/* * Copyright (c) 2019, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include "config/aom_dsp_rtcd.h" #include "aom/aom_integer.h" #include "aom_dsp/quantize.h" #include "aom_dsp/x86/quantize_x86.h" static INLINE void highbd_load_b_values_avx2( const int16_t *zbin_ptr, __m256i *zbin, const int16_t *round_ptr, __m256i *round, const int16_t *quant_ptr, __m256i *quant, const int16_t *dequant_ptr, __m256i *dequant, const int16_t *shift_ptr, __m256i *shift) { *zbin = _mm256_cvtepi16_epi32(_mm_load_si128((const __m128i *)zbin_ptr)); *zbin = _mm256_sub_epi32(*zbin, _mm256_set1_epi32(1)); *round = _mm256_cvtepi16_epi32(_mm_load_si128((const __m128i *)round_ptr)); *quant = _mm256_cvtepi16_epi32(_mm_load_si128((const __m128i *)quant_ptr)); *dequant = _mm256_cvtepi16_epi32(_mm_load_si128((const __m128i *)dequant_ptr)); *shift = _mm256_cvtepi16_epi32(_mm_load_si128((const __m128i *)shift_ptr)); } static INLINE void highbd_update_mask1_avx2(__m256i *cmp_mask, const int16_t *iscan_ptr, int *is_found, __m256i *mask) { __m256i temp_mask = _mm256_setzero_si256(); if (_mm256_movemask_epi8(*cmp_mask)) { __m256i iscan = _mm256_loadu_si256((const __m256i *)(iscan_ptr)); temp_mask = _mm256_and_si256(*cmp_mask, iscan); *is_found = 1; } *mask = _mm256_max_epi16(temp_mask, *mask); } static INLINE void highbd_update_mask0_avx2(__m256i *qcoeff0, __m256i *qcoeff1, __m256i *threshold, const int16_t *iscan_ptr, int *is_found, __m256i *mask) { __m256i coeff[2], cmp_mask0, cmp_mask1; coeff[0] = _mm256_slli_epi32(*qcoeff0, AOM_QM_BITS); cmp_mask0 = _mm256_cmpgt_epi32(coeff[0], threshold[0]); coeff[1] = _mm256_slli_epi32(*qcoeff1, AOM_QM_BITS); cmp_mask1 = _mm256_cmpgt_epi32(coeff[1], threshold[1]); cmp_mask0 = _mm256_permute4x64_epi64(_mm256_packs_epi32(cmp_mask0, cmp_mask1), 0xd8); highbd_update_mask1_avx2(&cmp_mask0, iscan_ptr, is_found, mask); } static INLINE void highbd_mul_shift_avx2(const __m256i *x, const __m256i *y, __m256i *p, const int shift) { __m256i prod_lo = _mm256_mul_epi32(*x, *y); __m256i prod_hi = _mm256_srli_epi64(*x, 32); const __m256i mult_hi = _mm256_srli_epi64(*y, 32); prod_hi = _mm256_mul_epi32(prod_hi, mult_hi); prod_lo = _mm256_srli_epi64(prod_lo, shift); prod_hi = _mm256_srli_epi64(prod_hi, shift); prod_hi = _mm256_slli_epi64(prod_hi, 32); *p = _mm256_blend_epi32(prod_lo, prod_hi, 0xaa); } static INLINE void highbd_calculate_qcoeff_avx2(__m256i *coeff, const __m256i *round, const __m256i *quant, const __m256i *shift, const int *log_scale) { __m256i tmp, qcoeff; qcoeff = _mm256_add_epi32(*coeff, *round); highbd_mul_shift_avx2(&qcoeff, quant, &tmp, 16); qcoeff = _mm256_add_epi32(tmp, qcoeff); highbd_mul_shift_avx2(&qcoeff, shift, coeff, 16 - *log_scale); } static INLINE __m256i