/* * Copyright (c) 2019, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include "config/aom_dsp_rtcd.h" static INLINE void accumulate_sse_sum(__m256i regx_sum, __m256i regx2_sum, int *x_sum, int64_t *x2_sum) { __m256i sum_buffer, sse_buffer; __m128i out_buffer; // Accumulate the various elements of register into first element. sum_buffer = _mm256_permute2f128_si256(regx_sum, regx_sum, 1); regx_sum = _mm256_add_epi32(sum_buffer, regx_sum); regx_sum = _mm256_add_epi32(regx_sum, _mm256_srli_si256(regx_sum, 8)); regx_sum = _mm256_add_epi32(regx_sum, _mm256_srli_si256(regx_sum, 4)); sse_buffer = _mm256_permute2f128_si256(regx2_sum, regx2_sum, 1); regx2_sum = _mm256_add_epi64(sse_buffer, regx2_sum); regx2_sum = _mm256_add_epi64(regx2_sum, _mm256_srli_si256(regx2_sum, 8)); out_buffer = _mm256_castsi256_si128(regx_sum); *x_sum += _mm_cvtsi128_si32(out_buffer); out_buffer = _mm256_castsi256_si128(regx2_sum); #if AOM_ARCH_X86_64 *x2_sum += _mm_cvtsi128_si64(out_buffer); #else { int64_t tmp; _mm_storel_epi64((__m128i *)&tmp, out_buffer); *x2_sum += tmp; } #endif } static INLINE void sse_sum_wd4_avx2(const int16_t *data, int stride, int bh, int *x_sum, int64_t *x2_sum) { __m128i row1, row2, row3; __m256i regx_sum, regx2_sum, load_pixels, sum_buffer, sse_buffer, temp_buffer1, temp_buffer2, row_sum_buffer, row_sse_buffer; const int16_t *data_tmp = data; __m256i one = _mm256_set1_epi16(1); regx_sum = _mm256_setzero_si256(); regx2_sum = regx_sum; sum_buffer = _mm256_setzero_si256(); sse_buffer = sum_buffer; for (int j = 0; j < (bh >> 2); ++j) { // Load 4 rows at a time. row1 = _mm_loadl_epi64((__m128i const *)(data_tmp)); row2 = _mm_loadl_epi64((__m128i const *)(data_tmp + stride)); row1 = _mm_unpacklo_epi64(row1, row2); row2 = _mm_loadl_epi64((__m128i const *)(data_tmp + 2 * stride)); row3 = _mm_loadl_epi64((__m128i const *)(data_tmp + 3 * stride)); row2 = _mm_unpacklo_epi64(row2, row3); load_pixels = _mm256_insertf128_si256(_mm256_castsi128_si256(row1), row2, 1); row_sum_buffer = _mm256_madd_epi16(load_pixels, one); row_sse_buffer = _mm256_madd_epi16(load_pixels, load_pixels); sum_buffer = _mm256_add_epi32(row_sum_buffer, sum_buffer); sse_buffer = _mm256_add_epi32(row_sse_buffer, sse_buffer); data_tmp += 4 * stride; } // To prevent 32-bit variable overflow, unpack the elements to 64-bit. temp_buffer1 = _mm256_unpacklo_epi32(sse_buffer, _mm256_setzero_si256()); temp_buffer2 = _mm256_unpackhi_epi32(sse_buffer, _mm256_setzero_si256()); sse_buffer = _mm256_add_epi64(temp_buffer1, temp_buffer2); regx_sum = _mm256_add_epi32(sum_buffer, regx_sum); regx2_sum = _mm256_add_epi64(sse_buffer, regx2_sum); accumulate_sse_sum(regx_sum, regx2_sum, x_sum, x2_sum); } static INLINE void sse_sum_wd8_avx2(const int16_t *data, int stride, int bh, int *x_sum, int64_t *x2_sum) { __m128i load_128bit, load_next_128bit; __m256i regx_sum, regx2_sum, load_pixels, sum_buffer, sse_buffer, temp_buffer1, temp_buffer2, row_sum_buffer, row_sse_buffer; const int16_t *data_tmp = data; __m256i one = _mm256_set1_epi16(1); regx_sum = _mm256_setzero_si256(); regx2_sum = regx_sum; sum_buffer = _mm256_setzero_si256(); sse_buffer = sum_buffer; for (int j = 0; j < (bh >> 1); ++j) { // Load 2 rows at a time. load_128bit = _mm_loadu_si128((__m128i const *)(data_tmp)); load_next_128bit = _mm_loadu_si128((__m128i const *)(data_tmp + stride)); load_pixels = _mm256_insertf128_si256(_mm256_castsi128_si256(load_128bit), load_next_128bit, 1); row_sum_buffer = _mm256_madd_epi16(load_pixels, one); row_sse_buffer = _mm256_madd_epi16(load_pixels, load_pixels); sum_buffer = _mm256_add_epi32(row_sum_buffer, sum_buffer); sse_buffer = _mm256_add_epi32(row_sse_buffer, sse_buffer); data_tmp += 2 * stride; } temp_buffer1 = _mm256_unpacklo_epi32(sse_buffer, _mm256_setzero_si256()); temp_buffer2 = _mm256_unpackhi_epi32(sse_buffer, _mm256_setzero_si256()); sse_buffer = _mm256_add_epi64(temp_buffer1, temp_buffer2); regx_sum = _mm256_add_epi32(sum_buffer, regx_sum); regx2_sum = _mm256_add_epi64(sse_buffer, regx2_sum); accumulate_sse_sum(regx_sum, regx2_sum, x_sum, x2_sum); } static INLINE void sse_sum_wd16_avx2(const int16_t *data, int stride, int bh, int *x_sum, int64_t *x2_sum, int loop_count) { __m256i regx_sum, regx2_sum, load_pixels, sum_buffer, sse_buffer, temp_buffer1, temp_buffer2, row_sum_buffer, row_sse_buffer; const int16_t *data_tmp = data; __m256i one = _mm256_set1_epi16(1); regx_sum = _mm256_setzero_si256(); regx2_sum = regx_sum; sum_buffer = _mm256_setzero_si256(); sse_buffer = sum_buffer; for (int i = 0; i < loop_count; ++i) { data_tmp = data + 16 * i; for (int j = 0; j < bh; ++j) { load_pixels = _mm256_lddqu_si256((__m256i const *)(data_tmp)); row_sum_buffer = _mm256_madd_epi16(load_pixels, one); row_sse_buffer = _mm256_madd_epi16(load_pixels, load_pixels); sum_buffer = _mm256_add_epi32(row_sum_buffer, sum_buffer); sse_buffer = _mm256_add_epi32(row_sse_buffer, sse_buffer); data_tmp += stride; } } temp_buffer1 = _mm256_unpacklo_epi32(sse_buffer, _mm256_setzero_si256()); temp_buffer2 = _mm256_unpackhi_epi32(sse_buffer, _mm256_setzero_si256()); sse_buffer = _mm256_add_epi64(temp_buffer1, temp_buffer2); regx_sum = _mm256_add_epi32(sum_buffer, regx_sum); regx2_sum = _mm256_add_epi64(sse_buffer, regx2_sum); accumulate_sse_sum(regx_sum, regx2_sum, x_sum, x2_sum); } void aom_get_blk_sse_sum_avx2(const int16_t *data, int stride, int bw, int bh, int *x_sum, int64_t *x2_sum) { *x_sum = 0; *x2_sum = 0; if ((bh & 3) == 0) { switch (bw) { // For smaller block widths, compute multiple rows simultaneously. case 4: sse_sum_wd4_avx2(data, stride, bh, x_sum, x2_sum); break; case 8: sse_sum_wd8_avx2(data, stride, bh, x_sum, x2_sum); break; case 16: case 32: sse_sum_wd16_avx2(data, stride, bh, x_sum, x2_sum, bw >> 4); break; case 64: // 32-bit variables will overflow for 64 rows at a single time, so // compute 32 rows at a time. if (bh <= 32) { sse_sum_wd16_avx2(data, stride, bh, x_sum, x2_sum, bw >> 4); } else { sse_sum_wd16_avx2(data, stride, 32, x_sum, x2_sum, bw >> 4); sse_sum_wd16_avx2(data + 32 * stride, stride, 32, x_sum, x2_sum, bw >> 4); } break; default: aom_get_blk_sse_sum_c(data, stride, bw, bh, x_sum, x2_sum); } } else { aom_get_blk_sse_sum_c(data, stride, bw, bh, x_sum, x2_sum); } }