = _mm_add_epi32(coeff2_hi, coeff3_hi); b3_lo = _mm_sub_epi32(coeff2_lo, coeff3_lo); b3_hi = _mm_sub_epi32(coeff2_hi, coeff3_hi); b0_lo = _mm_srai_epi32(b0_lo, 2); b1_lo = _mm_srai_epi32(b1_lo, 2); b2_lo = _mm_srai_epi32(b2_lo, 2); b3_lo = _mm_srai_epi32(b3_lo, 2); b0_hi = _mm_srai_epi32(b0_hi, 2); b1_hi = _mm_srai_epi32(b1_hi, 2); b2_hi = _mm_srai_epi32(b2_hi, 2); b3_hi = _mm_srai_epi32(b3_hi, 2); b0 = _mm_packs_epi32(b0_lo, b0_hi); b1 = _mm_packs_epi32(b1_lo, b1_hi); b2 = _mm_packs_epi32(b2_lo, b2_hi); b3 = _mm_packs_epi32(b3_lo, b3_hi); coeff0 = _mm_add_epi16(b0, b2); coeff1 = _mm_add_epi16(b1, b3); store_tran_low_offset_4(coeff0, coeff); store_tran_low_offset_4(coeff1, coeff + 256); coeff2 = _mm_sub_epi16(b0, b2); coeff3 = _mm_sub_epi16(b1, b3); store_tran_low_offset_4(coeff2, coeff + 512); store_tran_low_offset_4(coeff3, coeff + 768); // Increment the pointer by 4 and 12 in alternate iterations(instead of 8) // to ensure the coherency with the implementation of // store_tran_low_offset_4() coeff += (4 + (((idx >> 3) & 1) << 3)); t_coeff += 8; } } int aom_satd_sse2(const tran_low_t *coeff, int length) { int i; const __m128i zero = _mm_setzero_si128(); __m128i accum = zero; for (i = 0; i < length; i += 4) { const __m128i src_line = _mm_load_si128((const __m128i *)coeff); const __m128i coeff_sign = _mm_srai_epi32(src_line, 31); const __m128i abs_coeff = invert_sign_32_sse2(src_line, coeff_sign); accum = _mm_add_epi32(accum, abs_coeff); coeff += 4; } { // cascading summation of accum __m128i hi = _mm_srli_si128(accum, 8); accum = _mm_add_epi32(accum, hi); hi = _mm_srli_epi64(accum, 32); accum = _mm_add_epi32(accum, hi); } return _mm_cvtsi128_si32(accum); } int aom_satd_lp_sse2(const int16_t *coeff, int length) { const __m128i zero = _mm_setzero_si128(); const __m128i one = _mm_set1_epi16(1); __m128i accum = zero; for (int i = 0; i < length; i += 16) { const __m128i src_line0 = _mm_loadu_si128((const __m128i *)coeff); const __m128i src_line1 = _mm_loadu_si128((const __m128i *)(coeff + 8)); const __m128i inv0 = _mm_sub_epi16(zero, src_line0); const __m128i inv1 = _mm_sub_epi16(zero, src_line1); const __m128i abs0 = _mm_max_epi16(src_line0, inv0); // abs(src_line) const __m128i abs1 = _mm_max_epi16(src_line1, inv1); // abs(src_line) const __m128i sum0 = _mm_madd_epi16(abs0, one); const __m128i sum1 = _mm_madd_epi16(abs1, one); accum = _mm_add_epi32(accum, sum0); accum = _mm_add_epi32(accum, sum1); coeff += 16; } { // cascading summation of accum __m128i hi = _mm_srli_si128(accum, 8); accum = _mm_add_epi32(accum, hi); hi = _mm_srli_epi64(accum, 32); accum = _mm_add_epi32(accum, hi); } return _mm_cvtsi128_si32(accum); } void aom_int_pro_row_sse2(int16_t *hbuf, const uint8_t *ref, const int ref_stride, const int width, const int height, int norm_factor) { // SIMD implementation assumes width and height to be multiple of 16 and 2 // respectively. For any odd width or height, SIMD support needs to be added. assert(width % 16 == 0 && height % 2 == 0); __m128i zero = _mm_setzero_si128(); for (int wd = 0; wd < width; wd += 16) { const uint8_t *ref_tmp = ref + wd; int16_t *hbuf_tmp = hbuf + wd; __m128i s0 = zero; __m128i s1 = zero; int idx = 0; do { __m128i src_line = _mm_loadu_si128((const __m128i *)ref_tmp); __m128i t0 = _mm_unpacklo_epi8(src_line, zero); __m128i t1 = _mm_unpackhi_epi8(src_line, zero); s0 = _mm_add_epi16(s0, t0); s1 = _mm_add_epi16(s1, t1); ref_tmp += ref_stride; src_line = _mm_loadu_si128((const __m128i *)ref_tmp); t0 = _mm_unpacklo_epi8(src_line, zero); t1 = _mm_unpackhi_epi8(src_line, zero); s0 = _mm_add_epi16(s0, t0); s1 = _mm_add_epi16(s1, t1); ref_tmp += ref_stride; idx += 2; } while (idx < height); s0 = _mm_srai_epi16(s0, norm_factor); s1 = _mm_srai_epi16(s1, norm_factor); _mm_storeu_si128((__m128i *)(hbuf_tmp), s0); _mm_storeu_si128((__m128i *)(hbuf_tmp + 8), s1); } } void aom_int_pro_col_sse2(int16_t *vbuf, const uint8_t *ref, const int ref_stride, const int width, const int height, int norm_factor) { // SIMD implementation assumes width to be multiple of 16. assert(width % 16 == 0); for (int ht = 0; ht < height; ht++) { const uint8_t *ref_tmp = ref + (ht * ref_stride); __m128i zero = _mm_setzero_si128(); __m128i s0 = zero; __m128i s1, src_line; for (int i = 0; i < width; i += 16) { src_line = _mm_loadu_si128((const __m128i *)ref_tmp); s1 = _mm_sad_epu8(src_line, zero); s0 = _mm_add_epi16(s0, s1); ref_tmp += 16; } s1 = _mm_srli_si128(s0, 8); s0 = _mm_add_epi16(s0, s1); vbuf[ht] = _mm_cvtsi128_si32(s0) >> norm_factor; } }