highbd_calculate_dqcoeff_avx2(__m256i qcoeff, __m256i dequant) { return _mm256_mullo_epi32(qcoeff, dequant); } static INLINE __m256i highbd_calculate_dqcoeff_log_scale_avx2( __m256i qcoeff, __m256i dequant, const int log_scale) { __m256i abs_coeff = _mm256_abs_epi32(qcoeff); highbd_mul_shift_avx2(&abs_coeff, &dequant, &abs_coeff, log_scale); return _mm256_sign_epi32(abs_coeff, qcoeff); } static INLINE void highbd_store_coefficients_avx2(__m256i coeff0, __m256i coeff1, tran_low_t *coeff_ptr) { _mm256_store_si256((__m256i *)(coeff_ptr), coeff0); _mm256_store_si256((__m256i *)(coeff_ptr + 8), coeff1); } void aom_highbd_quantize_b_adaptive_avx2( const tran_low_t *coeff_ptr, intptr_t n_coeffs, const int16_t *zbin_ptr, const int16_t *round_ptr, const int16_t *quant_ptr, const int16_t *quant_shift_ptr, tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, uint16_t *eob_ptr, const int16_t *scan, const int16_t *iscan) { int index = 16; int non_zero_count = 0; int non_zero_count_prescan_add_zero = 0; int is_found0 = 0, is_found1 = 0; int eob = -1; const __m256i zero = _mm256_setzero_si256(); __m256i zbin, round, quant, dequant, shift; __m256i coeff0, qcoeff0, coeff1, qcoeff1; __m256i cmp_mask, mask0 = zero, mask1 = zero; __m128i temp_mask0, temp_mask1; int prescan_add[2]; int thresh[2]; const int log_scale = 0; const qm_val_t wt = (1 << AOM_QM_BITS); for (int i = 0; i < 2; ++i) { prescan_add[i] = ROUND_POWER_OF_TWO(dequant_ptr[i] * EOB_FACTOR, 7); thresh[i] = (zbin_ptr[i] * wt + prescan_add[i]) - 1; } __m256i threshold[2]; threshold[0] = _mm256_set1_epi32(thresh[0]); threshold[1] = _mm256_set1_epi32(thresh[1]); threshold[0] = _mm256_blend_epi32(threshold[0], threshold[1], 0xfe); #if SKIP_EOB_FACTOR_ADJUST int first = -1; #endif // Setup global values. highbd_load_b_values_avx2(zbin_ptr, &zbin, round_ptr, &round, quant_ptr, &quant, dequant_ptr, &dequant, quant_shift_ptr, &shift); // Do DC and first 15 AC. coeff0 = _mm256_load_si256((__m256i *)(coeff_ptr)); qcoeff0 = _mm256_abs_epi32(coeff0); coeff1 = _mm256_load_si256((__m256i *)(coeff_ptr + 8)); qcoeff1 = _mm256_abs_epi32(coeff1); highbd_update_mask0_avx2(&qcoeff0, &qcoeff1, threshold, iscan, &is_found0, &mask0); __m256i temp0 = _mm256_cmpgt_epi32(qcoeff0, zbin); zbin = _mm256_unpackhi_epi64(zbin, zbin); __m256i temp1 = _mm256_cmpgt_epi32(qcoeff1, zbin); cmp_mask = _mm256_permute4x64_epi64(_mm256_packs_epi32(temp0, temp1), 0xd8); highbd_update_mask1_avx2(&cmp_mask, iscan, &is_found1, &mask1); threshold[0] = threshold[1]; if (_mm256_movemask_epi8(cmp_mask) == 0) { _mm256_store_si256((__m256i *)(qcoeff_ptr), zero); _mm256_store_si256((__m256i *)(qcoeff_ptr + 8), zero); _mm256_store_si256((__m256i *)(dqcoeff_ptr), zero); _mm256_store_si256((__m256i *)(dqcoeff_ptr + 8), zero); round = _mm256_unpackhi_epi64(round, round); quant = _mm256_unpackhi_epi64(quant, quant); shift = _mm256_unpackhi_epi64(shift, shift); dequant = _mm256_unpackhi_epi64(dequant, dequant); } else { highbd_calculate_qcoeff_avx2(&qcoeff0, &round, &quant, &shift, &log_scale); round = _mm256_unpackhi_epi64(round, round); quant = _mm256_unpackhi_epi64(quant, quant); shift = _mm256_unpackhi_epi64(shift, shift); highbd_calculate_qcoeff_avx2(&qcoeff1, &round, &quant, &shift, &log_scale); // Reinsert signs qcoeff0 = _mm256_sign_epi32(qcoeff0, coeff0); qcoeff1 = _mm256_sign_epi32(qcoeff1, coeff1); // Mask out zbin threshold coeffs qcoeff0 = _mm256_and_si256(qcoeff0, temp0); qcoeff1 = _mm256_and_si256(qcoeff1, temp1); highbd_store_coefficients_avx2(qcoeff0, qcoeff1, qcoeff_ptr); coeff0 = highbd_calculate_dqcoeff_avx2(qcoeff0, dequant); dequant = _mm256_unpackhi_epi64(dequant, dequant); coeff1 = highbd_calculate_dqcoeff_avx2(qcoeff1, dequant); highbd_store_coefficients_avx2(coeff0, coeff1, dqcoeff_ptr); } // AC only loop. while (index < n_coeffs) { coeff0 = _mm256_load_si256((__m256i *)(coeff_ptr + index)); qcoeff0 = _mm256_abs_epi32(coeff0); coeff1 = _mm256_load_si256((__m256i *)(coeff_ptr + index + 8)); qcoeff1 = _mm256_abs_epi32(coeff1); highbd_update_mask0_avx2(&qcoeff0, &qcoeff1, threshold, iscan + index, &is_found0, &mask0); temp0 = _mm256_cmpgt_epi32(qcoeff0, zbin); temp1 = _mm256_cmpgt_epi32(qcoeff1, zbin); cmp_mask = _mm256_permute4x64_epi64(_mm256_packs_epi32(temp0, temp1), 0xd8); highbd_update_mask1_avx2(&cmp_mask, iscan + index, &is_found1, &mask1); if (_mm256_movemask_epi8(cmp_mask) == 0) { _mm256_store_si256((__m256i *)(qcoeff_ptr + index), zero); _mm256_store_si256((__m256i *)(qcoeff_ptr + index + 8), zero); _mm256_store_si256((__m256i *)(dqcoeff_ptr + index), zero); _mm256_store_si256((__m256i *)(dqcoeff_ptr + index + 8), zero); index += 16; continue; } highbd_calculate_qcoeff_avx2(&qcoeff0, &round, &quant, &shift, &log_scale); highbd_calculate_qcoeff_avx2(&qcoeff1, &round, &quant, &shift, &log_scale); qcoeff0 = _mm256_sign_epi32(qcoeff0, coeff0); qcoeff1 = _mm256_sign_epi32(qcoeff1, coeff1); qcoeff0 = _mm256_and_si256(qcoeff0, temp0); qcoeff1 = _mm256_and_si256(qcoeff1, temp1); highbd_store_coefficients_avx2(qcoeff0, qcoeff1, qcoeff_ptr + index); coeff0 = highbd_calculate_dqcoeff_avx2(qcoeff0, dequant); coeff1 = highbd_calculate_dqcoeff_avx2(qcoeff1, dequant); highbd_store_coefficients_avx2(coeff0, coeff1, dqcoeff_ptr + index); index += 16; } if (is_found0) { temp_mask0 = _mm_max_epi16(_mm256_castsi256_si128(mask0), _mm256_extracti128_si256(mask0, 1)); non_zero_count = calculate_non_zero_count(temp_mask0); } if (is_found1) { temp_mask1 = _mm_max_epi16(_mm256_castsi256_si128(mask1), _mm256_extracti128_si256(mask1, 1)); non_zero_count_prescan_add_zero = calculate_non_zero_count(temp_mask1); } for (int i = non_zero_count_prescan_add_zero - 1; i >= non_zero_count; i--) { const int rc = scan[i]; qcoeff_ptr[rc] = 0; dqcoeff_ptr[rc] = 0; } for (int i = non_zero_count - 1; i >= 0; i--) { const int rc = scan[i]; if (qcoeff_ptr[rc]) { eob = i; break; } } *eob_ptr = eob + 1; #if SKIP_EOB_FACTOR_ADJUST // TODO(Aniket): Experiment the following loop with intrinsic by combining // with the quantization loop above for (int i = 0; i < non_zero_count; i++) { const int rc = scan[i]; const int qcoeff = qcoeff_ptr[rc]; if (qcoeff) { first = i; break; } } if ((*eob_ptr - 1) >= 0 && first == (*eob_ptr - 1)) { const int rc = scan[(*eob_ptr - 1)]; if (qcoeff_ptr[rc] == 1 || qcoeff_ptr[rc] == -1) { const int coeff = coeff_ptr[rc] * wt; const int coeff_sign = AOMSIGN(coeff); const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign; const int factor = EOB_FACTOR + SKIP_EOB_FACTOR_ADJUST; const int prescan_add_val = ROUND_POWER_OF_TWO(dequant_ptr[rc != 0] * factor, 7); if (abs_coeff < (zbin_ptr[rc != 0] * (1 << AOM_QM_BITS) + prescan_add_val)) { qcoeff_ptr[rc] = 0; dqcoeff_ptr[rc] = 0; *eob_ptr = 0; } } } #endif } void aom_highbd_quantize_b_32x32_adaptive_avx2( const tran_low_t *coeff_ptr, intptr_t n_coeffs, const int16_t *zbin_ptr, const int16_t *round_ptr, const int16_t *quant_ptr, const int16_t *quant_shift_ptr, tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, uint16_t *eob_ptr, const int16_t *scan, const int16_t *iscan) { int index = 16; int non_zero_count = 0; int non_zero_count_prescan_add_zero = 0; int is_found0 = 0, is_found1 = 0; int eob = -1; const int log_scale = 1; const __m256i zero = _mm256_setzero_si256(); __m256i zbin, round, quant, dequant, shift; __m256i coeff0, qcoeff0, coeff1, qcoeff1; __m256i cmp_mask, mask0 = zero, mask1 = zero; __m128i temp_mask0, temp_mask1; const __m256i one = _mm256_set1_epi32(1); const __m256i log_scale_vec = _mm256_set1_epi32(log_scale); int prescan_add[2]; int thresh[2]; const int zbins[2] = { ROUND_POWER_OF_TWO(zbin_ptr[0], log_scale), ROUND_POWER_OF_TWO(zbin_ptr[1], log_scale) }; const qm_val_t wt = (1 << AOM_QM_BITS); for (int i = 0; i < 2; ++i) { prescan_add[i] = ROUND_POWER_OF_TWO(dequant_ptr[i] * EOB_FACTOR, 7); thresh[i] = (zbins[i] * wt + prescan_add[i]) - 1; } __m256i threshold[2]; threshold[0] = _mm256_set1_epi32(thresh[0]); threshold[1] = _mm256_set1_epi32(thresh[1]); threshold[0] = _mm256_blend_epi32(threshold[0], threshold[1], 0xfe); #if SKIP_EOB_FACTOR_ADJUST int first = -1; #endif // Setup global values. zbin = _mm256_cvtepi16_epi32(_mm_load_si128((const __m128i *)zbin_ptr)); round = _mm256_cvtepi16_epi32(_mm_load_si128((const __m128i *)round_ptr)); quant = _mm256_cvtepi16_epi32(_mm_load_si128((const __m128i *)quant_ptr)); dequant = _mm256_cvtepi16_epi32(_mm_load_si128((const __m128i *)dequant_ptr)); shift = _mm256_cvtepi16_epi32(_mm_load_si128((const __m128i *)quant_shift_ptr)); // Shift with rounding. zbin = _mm256_add_epi32(zbin, log_scale_vec); round = _mm256_add_epi32(round, log_scale_vec); zbin = _mm256_srli_epi32(zbin, log_scale); round = _mm256_srli_epi32(round, log_scale); zbin = _mm256_sub_epi32(zbin, one); // Do DC and first 15 AC. coeff0 = _mm256_load_si256((__m256i *)(coeff_ptr)); qcoeff0 = _mm256_abs_epi32(coeff0); coeff1 = _mm256_load_si256((__m256i *)(coeff_ptr + 8)); qcoeff1 = _mm256_abs_epi32(coeff1); highbd_update_mask0_avx2(&qcoeff0, &qcoeff1, threshold, iscan, &is_found0, &mask0); __m256i temp0 = _mm256_cmpgt_epi32(qcoeff0, zbin); zbin = _mm256_permute2x128_si256(zbin, zbin, 0x11); __m256i temp1 = _mm256_cmpgt_epi32(qcoeff1, zbin); cmp_mask = _mm256_permute4x64_epi64(_mm256_packs_epi32(temp0, temp1), 0xd8); highbd_update_mask1_avx2(&cmp_mask, iscan, &is_found1, &mask1); threshold[0] = threshold[1]; if (_mm256_movemask_epi8(cmp_mask) == 0) { _mm256_store_si256((__m256i *)(qcoeff_ptr), zero); _mm256_store_si256((__m256i *)(qcoeff_ptr + 8), zero); _mm256_store_si256((__m256i *)(dqcoeff_ptr), zero); _mm256_store_si256((__m256i *)(dqcoeff_ptr + 8), zero); round = _mm256_permute2x128_si256(round, round, 0x11); quant = _mm256_permute2x128_si256(quant, quant, 0x11); shift = _mm256_permute2x128_si256(shift, shift, 0x11); dequant = _mm256_permute2x128_si256(dequant, dequant, 0x11); } else { highbd_calculate_qcoeff_avx2(&qcoeff0, &round, &quant, &shift, &log_scale); round = _mm256_permute2x128_si256(round, round, 0x11); quant = _mm256_permute2x128_si256(quant, quant, 0x11); shift = _mm256_permute2x128_si256(shift, shift, 0x11); highbd_calculate_qcoeff_avx2(&qcoeff1, &round, &quant, &shift, &log_scale); // Reinsert signs qcoeff0 = _mm256_sign_epi32(qcoeff0, coeff0); qcoeff1 = _mm256_sign_epi32(qcoeff1, coeff1); // Mask out zbin threshold coeffs qcoeff0 = _mm256_and_si256(qcoeff0, temp0); qcoeff1 = _mm256_and_si256(qcoeff1, temp1); highbd_store_coefficients_avx2(qcoeff0, qcoeff1, qcoeff_ptr); coeff0 = highbd_calculate_dqcoeff_log_scale_avx2(qcoeff0, dequant, log_scale); dequant = _mm256_permute2x128_si256(dequant, dequant, 0x11); coeff1 = highbd_calculate_dqcoeff_log_scale_avx2(qcoeff1, dequant, log_scale); highbd_store_coefficients_avx2(coeff0, coeff1, dqcoeff_ptr); } // AC only loop. while (index < n_coeffs) { coeff0 = _mm256_load_si256((__m256i *)(coeff_ptr + index)); qcoeff0 = _mm256_abs_epi32(coeff0); coeff1 = _mm256_load_si256((__m256i *)(coeff_ptr + index + 8)); qcoeff1 = _mm256_abs_epi32(coeff1); highbd_update_mask0_avx2(&qcoeff0, &qcoeff1, threshold, iscan + index, &is_found0, &mask0); temp0 = _mm256_cmpgt_epi32(qcoeff0, zbin); temp1 = _mm256_cmpgt_epi32(qcoeff1, zbin); cmp_mask = _mm256_permute4x64_epi64(_mm256_packs_epi32(temp0, temp1), 0xd8); highbd_update_mask1_avx2(&cmp_mask, iscan + index, &is_found1, &mask1); if (_mm256_movemask_epi8(cmp_mask) == 0) { _mm256_store_si256((__m256i *)(qcoeff_ptr + index), zero); _mm256_store_si256((__m256i *)(qcoeff_ptr + index + 8), zero); _mm256_store_si256((__m256i *)(dqcoeff_ptr + index), zero); _mm256_store_si256((__m256i *)(dqcoeff_ptr + index + 8), zero); index += 16; continue; } highbd_calculate_qcoeff_avx2(&qcoeff0, &round, &quant, &shift, &log_scale); highbd_calculate_qcoeff_avx2(&qcoeff1, &round, &quant, &shift, &log_scale); qcoeff0 = _mm256_sign_epi32(qcoeff0, coeff0); qcoeff1 = _mm256_sign_epi32(qcoeff1, coeff1); qcoeff0 = _mm256_and_si256(qcoeff0, temp0); qcoeff1 = _mm256_and_si256(qcoeff1, temp1); highbd_store_coefficients_avx2(qcoeff0, qcoeff1, qcoeff_ptr + index); coeff0 = highbd_calculate_dqcoeff_log_scale_avx2(qcoeff0, dequant, log_scale); coeff1 = highbd_calculate_dqcoeff_log_scale_avx2(qcoeff1, dequant, log_scale); highbd_store_coefficients_avx2(coeff0, coeff1, dqcoeff_ptr + index); index += 16; } if (is_found0) { temp_mask0 = _mm_max_epi16(_mm256_castsi256_si128(mask0), _mm256_extracti128_si256(mask0, 1)); non_zero_count = calculate_non_zero_count(temp_mask0); } if (is_found1) { temp_mask1 = _mm_max_epi16(_mm256_castsi256_si128(mask1), _mm256_extracti128_si256(mask1, 1)); non_zero_count_prescan_add_zero = calculate_non_zero_count(temp_mask1); } for (int i = non_zero_count_prescan_add_zero - 1; i >= non_zero_count; i--) { const int rc = scan[i]; qcoeff_ptr[rc] = 0; dqcoeff_ptr[rc] = 0; } for (int i = non_zero_count - 1; i >= 0; i--) { const int rc = scan[i]; if (qcoeff_ptr[rc]) { eob = i; break; } } *eob_ptr = eob + 1; #if SKIP_EOB_FACTOR_ADJUST // TODO(Aniket): Experiment the following loop with intrinsic by combining // with the quantization loop above for (int i = 0; i < non_zero_count; i++) { const int rc = scan[i]; const int qcoeff = qcoeff_ptr[rc]; if (qcoeff) { first = i; break; } } if ((*eob_ptr - 1) >= 0 && first == (*eob_ptr - 1)) { const int rc = scan[(*eob_ptr - 1)]; if (qcoeff_ptr[rc] == 1 || qcoeff_ptr[rc] == -1) { const int coeff = coeff_ptr[rc] * wt; const int coeff_sign = AOMSIGN(coeff); const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign; const int factor = EOB_FACTOR + SKIP_EOB_FACTOR_ADJUST; const int prescan_add_val = ROUND_POWER_OF_TWO(dequant_ptr[rc != 0] * factor, 7); if (abs_coeff < (zbins[rc != 0] * (1 << AOM_QM_BITS) + prescan_add_val)) { qcoeff_ptr[rc] = 0; dqcoeff_ptr[rc] = 0; *eob_ptr = 0; } } } #endif }